Conjugated Linoleic Acid Effects on Cancer, Obesity, and Atherosclerosis: A Review of Pre-Clinical and Human Trials with Current Perspectives

Laura J den Hartigh, Laura J den Hartigh

Abstract

Obesity and its comorbidities, including type 2 diabetes and cardiovascular disease, are straining our healthcare system, necessitating the development of novel strategies for weight loss. Lifestyle modifications, such as exercise and caloric restriction, have proven effective against obesity in the short term, yet obesity persists because of the high predilection for weight regain. Therefore, alternative approaches to achieve long term sustainable weight loss are urgently needed. Conjugated linoleic acid (CLA), a fatty acid found naturally in ruminant animal food products, has been identified as a potential anti-obesogenic agent, with substantial efficacy in mice, and modest efficacy in obese human populations. Originally described as an anti-carcinogenic fatty acid, in addition to its anti-obesogenic effects, CLA has now been shown to possess anti-atherosclerotic properties. This review summarizes the pre-clinical and human studies conducted using CLA to date, which collectively suggest that CLA has efficacy against cancer, obesity, and atherosclerosis. In addition, the potential mechanisms for the many integrative physiological effects of CLA supplementation will be discussed in detail, including an introduction to the gut microbiota as a potential mediator of CLA effects on obesity and atherosclerosis.

Keywords: atherosclerosis; cancer; conjugated linoleic acid (CLA); diabetes; gut microbiota; obesity.

Conflict of interest statement

The author has no conflicts of interest to disclose.

References

    1. Schmid A., Collomb M., Sieber R., Bee G. Conjugated linoleic acid in meat and meat products: A review. Meat Sci. 2006;73:29–41. doi: 10.1016/j.meatsci.2005.10.010.
    1. Lawson R.E., Moss A.R., Givens D.I. The role of dairy products in supplying conjugated linoleic acid to man’s diet: A review. Nutr. Res. Rev. 2001;14:153–172. doi: 10.1079/095442201108729178.
    1. Parodi P.W. Distribution of isomeric octadecenoic fatty acids in milk fat. J. Dairy Sci. 1976;59:1870–1873. doi: 10.3168/jds.S0022-0302(76)84455-4.
    1. Kramer J.K., Parodi P.W., Jensen R.G., Mossoba M.M., Yurawecz M.P., Adlof R.O. Rumenic acid: A proposed common name for the major conjugated linoleic acid isomer found in natural products. Lipids. 1998;33:835. doi: 10.1007/s11745-998-0279-6.
    1. Griinari J.M., Corl B.A., Lacy S.H., Chouinard P.Y., Nurmela K.V., Bauman D.E. Conjugated linoleic acid is synthesized endogenously in lactating dairy cows by Delta(9)-desaturase. J. Nutr. 2000;130:2285–2291. doi: 10.1093/jn/130.9.2285.
    1. Ma D.W.L., Wierzbicki A.A., Field C.J., Clandinin M.T. Preparation of Conjugated Linoleic Acid from Safflower Oil. J. Am. Oil Chem. Soc. 1999;76:729–730. doi: 10.1007/s11746-999-0167-3.
    1. Mozaffarian D., Katan M., Ascherio A., Stampfer M., Willett W. Trans fatty acids and cardiovascular disease. N. Engl. J. Med. 2006;354:1601–1613. doi: 10.1056/NEJMra054035.
    1. Trumbo P., Schlicker S., Yates A.A., Poos M., Food and Nutrition Board of the Institute of Medicine, The National Academies Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids. J. Am. Diet. Assoc. 2002;102:1621–1630. doi: 10.1016/S0002-8223(02)90346-9.
    1. Hu F.B., Stampfer M.J., Manson J.E., Rimm E., Colditz G.A., Rosner B.A., Hennekens C.H., Willett W.C. Dietary fat intake and the risk of coronary heart disease in women. N. Engl. J. Med. 1997;337:1491–1499. doi: 10.1056/NEJM199711203372102.
    1. Willett W.C., Stampfer M.J., Manson J.E., Colditz G.A., Speizer F.E., Rosner B.A., Sampson L.A., Hennekens C.H. Intake of trans fatty acids and risk of coronary heart disease among women. Lancet. 1993;341:581–585. doi: 10.1016/0140-6736(93)90350-P.
    1. Oomen C.M., Ocké M.C., Feskens E.J., van Erp-Baart M.A., Kok F.J., Kromhout D. Association between trans fatty acid intake and 10-year risk of coronary heart disease in the Zutphen Elderly Study: A prospective population-based study. Lancet. 2001;357:746–751. doi: 10.1016/S0140-6736(00)04166-0.
    1. Bendsen N.T., Christensen R., Bartels E.M., Astrup A. Consumption of industrial and ruminant trans fatty acids and risk of coronary heart disease: A systematic review and meta-analysis of cohort studies. Eur. J. Clin. Nutr. 2011;65:773–783. doi: 10.1038/ejcn.2011.34.
    1. Mozaffarian D., Pischon T., Hankinson S.E., Rifai N., Joshipura K., Willett W.C., Rimm E.B. Dietary intake of trans fatty acids and systemic inflammation in women. Am. J. Clin. Nutr. 2004;79:606–612. doi: 10.1093/ajcn/79.4.606.
    1. Jakobsen M.U., Overvad K., Dyerberg J., Heitmann B.L. Intake of ruminant trans fatty acids and risk of coronary heart disease. Int. J. Epidemiol. 2008;37:173–182. doi: 10.1093/ije/dym243.
    1. Maia M.R., Chaudhary L.C., Bestwick C.S., Richardson A.J., McKain N., Larson T.R., Graham I.A., Wallace R.J. Toxicity of unsaturated fatty acids to the biohydrogenating ruminal bacterium, Butyrivibrio fibrisolvens. BMC Microbiol. 2010;10:52. doi: 10.1186/1471-2180-10-52.
    1. Maia M.R., Chaudhary L.C., Figueres L., Wallace R.J. Metabolism of polyunsaturated fatty acids and their toxicity to the microflora of the rumen. Antonie Van Leeuwenhoek. 2007;91:303–314. doi: 10.1007/s10482-006-9118-2.
    1. Lourenço M., Ramos-Morales E., Wallace R.J. The role of microbes in rumen lipolysis and biohydrogenation and their manipulation. Animal. 2010;4:1008–1023. doi: 10.1017/S175173111000042X.
    1. Bauman D.E., Griinari J.M. Nutritional regulation of milk fat synthesis. Annu. Rev. Nutr. 2003;23:203–227. doi: 10.1146/annurev.nutr.23.011702.073408.
    1. French P., Stanton C., Lawless F., O’Riordan E.G., Monahan F.J., Caffrey P.J., Moloney A.P. Fatty acid composition, including conjugated linoleic acid, of intramuscular fat from steers offered grazed grass, grass silage, or concentrate-based diets. J. Anim. Sci. 2000;78:2849–2855. doi: 10.2527/2000.78112849x.
    1. Kelly M.L., Berry J.R., Dwyer D.A., Griinari J.M., Chouinard P.Y., Van Amburgh M.E., Bauman D.E. Dietary fatty acid sources affect conjugated linoleic acid concentrations in milk from lactating dairy cows. J. Nutr. 1998;128:881–885. doi: 10.1093/jn/128.5.881.
    1. Daley C.A., Abbott A., Doyle P.S., Nader G.A., Larson S. A review of fatty acid profiles and antioxidant content in grass-fed and grain-fed beef. Nutr. J. 2010;9:10. doi: 10.1186/1475-2891-9-10.
    1. Duckett S.K., Wagner D.G., Yates L.D., Dolezal H.G., May S.G. Effects of time on feed on beef nutrient composition. J. Anim. Sci. 1993;71:2079–2088. doi: 10.2527/1993.7182079x.
    1. Scollan N.D., Price E.M., Morgan S.A., Huws S.A., Shingfield K.J. Can we improve the nutritional quality of meat? Proc. Nutr. Soc. 2017;76:603–618. doi: 10.1017/S0029665117001112.
    1. Chouinard P.Y., Corneau L., Butler W.R., Chilliard Y., Drackley J.K., Bauman D.E. Effect of dietary lipid source on conjugated linoleic acid concentrations in milk fat. J. Dairy Sci. 2001;84:680–690. doi: 10.3168/jds.S0022-0302(01)74522-5.
    1. Pariza M.W., Park Y., Cook M.E. Mechanisms of action of conjugated linoleic acid: Evidence and speculation. Proc. Soc. Exp. Biol. Med. 2000;223:8–13. doi: 10.1046/j.1525-1373.2000.22302.x.
    1. Dhiman T.R., Anand G.R., Satter L.D., Pariza M.W. Conjugated linoleic acid content of milk from cows fed different diets. J. Dairy Sci. 1999;82:2146–2156. doi: 10.3168/jds.S0022-0302(99)75458-5.
    1. Bainbridge M.L., Egolf E., Barlow J.W., Alvez J.P., Roman J., Kraft J. Milk from cows grazing on cool-season pastures provides an enhanced profile of bioactive fatty acids compared to those grazed on a monoculture of pearl millet. Food Chem. 2017;217:750–755. doi: 10.1016/j.foodchem.2016.08.134.
    1. Bessa R.J.B., Santos-Silva J., Ribeiro J.M.R., Portugal A.V. Reticulo-rumen biohydrogenation and the enrichment of ruminant edible products with linoleic acid conjugated isomers. Livest. Prod. Sci. 2000;63:201–211. doi: 10.1016/S0301-6226(99)00117-7.
    1. Dhiman T.R., Satter L.D., Pariza M.W., Galli M.P., Albright K., Tolosa M.X. Conjugated linoleic acid (CLA) content of milk from cows offered diets rich in linoleic and linolenic acid. J. Dairy Sci. 2000;83:1016–1027. doi: 10.3168/jds.S0022-0302(00)74966-6.
    1. Palmquist D.L., Beaulieu A.D., Barbano D.M. Feed and animal factors influencing milk fat composition. J. Dairy Sci. 1993;76:1753–1771. doi: 10.3168/jds.S0022-0302(93)77508-6.
    1. Pariza M.W., Park Y., Cook M.E. The biologically active isomers of conjugated linoleic acid. Prog. Lipid Res. 2001;40:283–298. doi: 10.1016/S0163-7827(01)00008-X.
    1. Alfaia C.M., Castro M.L., Martins S.I., Portugal A.P., Alves S.P., Fontes C.M., Bessa R.J., Prates J.A. Effect of slaughter season on fatty acid composition, conjugated linoleic acid isomers and nutritional value of intramuscular fat in Barrosã-PDO veal. Meat Sci. 2007;75:44–52. doi: 10.1016/j.meatsci.2006.06.013.
    1. Peterson D.G., Baumgard L.H., Bauman D.E. Short communication: Milk fat response to low doses of tran-10, cis-12 conjugated linoleic acid (CLA) J. Dairy Sci. 2002;85:1764–1766. doi: 10.3168/jds.S0022-0302(02)74250-1.
    1. Wonsil B.J., Herbein J.H., Watkins B.A. Dietary and ruminally derived trans-18:1 fatty acids alter bovine milk lipids. J. Nutr. 1994;124:556–565.
    1. Baumgard L.H., Sangster J.K., Bauman D.E. Milk fat synthesis in dairy cows is progressively reduced by increasing supplemental amounts of trans-10, cis-12 conjugated linoleic acid (CLA) J. Nutr. 2001;131:1764–1769. doi: 10.1093/jn/131.6.1764.
    1. Harvatine K.J., Boisclair Y.R., Bauman D.E. Time-dependent effect of trans-10,cis-12 conjugated linoleic acid on gene expression of lipogenic enzymes and regulators in mammary tissue of dairy cows. J. Dairy Sci. 2018;101:7585–7592. doi: 10.3168/jds.2017-13935.
    1. Belury M.A. Dietary conjugated linoleic acid in health: Physiological effects and mechanisms of action. Annu. Rev. Nutr. 2002;22:505–531. doi: 10.1146/annurev.nutr.22.021302.121842.
    1. Rodríguez-Alcalá L.M., Fontecha J. Hot topic: Fatty acid and conjugated linoleic acid (CLA) isomer composition of commercial CLA-fortified dairy products: Evaluation after processing and storage. J. Dairy Sci. 2007;90:2083–2090. doi: 10.3168/jds.2006-693.
    1. Ha Y.L., Grimm N.K., Pariza M.W. Anticarcinogens from fried ground beef: Heat-altered derivatives of linoleic acid. Carcinogenesis. 1987;8:1881–1887. doi: 10.1093/carcin/8.12.1881.
    1. Ip M.M., Masso-Welch P.A., Ip C. Prevention of mammary cancer with conjugated linoleic acid: Role of the stroma and the epithelium. J. Mammary Gland Biol. Neoplasia. 2003;8:103–118. doi: 10.1023/A:1025739506536.
    1. Futakuchi M., Cheng J.L., Hirose M., Kimoto N., Cho Y.M., Iwata T., Kasai M., Tokudome S., Shirai T. Inhibition of conjugated fatty acids derived from safflower or perilla oil of induction and development of mammary tumors in rats induced by 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) Cancer Lett. 2002;178:131–139. doi: 10.1016/S0304-3835(01)00860-6.
    1. Ha Y.L., Storkson J., Pariza M.W. Inhibition of benzo(a)pyrene-induced mouse forestomach neoplasia by conjugated dienoic derivatives of linoleic acid. Cancer Res. 1990;50:1097–1101.
    1. Liew C., Schut H.A., Chin S.F., Pariza M.W., Dashwood R.H. Protection of conjugated linoleic acids against 2-amino-3-methylimidazo[4,5-f]quinoline-induced colon carcinogenesis in the F344 rat: A study of inhibitory mechanisms. Carcinogenesis. 1995;16:3037–3043. doi: 10.1093/carcin/16.12.3037.
    1. Soel S.M., Choi O.S., Bang M.H., Yoon Park J.H., Kim W.K. Influence of conjugated linoleic acid isomers on the metastasis of colon cancer cells in vitro and in vivo. J. Nutr. Biochem. 2007;18:650–657. doi: 10.1016/j.jnutbio.2006.10.011.
    1. Shiraishi R., Iwakiri R., Fujise T., Kuroki T., Kakimoto T., Takashima T., Sakata Y., Tsunada S., Nakashima Y., Yanagita T., et al. Conjugated linoleic acid suppresses colon carcinogenesis in azoxymethane-pretreated rats with long-term feeding of diet containing beef tallow. J. Gastroenterol. 2010;45:625–635. doi: 10.1007/s00535-010-0206-8.
    1. Cesano A., Visonneau S., Scimeca J.A., Kritchevsky D., Santoli D. Opposite effects of linoleic acid and conjugated linoleic acid on human prostatic cancer in SCID mice. Anticancer Res. 1998;18:1429–1434.
    1. Kohno H., Yasui Y., Suzuki R., Hosokawa M., Miyashita K., Tanaka T. Dietary seed oil rich in conjugated linolenic acid from bitter melon inhibits azoxymethane-induced rat colon carcinogenesis through elevation of colonic PPARgamma expression and alteration of lipid composition. Int. J. Cancer. 2004;110:896–901. doi: 10.1002/ijc.20179.
    1. Yamasaki M., Nishida E., Nou S., Tachibana H., Yamada K. Cytotoxity of the trans10,cis12 isomer of conjugated linoleic acid on rat hepatoma and its modulation by other fatty acids, tocopherol, and tocotrienol. In Vitro Cell. Dev. Biol. Anim. 2005;41:239–244. doi: 10.1290/0402008.1.
    1. Kohno H., Suzuki R., Yasui Y., Hosokawa M., Miyashita K., Tanaka T. Pomegranate seed oil rich in conjugated linolenic acid suppresses chemically induced colon carcinogenesis in rats. Cancer Sci. 2004;95:481–486. doi: 10.1111/j.1349-7006.2004.tb03236.x.
    1. Ip C., Ip M.M., Loftus T., Shoemaker S., Shea-Eaton W. Induction of apoptosis by conjugated linoleic acid in cultured mammary tumor cells and premalignant lesions of the rat mammary gland. Cancer Epidemiol. Biomarkers Prev. 2000;9:689–696.
    1. Park H.S., Ryu J.H., Ha Y.L., Park J.H. Dietary conjugated linoleic acid (CLA) induces apoptosis of colonic mucosa in 1,2-dimethylhydrazine-treated rats: A possible mechanism of the anticarcinogenic effect by CLA. Br. J. Nutr. 2001;86:549–555. doi: 10.1079/BJN2001445.
    1. Pierre A.S., Minville-Walz M., Fèvre C., Hichami A., Gresti J., Pichon L., Bellenger S., Bellenger J., Ghiringhelli F., Narce M., et al. Trans-10, cis-12 conjugated linoleic acid induced cell death in human colon cancer cells through reactive oxygen species-mediated ER stress. Biochim. Biophys. Acta. 2013;1831:759–768. doi: 10.1016/j.bbalip.2013.01.005.
    1. Banni S., Angioni E., Casu V., Melis M.P., Carta G., Corongiu F.P., Thompson H., Ip C. Decrease in linoleic acid metabolites as a potential mechanism in cancer risk reduction by conjugated linoleic acid. Carcinogenesis. 1999;20:1019–1024. doi: 10.1093/carcin/20.6.1019.
    1. Kavanaugh C.J., Liu K.L., Belury M.A. Effect of dietary conjugated linoleic acid on phorbol ester-induced PGE2 production and hyperplasia in mouse epidermis. Nutr. Cancer. 1999;33:132–138. doi: 10.1207/S15327914NC330203.
    1. Mandir N., Goodlad R.A. Conjugated linoleic acids differentially alter polyp number and diameter in the Apc(min/+) mouse model of intestinal cancer. Cell Prolif. 2008;41:279–291. doi: 10.1111/j.1365-2184.2008.00524.x.
    1. Ip C., Dong Y., Thompson H.J., Bauman D.E., Ip M.M. Control of rat mammary epithelium proliferation by conjugated linoleic acid. Nutr. Cancer. 2001;39:233–238. doi: 10.1207/S15327914nc392_12.
    1. Wong M.W., Chew B.P., Wong T.S., Hosick H.L., Boylston T.D., Shultz T.D. Effects of dietary conjugated linoleic acid on lymphocyte function and growth of mammary tumors in mice. Anticancer Res. 1997;17:987–993.
    1. Petrik M.B., McEntee M.F., Johnson B.T., Obukowicz M.G., Whelan J. Highly unsaturated (n-3) fatty acids, but not alpha-linolenic, conjugated linoleic or gamma-linolenic acids, reduce tumorigenesis in Apc(Min/+) mice. J. Nutr. 2000;130:2434–2443. doi: 10.1093/jn/130.10.2434.
    1. Moser A.R., Dove W.F., Roth K.A., Gordon J.I. The Min (multiple intestinal neoplasia) mutation: Its effect on gut epithelial cell differentiation and interaction with a modifier system. J. Cell Biol. 1992;116:1517–1526. doi: 10.1083/jcb.116.6.1517.
    1. Flowers M., Schroeder J.A., Borowsky A.D., Besselsen D.G., Thomson C.A., Pandey R., Thompson P.A. Pilot study on the effects of dietary conjugated linoleic acid on tumorigenesis and gene expression in PyMT transgenic mice. Carcinogenesis. 2010;31:1642–1649. doi: 10.1093/carcin/bgq148.
    1. Meng X., Shoemaker S.F., McGee S.O., Ip M.M. t10,c12-Conjugated linoleic acid stimulates mammary tumor progression in Her2/ErbB2 mice through activation of both proliferative and survival pathways. Carcinogenesis. 2008;29:1013–1021. doi: 10.1093/carcin/bgn035.
    1. Ip M.M., McGee S.O., Masso-Welch P.A., Ip C., Meng X., Ou L., Shoemaker S.F. The t10,c12 isomer of conjugated linoleic acid stimulates mammary tumorigenesis in transgenic mice over-expressing erbB2 in the mammary epithelium. Carcinogenesis. 2007;28:1269–1276. doi: 10.1093/carcin/bgm018.
    1. Knekt P., Järvinen R., Seppänen R., Pukkala E., Aromaa A. Intake of dairy products and the risk of breast cancer. Br. J. Cancer. 1996;73:687–691. doi: 10.1038/bjc.1996.119.
    1. Aro A., Männistö S., Salminen I., Ovaskainen M.L., Kataja V., Uusitupa M. Inverse association between dietary and serum conjugated linoleic acid and risk of breast cancer in postmenopausal women. Nutr. Cancer. 2000;38:151–157. doi: 10.1207/S15327914NC382_2.
    1. Larsson S.C., Bergkvist L., Wolk A. High-fat dairy food and conjugated linoleic acid intakes in relation to colorectal cancer incidence in the Swedish Mammography Cohort. Am. J. Clin. Nutr. 2005;82:894–900. doi: 10.1093/ajcn/82.4.894.
    1. McGowan M.M., Eisenberg B.L., Lewis L.D., Froehlich H.M., Wells W.A., Eastman A., Kuemmerle N.B., Rosenkrantz K.M., Barth R.J., Schwartz G.N., et al. A proof of principle clinical trial to determine whether conjugated linoleic acid modulates the lipogenic pathway in human breast cancer tissue. Breast Cancer Res. Treat. 2013;138:175–183. doi: 10.1007/s10549-013-2446-9.
    1. Martel P.M., Bingham C.M., McGraw C.J., Baker C.L., Morganelli P.M., Meng M.L., Armstrong J.M., Moncur J.T., Kinlaw W.B. S14 protein in breast cancer cells: Direct evidence of regulation by SREBP-1c, superinduction with progestin, and effects on cell growth. Exp. Cell Res. 2006;312:278–288. doi: 10.1016/j.yexcr.2005.10.022.
    1. Chajès V., Lavillonnière F., Ferrari P., Jourdan M.L., Pinault M., Maillard V., Sébédio J.L., Bougnoux P. Conjugated linoleic acid content in breast adipose tissue is not associated with the relative risk of breast cancer in a population of French patients. Cancer Epidemiol. Biomarkers Prev. 2002;11:672–673.
    1. Chajes V., Lavillonniere F., Maillard V., Giraudeau B., Jourdan M.L., Sebedio J.L., Bougnoux P. Conjugated linoleic acid content in breast adipose tissue of breast cancer patients and the risk of metastasis. Nutr. Cancer. 2003;45:17–23. doi: 10.1207/S15327914NC4501_2.
    1. McCann S.E., Ip C., Ip M.M., McGuire M.K., Muti P., Edge S.B., Trevisan M., Freudenheim J.L. Dietary intake of conjugated linoleic acids and risk of premenopausal and postmenopausal breast cancer, Western New York Exposures and Breast Cancer Study (WEB Study) Cancer Epidemiol. Biomarkers Prev. 2004;13:1480–1484.
    1. Voorrips L.E., Brants H.A., Kardinaal A.F., Hiddink G.J., van den Brandt P.A., Goldbohm R.A. Intake of conjugated linoleic acid, fat, and other fatty acids in relation to postmenopausal breast cancer: The Netherlands Cohort Study on Diet and Cancer. Am. J. Clin. Nutr. 2002;76:873–882. doi: 10.1093/ajcn/76.4.873.
    1. Blanck H.M., Serdula M.K., Gillespie C., Galuska D.A., Sharpe P.A., Conway J.M., Khan L.K., Ainsworth B.E. Use of nonprescription dietary supplements for weight loss is common among Americans. J. Am. Diet. Assoc. 2007;107:441–447. doi: 10.1016/j.jada.2006.12.009.
    1. Gammill W., Proctor A., Jain V. Comparative study of high-linoleic acid vegetable oils for the production of conjugated linoleic acid. J. Agric. Food Chem. 2010;58:2952–2957. doi: 10.1021/jf9020027.
    1. Park Y., Albright K.J., Liu W., Storkson J.M., Cook M.E., Pariza M.W. Effect of conjugated linoleic acid on body composition in mice. Lipids. 1997;32:853–858. doi: 10.1007/s11745-997-0109-x.
    1. Park Y., Storkson J.M., Albright K.J., Liu W., Pariza M.W. Evidence that the trans-10,cis-12 isomer of conjugated linoleic acid induces body composition changes in mice. Lipids. 1999;34:235–241. doi: 10.1007/s11745-999-0358-8.
    1. Yamasaki M., Mansho K., Mishima H., Kasai M., Sugano M., Tachibana H., Yamada K. Dietary effect of conjugated linoleic acid on lipid levels in white adipose tissue of Sprague-Dawley rats. Biosci. Biotechnol. Biochem. 1999;63:1104–1106. doi: 10.1271/bbb.63.1104.
    1. West D.B., Delany J.P., Camet P.M., Blohm F., Truett A.A., Scimeca J. Effects of conjugated linoleic acid on body fat and energy metabolism in the mouse. Pt 2Am. J. Physiol. 1998;275:R667–R672. doi: 10.1152/ajpregu.1998.275.3.R667.
    1. Halade G.V., Rahman M.M., Fernandes G. Differential effects of conjugated linoleic acid isomers in insulin-resistant female C57Bl/6J mice. J. Nutr. Biochem. 2010;21:332–337. doi: 10.1016/j.jnutbio.2009.01.006.
    1. Parra P., Palou A., Serra F. Moderate doses of conjugated linoleic acid reduce fat gain, maintain insulin sensitivity without impairing inflammatory adipose tissue status in mice fed a high-fat diet. Nutr. Metab. (Lond.) 2010;7:5. doi: 10.1186/1743-7075-7-5.
    1. Den Hartigh L.J., Wang S., Goodspeed L., Wietecha T., Houston B., Omer M., Ogimoto K., Subramanian S., Gowda G.A., O’Brien K.D., et al. Metabolically distinct weight loss by 10,12 CLA and caloric restriction highlight the importance of subcutaneous white adipose tissue for glucose homeostasis in mice. PLoS ONE. 2017;12:e0172912. doi: 10.1371/journal.pone.0172912.
    1. Azain M.J., Hausman D.B., Sisk M.B., Flatt W.P., Jewell D.E. Dietary conjugated linoleic acid reduces rat adipose tissue cell size rather than cell number. J. Nutr. 2000;130:1548–1554. doi: 10.1093/jn/130.6.1548.
    1. Gavino V.C., Gavino G., Leblanc M.J., Tuchweber B. An isomeric mixture of conjugated linoleic acids but not pure cis-9, trans-11-octadecadienoic acid affects body weight gain and plasma lipids in hamsters. J. Nutr. 2000;130:27–29. doi: 10.1093/jn/130.1.27.
    1. Navarro V., Zabala A., Macarulla M.T., Fernández-Quintela A., Rodríguez V.M., Simón E., Portillo M.P. Effects of conjugated linoleic acid on body fat accumulation and serum lipids in hamsters fed an atherogenic diet. J. Physiol. Biochem. 2003;59:193–199. doi: 10.1007/BF03179915.
    1. Ostrowska E., Suster D., Muralitharan M., Cross R.F., Leury B.J., Bauman D.E., Dunshea F.R. Conjugated linoleic acid decreases fat accretion in pigs: Evaluation by dual-energy X-ray absorptiometry. Br. J. Nutr. 2003;89:219–229. doi: 10.1079/BJN2002765.
    1. Dugan M.E., Aalhus J.L., Kramer J.K. Conjugated linoleic acid pork research. Am. J. Clin. Nutr. 2004;79(Suppl. 6):1212S–1216S. doi: 10.1093/ajcn/79.6.1212S.
    1. Corl B.A., Mathews Oliver S.A., Lin X., Oliver W.T., Ma Y., Harrell R.J., Odle J. Conjugated linoleic acid reduces body fat accretion and lipogenic gene expression in neonatal pigs fed low- or high-fat formulas. J. Nutr. 2008;138:449–454. doi: 10.1093/jn/138.3.449.
    1. Sisk M.B., Hausman D.B., Martin R.J., Azain M.J. Dietary conjugated linoleic acid reduces adiposity in lean but not obese Zucker rats. J. Nutr. 2001;131:1668–1674. doi: 10.1093/jn/131.6.1668.
    1. De Deckere E.A., van Amelsvoort J.M., McNeill G.P., Jones P. Effects of conjugated linoleic acid (CLA) isomers on lipid levels and peroxisome proliferation in the hamster. Br. J. Nutr. 1999;82:309–317.
    1. Choi J.S., Koh I.U., Jung M.H., Song J. Effects of three different conjugated linoleic acid preparations on insulin signalling, fat oxidation and mitochondrial function in rats fed a high-fat diet. Br. J. Nutr. 2007;98:264–275. doi: 10.1017/S000711450770497X.
    1. Kim J.H., Kim J., Park Y. trans-10,cis-12 conjugated linoleic acid enhances endurance capacity by increasing fatty acid oxidation and reducing glycogen utilization in mice. Lipids. 2012;47:855–863. doi: 10.1007/s11745-012-3698-6.
    1. Den Hartigh L.J., Han C.Y., Wang S., Omer M., Chait A. 10E,12Z-conjugated linoleic acid impairs adipocyte triglyceride storage by enhancing fatty acid oxidation, lipolysis, and mitochondrial reactive oxygen species. J. Lipid Res. 2013;54:2964–2978. doi: 10.1194/jlr.M035188.
    1. Wendel A.A., Purushotham A., Liu L.F., Belury M.A. Conjugated linoleic acid induces uncoupling protein 1 in white adipose tissue of ob/ob mice. Lipids. 2009;44:975–982. doi: 10.1007/s11745-009-3348-9.
    1. Shen W., Baldwin J., Collins B., Hixson L., Lee K.T., Herberg T., Starnes J., Cooney P., Chuang C.C., Hopkins R., et al. Low level of trans-10, cis-12 conjugated linoleic acid decreases adiposity and increases browning independent of inflammatory signaling in overweight Sv129 mice. J. Nutr. Biochem. 2015;26:616–625. doi: 10.1016/j.jnutbio.2014.12.016.
    1. Shen W., Chuang C.C., Martinez K., Reid T., Brown J.M., Xi L., Hixson L., Hopkins R., Starnes J., McIntosh M. Conjugated Linoleic Acid Reduces Adiposity and Increases Markers of Browning and Inflammation in White Adipose Tissue of Mice. J. Lipid Res. 2013;54:909–922. doi: 10.1194/jlr.M030924.
    1. Ouchi N., Walsh K. Adiponectin as an anti-inflammatory factor. Clin. Chim. Acta. 2007;380:24–30. doi: 10.1016/j.cca.2007.01.026.
    1. Ohashi K., Ouchi N., Matsuzawa Y. Anti-inflammatory and anti-atherogenic properties of adiponectin. Biochimie. 2012;94:2137–2142. doi: 10.1016/j.biochi.2012.06.008.
    1. Hotta K., Funahashi T., Arita Y., Takahashi M., Matsuda M., Okamoto Y., Iwahashi H., Kuriyama H., Ouchi N., Maeda K., et al. Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arterioscler. Thromb. Vasc. Biol. 2000;20:1595–1599. doi: 10.1161/01.ATV.20.6.1595.
    1. Yamauchi T., Kamon J., Waki H., Terauchi Y., Kubota N., Hara K., Mori Y., Ide T., Murakami K., Tsuboyama-Kasaoka N., et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat. Med. 2001;7:941–946. doi: 10.1038/90984.
    1. Maeda N., Shimomura I., Kishida K., Nishizawa H., Matsuda M., Nagaretani H., Furuyama N., Kondo H., Takahashi M., Arita Y., et al. Diet-induced insulin resistance in mice lacking adiponectin/ACRP30. Nat. Med. 2002;8:731–737. doi: 10.1038/nm724.
    1. Miller J.R., Siripurkpong P., Hawes J., Majdalawieh A., Ro H.S., McLeod R.S. The trans-10, cis-12 isomer of conjugated linoleic acid decreases adiponectin assembly by PPARgamma-dependent and PPARgamma-independent mechanisms. J. Lipid Res. 2008;49:550–562. doi: 10.1194/jlr.M700275-JLR200.
    1. Majuri A., Santaniemi M., Rautio K., Kunnari A., Vartiainen J., Ruokonen A., Kesäniemi Y.A., Tapanainen J.S., Ukkola O., Morin-Papunen L. Rosiglitazone treatment increases plasma levels of adiponectin and decreases levels of resistin in overweight women with PCOS: A randomized placebo-controlled study. Eur. J. Endocrinol. 2007;156:263–269. doi: 10.1530/eje.1.02331.
    1. Wang S., Goodspeed L., Turk K.E., Houston B., den Hartigh L.J. Rosiglitazone improves insulin resistance mediated by 10,12 conjugated linoleic acid in a male mouse model of metabolic syndrome. Endocrinology. 2017;158:2848–2859. doi: 10.1210/en.2017-00213.
    1. Wargent E., Sennitt M.V., Stocker C., Mayes A.E., Brown L., O’Dowd J., Wang S., Einerhand A.W., Mohede I., Arch J.R., et al. Prolonged treatment of genetically obese mice with conjugated linoleic acid improves glucose tolerance and lowers plasma insulin concentration: Possible involvement of PPAR activation. Lipids Health Dis. 2005;4:3. doi: 10.1186/1476-511X-4-3.
    1. Bassaganya-Riera J., Reynolds K., Martino-Catt S., Cui Y., Hennighausen L., Gonzalez F., Rohrer J., Benninghoff A.U., Hontecillas R. Activation of PPAR gamma and delta by conjugated linoleic acid mediates protection from experimental inflammatory bowel disease. Gastroenterology. 2004;127:777–791. doi: 10.1053/j.gastro.2004.06.049.
    1. Zhou X.R., Sun C.H., Liu J.R., Zhao D. Dietary conjugated linoleic acid increases PPAR gamma gene expression in adipose tissue of obese rat, and improves insulin resistance. Growth Horm. IGF Res. 2008;18:361–368. doi: 10.1016/j.ghir.2008.01.001.
    1. Borniquel S., Jädert C., Lundberg J.O. Dietary conjugated linoleic acid activates PPARγ and the intestinal trefoil factor in SW480 cells and mice with dextran sulfate sodium-induced colitis. J. Nutr. 2012;142:2135–2140. doi: 10.3945/jn.112.163931.
    1. Evans N.P., Misyak S.A., Schmelz E.M., Guri A.J., Hontecillas R., Bassaganya-Riera J. Conjugated linoleic acid ameliorates inflammation-induced colorectal cancer in mice through activation of PPARgamma. J. Nutr. 2010;140:515–521. doi: 10.3945/jn.109.115642.
    1. Granlund L., Juvet L.K., Pedersen J.I., Nebb H.I. Trans10, cis12-conjugated linoleic acid prevents triacylglycerol accumulation in adipocytes by acting as a PPARgamma modulator. J. Lipid Res. 2003;44:1441–1452. doi: 10.1194/jlr.M300120-JLR200.
    1. Brown J.M., Boysen M.S., Jensen S.S., Morrison R.F., Storkson J., Lea-Currie R., Pariza M., Mandrup S., McIntosh M.K. Isomer-specific regulation of metabolism and PPARgamma signaling by CLA in human preadipocytes. J. Lipid Res. 2003;44:1287–1300. doi: 10.1194/jlr.M300001-JLR200.
    1. Kennedy A., Chung S., LaPoint K., Fabiyi O., McIntosh M.K. Trans-10, cis-12 conjugated linoleic acid antagonizes ligand-dependent PPARgamma activity in primary cultures of human adipocytes. J. Nutr. 2008;138:455–461. doi: 10.1093/jn/138.3.455.
    1. Kadegowda A.K., Khan M.J., Piperova L.S., Teter B.B., Rodriguez-Zas S.L., Erdman R.A., Loor J.J. Trans-10, cis 12-Conjugated Linoleic Acid-Induced Milk Fat Depression Is Associated with Inhibition of PPARγ Signaling and Inflammation in Murine Mammary Tissue. J. Lipids. 2013;2013:890343. doi: 10.1155/2013/890343.
    1. Ramiah S.K., Meng G.Y., Sheau Wei T., Swee Keong Y., Ebrahimi M. Dietary Conjugated Linoleic Acid Supplementation Leads to Downregulation of PPAR Transcription in Broiler Chickens and Reduction of Adipocyte Cellularity. PPAR Res. 2014;2014:137652. doi: 10.1155/2014/137652.
    1. Blankson H., Stakkestad J.A., Fagertun H., Thom E., Wadstein J., Gudmundsen O. Conjugated linoleic acid reduces body fat mass in overweight and obese humans. J. Nutr. 2000;130:2943–2948. doi: 10.1093/jn/130.12.2943.
    1. Berven G., Bye A., Hals O., Blankson H., Fagertun H., Thom E., Wadstein J., Gudmundsen O. Sagety of conjugated linoleic acid (CLA) in overweight or obese human volunteers. Eur. J. Lipid Sci. Technol. 2000;102:455–462. doi: 10.1002/1438-9312(200008)102:7<455::AID-EJLT455>;2-V.
    1. Gaullier J.M., Halse J., Høye K., Kristiansen K., Fagertun H., Vik H., Gudmundsen O. Conjugated linoleic acid supplementation for 1 y reduces body fat mass in healthy overweight humans. Am. J. Clin. Nutr. 2004;79:1118–1125. doi: 10.1093/ajcn/79.6.1118.
    1. Watras A.C., Buchholz A.C., Close R.N., Zhang Z., Schoeller D.A. The role of conjugated linoleic acid in reducing body fat and preventing holiday weight gain. Int. J. Obes. (Lond.) 2007;31:481–487. doi: 10.1038/sj.ijo.0803437.
    1. Laso N., Brugué E., Vidal J., Ros E., Arnaiz J.A., Carné X., Vidal S., Mas S., Deulofeu R., Lafuente A. Effects of milk supplementation with conjugated linoleic acid (isomers cis-9, trans-11 and trans-10, cis-12) on body composition and metabolic syndrome components. Br. J. Nutr. 2007;98:860–867. doi: 10.1017/S0007114507750882.
    1. Pinkoski C., Chilibeck P.D., Candow D.G., Esliger D., Ewaschuk J.B., Facci M., Farthing J.P., Zello G.A. The effects of conjugated linoleic acid supplementation during resistance training. Med. Sci. Sports Exerc. 2006;38:339–348. doi: 10.1249/01.mss.0000183860.42853.15.
    1. Gaullier J.M., Halse J., Høye K., Kristiansen K., Fagertun H., Vik H., Gudmundsen O. Supplementation with conjugated linoleic acid for 24 months is well tolerated by and reduces body fat mass in healthy, overweight humans. J. Nutr. 2005;135:778–784. doi: 10.1093/jn/135.4.778.
    1. Steck S.E., Chalecki A.M., Miller P., Conway J., Austin G.L., Hardin J.W., Albright C.D., Thuillier P. Conjugated linoleic acid supplementation for twelve weeks increases lean body mass in obese humans. J. Nutr. 2007;137:1188–1193. doi: 10.1093/jn/137.5.1188.
    1. Sneddon A.A., Tsofliou F., Fyfe C.L., Matheson I., Jackson D.M., Horgan G., Winzell M.S., Wahle K.W., Ahren B., Williams L.M. Effect of a conjugated linoleic acid and omega-3 fatty acid mixture on body composition and adiponectin. Obesity (Silver Spring) 2008;16:1019–1024. doi: 10.1038/oby.2008.41.
    1. Chen S.C., Lin Y.H., Huang H.P., Hsu W.L., Houng J.Y., Huang C.K. Effect of conjugated linoleic acid supplementation on weight loss and body fat composition in a Chinese population. Nutrition. 2012;28:559–565. doi: 10.1016/j.nut.2011.09.008.
    1. Norris L.E., Collene A.L., Asp M.L., Hsu J.C., Liu L.F., Richardson J.R., Li D., Bell D., Osei K., Jackson R.D., et al. Comparison of dietary conjugated linoleic acid with safflower oil on body composition in obese postmenopausal women with type 2 diabetes mellitus. Am. J. Clin. Nutr. 2009;90:468–476. doi: 10.3945/ajcn.2008.27371.
    1. Lambert E.V., Goedecke J.H., Bluett K., Heggie K., Claassen A., Rae D.E., West S., Dugas J., Dugas L., Meltzeri S., et al. Conjugated linoleic acid versus high-oleic acid sunflower oil: Effects on energy metabolism, glucose tolerance, blood lipids, appetite and body composition in regularly exercising individuals. Br. J. Nutr. 2007;97:1001–1011. doi: 10.1017/S0007114507172822.
    1. Joseph S.V., Jacques H., Plourde M., Mitchell P.L., McLeod R.S., Jones P.J. Conjugated Linoleic Acid Supplementation for 8 Weeks Does Not Affect Body Composition, Lipid Profile, or Safety Biomarkers in Overweight, Hyperlipidemic Men. J. Nutr. 2011;141:1286–1291. doi: 10.3945/jn.110.135087.
    1. Racine N.M., Watras A.C., Carrel A.L., Allen D.B., McVean J.J., Clark R.R., O’Brien A.R., O’Shea M., Scott C.E., Schoeller D.A. Effect of conjugated linoleic acid on body fat accretion in overweight or obese children. Am. J. Clin. Nutr. 2010;91:1157–1164. doi: 10.3945/ajcn.2009.28404.
    1. Ribeiro A.S., Pina F.L., Dodero S.R., Silva D.R., Schoenfeld B.J., Sugihara Júnior P., Fernandes R.R., Barbosa D.S., Cyrino E.S., Tirapegui J. Effect of Conjugated Linoleic Acid Associated With Aerobic Exercise on Body Fat and Lipid Profile in Obese Women: A Randomized, Double-Blinded, and Placebo-Controlled Trial. Int. J. Sport Nutr. Exerc. Metab. 2016;26:135–144. doi: 10.1123/ijsnem.2015-0236.
    1. Venkatramanan S., Joseph S.V., Chouinard P.Y., Jacques H., Farnworth E.R., Jones P.J. Milk enriched with conjugated linoleic acid fails to alter blood lipids or body composition in moderately overweight, borderline hyperlipidemic individuals. J. Am. Coll. Nutr. 2010;29:152–159. doi: 10.1080/07315724.2010.10719829.
    1. Larsen T.M., Toubro S., Gudmundsen O., Astrup A. Conjugated linoleic acid supplementation for 1 y does not prevent weight or body fat regain. Am. J. Clin. Nutr. 2006;83:606–612. doi: 10.1093/ajcn.83.3.606.
    1. Risérus U., Vessby B., Arnlöv J., Basu S. Effects of cis-9,trans-11 conjugated linoleic acid supplementation on insulin sensitivity, lipid peroxidation, and proinflammatory markers in obese men. Am. J. Clin. Nutr. 2004;80:279–283. doi: 10.1093/ajcn/80.2.279.
    1. Close R.N., Schoeller D.A., Watras A.C., Nora E.H. Conjugated linoleic acid supplementation alters the 6-mo change in fat oxidation during sleep. Am. J. Clin. Nutr. 2007;86:797–804. doi: 10.1093/ajcn/86.3.797.
    1. Raff M., Tholstrup T., Toubro S., Bruun J.M., Lund P., Straarup E.M., Christensen R., Sandberg M.B., Mandrup S. Conjugated linoleic acids reduce body fat in healthy postmenopausal women. J. Nutr. 2009;139:1347–1352. doi: 10.3945/jn.109.104471.
    1. Risérus U., Berglund L., Vessby B. Conjugated linoleic acid (CLA) reduced abdominal adipose tissue in obese middle-aged men with signs of the metabolic syndrome: A randomised controlled trial. Int. J. Obes. Relat. Metab. Disord. 2001;25:1129–1135. doi: 10.1038/sj.ijo.0801659.
    1. Risérus U., Arner P., Brismar K., Vessby B. Treatment with dietary trans10cis12 conjugated linoleic acid causes isomer-specific insulin resistance in obese men with the metabolic syndrome. Diabetes Care. 2002;25:1516–1521. doi: 10.2337/diacare.25.9.1516.
    1. Kamphuis M.M., Lejeune M.P., Saris W.H., Westerterp-Plantenga M.S. The effect of conjugated linoleic acid supplementation after weight loss on body weight regain, body composition, and resting metabolic rate in overweight subjects. Int. J. Obes. Relat. Metab. Disord. 2003;27:840–847. doi: 10.1038/sj.ijo.0802304.
    1. Desroches S., Chouinard P.Y., Galibois I., Corneau L., Delisle J., Lamarche B., Couture P., Bergeron N. Lack of effect of dietary conjugated linoleic acids naturally incorporated into butter on the lipid profile and body composition of overweight and obese men. Am. J. Clin. Nutr. 2005;82:309–319. doi: 10.1093/ajcn/82.2.309.
    1. Taylor J.S., Williams S.R., Rhys R., James P., Frenneaux M.P. Conjugated linoleic acid impairs endothelial function. Arterioscler. Thromb. Vasc. Biol. 2006;26:307–312. doi: 10.1161/.
    1. Carvalho R.F., Uehara S.K., Rosa G. Microencapsulated conjugated linoleic acid associated with hypocaloric diet reduces body fat in sedentary women with metabolic syndrome. Vasc. Health Risk Manag. 2012;8:661–667. doi: 10.2147/VHRM.S37385.
    1. Bulut S., Bodur E., Colak R., Turnagol H. Effects of conjugated linoleic acid supplementation and exercise on post-heparin lipoprotein lipase, butyrylcholinesterase, blood lipid profile and glucose metabolism in young men. Chem. Biol. Interact. 2013;203:323–329. doi: 10.1016/j.cbi.2012.09.022.
    1. Mądry E., Chudzicka-Strugała I., Grabańska-Martyńska K., Malikowska K., Grebowiec P., Lisowska A., Bogdański P., Walkowiak J. Twelve weeks CLA supplementation decreases the hip circumference in overweight and obese women. A double-blind, randomized, placebo-controlled trial. Acta Sci. Pol. Technol. Aliment. 2016;15:107–113. doi: 10.17306/J.AFS.2016.1.11.
    1. Garibay-Nieto N., Queipo-Garcia G., Alvarez-Huerta F., Bustos-Esquivel M., Villanueva-Ortega E., Ramirez F., Leon M., Laresgoiti-Servitje E., Duggirala R., Macias T., et al. Conjugated Linoleic Acid and Metformin on Insulin Sensitivity in obese children: Randomized Clinical Trial. J. Clin. Endocrinol. Metab. 2017;102:132–140. doi: 10.1210/jc.2016-2701.
    1. Zambell K.L., Keim N.L., Van Loan M.D., Gale B., Benito P., Kelley D.S., Nelson G.J. Conjugated linoleic acid supplementation in humans: Effects on body composition and energy expenditure. Lipids. 2000;35:777–782. doi: 10.1007/s11745-000-0585-z.
    1. Medina E.A., Horn W.F., Keim N.L., Havel P.J., Benito P., Kelley D.S., Nelson G.J., Erickson K.L. Conjugated linoleic acid supplementation in humans: Effects on circulating leptin concentrations and appetite. Lipids. 2000;35:783–788. doi: 10.1007/s11745-000-0586-y.
    1. Terpstra A.H. Differences between humans and mice in efficacy of the body fat lowering effect of conjugated linoleic acid: Role of metabolic rate. J. Nutr. 2001;131:2067–2068. doi: 10.1093/jn/131.7.2067.
    1. Risérus U., Basu S., Jovinge S., Fredrikson G.N., Arnlöv J., Vessby B. Supplementation with conjugated linoleic acid causes isomer-dependent oxidative stress and elevated C-reactive protein: A potential link to fatty acid-induced insulin resistance. Circulation. 2002;106:1925–1929. doi: 10.1161/01.CIR.0000033589.15413.48.
    1. Risérus U., Vessby B., Arner P., Zethelius B. Supplementation with trans10cis12-conjugated linoleic acid induces hyperproinsulinaemia in obese men: Close association with impaired insulin sensitivity. Diabetologia. 2004;47:1016–1019. doi: 10.1007/s00125-004-1421-8.
    1. Belury M.A., Mahon A., Banni S. The conjugated linoleic acid (CLA) isomer, t10c12-CLA, is inversely associated with changes in body weight and serum leptin in subjects with type 2 diabetes mellitus. J. Nutr. 2003;133:257S–260S. doi: 10.1093/jn/133.1.257S.
    1. Syvertsen C., Halse J., Høivik H.O., Gaullier J.M., Nurminiemi M., Kristiansen K., Einerhand A., O’Shea M., Gudmundsen O. The effect of 6 months supplementation with conjugated linoleic acid on insulin resistance in overweight and obese. Int. J. Obes. (Lond.) 2007;31:1148–1154. doi: 10.1038/sj.ijo.0803482.
    1. Houseknecht K.L., Vanden Heuvel J.P., Moya-Camarena S.Y., Portocarrero C.P., Peck L.W., Nickel K.P., Belury M.A. Dietary conjugated linoleic acid normalizes impaired glucose tolerance in the Zucker diabetic fatty fa/fa rat. Biochem. Biophys. Res. Commun. 1998;244:678–682. doi: 10.1006/bbrc.1998.8303.
    1. Henriksen E.J., Teachey M.K., Taylor Z.C., Jacob S., Ptock A., Krämer K., Hasselwander O. Isomer-specific actions of conjugated linoleic acid on muscle glucose transport in the obese Zucker rat. Am. J. Physiol. Endocrinol. Metab. 2003;285:E98–E105. doi: 10.1152/ajpendo.00013.2003.
    1. Nagao K., Inoue N., Wang Y.M., Yanagita T. Conjugated linoleic acid enhances plasma adiponectin level and alleviates hyperinsulinemia and hypertension in Zucker diabetic fatty (fa/fa) rats. Biochem. Biophys. Res. Commun. 2003;310:562–566. doi: 10.1016/j.bbrc.2003.09.044.
    1. Tsuboyama-Kasaoka N., Takahashi M., Tanemura K., Kim H.J., Tange T., Okuyama H., Kasai M., Ikemoto S., Ezaki O. Conjugated linoleic acid supplementation reduces adipose tissue by apoptosis and develops lipodystrophy in mice. Diabetes. 2000;49:1534–1542. doi: 10.2337/diabetes.49.9.1534.
    1. DeLany J.P., Blohm F., Truett A.A., Scimeca J.A., West D.B. Conjugated linoleic acid rapidly reduces body fat content in mice without affecting energy intake. Pt 2Am. J. Physiol. 1999;276:R1172–R1179. doi: 10.1152/ajpregu.1999.276.4.R1172.
    1. Clément L., Poirier H., Niot I., Bocher V., Guerre-Millo M., Krief S., Staels B., Besnard P. Dietary trans-10,cis-12 conjugated linoleic acid induces hyperinsulinemia and fatty liver in the mouse. J. Lipid Res. 2002;43:1400–1409. doi: 10.1194/jlr.M20008-JLR200.
    1. Liu L.F., Purushotham A., Wendel A.A., Belury M.A. Combined effects of rosiglitazone and conjugated linoleic acid on adiposity, insulin sensitivity, and hepatic steatosis in high-fat-fed mice. Am. J. Physiol. Gastrointest. Liver Physiol. 2007;292:G1671–G1682. doi: 10.1152/ajpgi.00523.2006.
    1. Ross R. Atherosclerosis is an inflammatory disease. Pt 2Am. Heart J. 1999;138:S419–R420. doi: 10.1016/S0002-8703(99)70266-8.
    1. Fan J., Kitajima S., Watanabe T., Xu J., Zhang J., Liu E., Chen Y.E. Rabbit models for the study of human atherosclerosis: From pathophysiological mechanisms to translational medicine. Pharmacol. Ther. 2015;146:104–119. doi: 10.1016/j.pharmthera.2014.09.009.
    1. Lee K.N., Kritchevsky D., Pariza M.W. Conjugated linoleic acid and atherosclerosis in rabbits. Atherosclerosis. 1994;108:19–25. doi: 10.1016/0021-9150(94)90034-5.
    1. Kritchevsky D., Tepper S.A., Wright S., Tso P., Czarnecki S.K. Influence of conjugated linoleic acid (CLA) on establishment and progression of atherosclerosis in rabbits. J. Am. Coll. Nutr. 2000;19:472S–477S. doi: 10.1080/07315724.2000.10718950.
    1. Kritchevsky D., Tepper S.A., Wright S., Czarnecki S.K., Wilson T.A., Nicolosi R.J. Conjugated linoleic acid isomer effects in atherosclerosis: Growth and regression of lesions. Lipids. 2004;39:611–616. doi: 10.1007/s11745-004-1273-8.
    1. Sullivan M.P., Cerda J.J., Robbins F.L., Burgin C.W., Beatty R.J. The gerbil, hamster, and guinea pig as rodent models for hyperlipidemia. Lab. Anim. Sci. 1993;43:575–578.
    1. Nicolosi R.J., Rogers E.J., Kritchevsky D., Scimeca J.A., Huth P.J. Dietary conjugated linoleic acid reduces plasma lipoproteins and early aortic atherosclerosis in hypercholesterolemic hamsters. Artery. 1997;22:266–277.
    1. Mitchell P.L., Langille M.A., Currie D.L., McLeod R.S. Effect of conjugated linoleic acid isomers on lipoproteins and atherosclerosis in the Syrian Golden hamster. Biochim. Biophys. Acta. 2005;1734:269–276. doi: 10.1016/j.bbalip.2005.04.007.
    1. Navarro V., Macarulla M.T., Fernández-Quintela A., Rodríguez V.M., Simón E., Portillo M.P. Effects of trans-10,cis-12 conjugated linoleic acid on cholesterol metabolism in hypercholesterolaemic hamsters. Eur. J. Nutr. 2007;46:213–219. doi: 10.1007/s00394-007-0653-z.
    1. Valeille K., Férézou J., Parquet M., Amsler G., Gripois D., Quignard-Boulangé A., Martin J.C. The natural concentration of the conjugated linoleic acid, cis-9,trans-11, in milk fat has antiatherogenic effects in hyperlipidemic hamsters. J. Nutr. 2006;136:1305–1310. doi: 10.1093/jn/136.5.1305.
    1. LeDoux M., Laloux L., Fontaine J.J., Carpentier Y.A., Chardigny J.M., Sébédio J.L. Rumenic acid significantly reduces plasma levels of LDL and small dense LDL cholesterol in hamsters fed a cholesterol- and lipid-enriched semi-purified diet. Lipids. 2007;42:135–141. doi: 10.1007/s11745-007-3023-y.
    1. Daugherty A. Mouse models of atherosclerosis. Am. J. Med. Sci. 2002;323:3–10. doi: 10.1097/00000441-200201000-00002.
    1. Meir K.S., Leitersdorf E. Atherosclerosis in the apolipoprotein-E-deficient mouse: A decade of progress. Arterioscler. Thromb. Vasc. Biol. 2004;24:1006–1014. doi: 10.1161/01.ATV.0000128849.12617.f4.
    1. Zadelaar S., Kleemann R., Verschuren L., de Vries-Van der Weij J., van der Hoorn J., Princen H.M., Kooistra T. Mouse models for atherosclerosis and pharmaceutical modifiers. Arterioscler. Thromb. Vasc. Biol. 2007;27:1706–1721. doi: 10.1161/ATVBAHA.107.142570.
    1. Ishibashi S., Herz J., Maeda N., Goldstein J.L., Brown M.S. The two-receptor model of lipoprotein clearance: Tests of the hypothesis in “knockout” mice lacking the low density lipoprotein receptor, apolipoprotein E, or both proteins. Proc. Natl. Acad. Sci. USA. 1994;91:4431–4435. doi: 10.1073/pnas.91.10.4431.
    1. Witting P.K., Pettersson K., Ostlund-Lindqvist A.M., Westerlund C., Eriksson A.W., Stocker R. Inhibition by a coantioxidant of aortic lipoprotein lipid peroxidation and atherosclerosis in apolipoprotein E and low density lipoprotein receptor gene double knockout mice. FASEB J. 1999;13:667–675. doi: 10.1096/fasebj.13.6.667.
    1. Toomey S., Harhen B., Roche H.M., Fitzgerald D., Belton O. Profound resolution of early atherosclerosis with conjugated linoleic acid. Atherosclerosis. 2006;187:40–49. doi: 10.1016/j.atherosclerosis.2005.08.024.
    1. Toomey S., Roche H., Fitzgerald D., Belton O. Regression of pre-established atherosclerosis in the apoE-/- mouse by conjugated linoleic acid. Pt 5Biochem. Soc. Trans. 2003;31:1075–1079. doi: 10.1042/bst0311075.
    1. Franczyk-Zarów M., Kostogrys R.B., Szymczyk B., Jawień J., Gajda M., Cichocki T., Wojnar L., Chlopicki S., Pisulewski P.M. Functional effects of eggs, naturally enriched with conjugated linoleic acid, on the blood lipid profile, development of atherosclerosis and composition of atherosclerotic plaque in apolipoprotein E and low-density lipoprotein receptor double-knockout mice (apoE/LDLR-/-) Br. J. Nutr. 2008;99:49–58.
    1. Mitchell P.L., Karakach T.K., Currie D.L., McLeod R.S. t-10, c-12 CLA Dietary Supplementation Inhibits Atherosclerotic Lesion Development Despite Adverse Cardiovascular and Hepatic Metabolic Marker Profiles. PLoS ONE. 2012;7:e52634. doi: 10.1371/journal.pone.0052634.
    1. Kanter J.E., Goodspeed L., Wang S., Kramer F., Wietecha T., Gomes-Kjerulf D., Subramanian S., O’Brien K.D., den Hartigh L.J. 10,12 Conjugated Linoleic Acid-Driven Weight Loss Is Protective against Atherosclerosis in Mice and Is Associated with Alternative Macrophage Enrichment in Perivascular Adipose Tissue. Nutrients. 2018;10:1416. doi: 10.3390/nu10101416.
    1. Rahman K., Vengrenyuk Y., Ramsey S.A., Vila N.R., Girgis N.M., Liu J., Gusarova V., Gromada J., Weinstock A., Moore K.J., et al. Inflammatory Ly6Chi monocytes and their conversion to M2 macrophages drive atherosclerosis regression. J. Clin. Investig. 2017;127:2904–2915. doi: 10.1172/JCI75005.
    1. Chistiakov D.A., Bobryshev Y.V., Nikiforov N.G., Elizova N.V., Sobenin I.A., Orekhov A.N. Macrophage phenotypic plasticity in atherosclerosis: The associated features and the peculiarities of the expression of inflammatory genes. Int. J. Cardiol. 2015;184:436–445. doi: 10.1016/j.ijcard.2015.03.055.
    1. Cooper M.H., Miller J.R., Mitchell P.L., Currie D.L., McLeod R.S. Conjugated linoleic acid isomers have no effect on atherosclerosis and adverse effects on lipoprotein and liver lipid metabolism in apoE-/- mice fed a high-cholesterol diet. Atherosclerosis. 2008;200:294–302. doi: 10.1016/j.atherosclerosis.2007.12.040.
    1. Kostogrys R.B., Franczyk-Żarów M., Maślak E., Gajda M., Mateuszuk Ł., Chłopicki S. Effects of margarine supplemented with t10c12 and C9T11 CLA on atherosclerosis and steatosis in apoE/LDLR -/- mice. J. Nutr. Health Aging. 2012;16:482–490. doi: 10.1007/s12603-011-0354-4.
    1. Arbonés-Mainar J.M., Navarro M.A., Guzmán M.A., Arnal C., Surra J.C., Acín S., Carnicer R., Osada J., Roche H.M. Selective effect of conjugated linoleic acid isomers on atherosclerotic lesion development in apolipoprotein E knockout mice. Atherosclerosis. 2006;189:318–327. doi: 10.1016/j.atherosclerosis.2006.01.015.
    1. Johnson W.J., Mahlberg F.H., Rothblat G.H., Phillips M.C. Cholesterol transport between cells and high-density lipoproteins. Biochim. Biophys. Acta. 1991;1085:273–298. doi: 10.1016/0005-2760(91)90132-2.
    1. Baraldi F., Dalalio F., Teodoro B., Prado I., Curti C., Alberici L. Body energy metabolism and oxidative stress in mice supplemented with conjugated linoleic acid (CLA) associated to oleic acid. Free Radic. Biol. Med. 2014;75(Suppl. 1):S21. doi: 10.1016/j.freeradbiomed.2014.10.733.
    1. Moon H.S., Lee H.G., Seo J.H., Chung C.S., Kim T.G., Choi Y.J., Cho C.S. Antiobesity effect of PEGylated conjugated linoleic acid on high-fat diet-induced obese C57BL/6J (ob/ob) mice: Attenuation of insulin resistance and enhancement of antioxidant defenses. J. Nutr. Biochem. 2009;20:187–194. doi: 10.1016/j.jnutbio.2008.02.001.
    1. Nestel P., Fujii A., Allen T. The cis-9,trans-11 isomer of conjugated linoleic acid (CLA) lowers plasma triglyceride and raises HDL cholesterol concentrations but does not suppress aortic atherosclerosis in diabetic apoE-deficient mice. Atherosclerosis. 2006;189:282–287. doi: 10.1016/j.atherosclerosis.2005.12.020.
    1. Arbonés-Mainar J.M., Navarro M.A., Acín S., Guzmán M.A., Arnal C., Surra J.C., Carnicer R., Roche H.M., Osada J. Trans-10, cis-12- and cis-9, trans-11-conjugated linoleic acid isomers selectively modify HDL-apolipoprotein composition in apolipoprotein E knockout mice. J. Nutr. 2006;136:353–359. doi: 10.1093/jn/136.2.353.
    1. De Gaetano M., Alghamdi K., Marcone S., Belton O. Conjugated linoleic acid induces an atheroprotective macrophage MΦ2 phenotype and limits foam cell formation. J. Inflamm. (Lond.) 2015;12:15. doi: 10.1186/s12950-015-0060-9.
    1. Ringseis R., Wen G., Saal D., Eder K. Conjugated linoleic acid isomers reduce cholesterol accumulation in acetylated LDL-induced mouse RAW264.7 macrophage-derived foam cells. Lipids. 2008;43:913–923. doi: 10.1007/s11745-008-3226-x.
    1. Weldon S., Mitchell S., Kelleher D., Gibney M.J., Roche H.M. Conjugated linoleic acid and atherosclerosis: No effect on molecular markers of cholesterol homeostasis in THP-1 macrophages. Atherosclerosis. 2004;174:261–273. doi: 10.1016/j.atherosclerosis.2004.02.007.
    1. Salehipour M., Javadi E., Reza J.Z., Doosti M., Rezaei S., Paknejad M., Nejadi N., Heidari M. Polyunsaturated fatty acids and modulation of cholesterol homeostasis in THP-1 macrophage-derived foam cells. Int. J. Mol. Sci. 2010;11:4660–4672. doi: 10.3390/ijms11114660.
    1. Ross R., Glomset J., Harker L. Response to injury and atherogenesis. Am. J. Pathol. 1977;86:675–684.
    1. Stachowska E., Siennicka A., Baśkiewcz-Hałasa M., Bober J., Machalinski B., Chlubek D. Conjugated linoleic acid isomers may diminish human macrophages adhesion to endothelial surface. Int. J. Food Sci. Nutr. 2012;63:30–35. doi: 10.3109/09637486.2011.593505.
    1. De Gaetano M., Dempsey E., Marcone S., James W.G., Belton O. Conjugated linoleic acid targets β2 integrin expression to suppress monocyte adhesion. J. Immunol. 2013;191:4326–4336. doi: 10.4049/jimmunol.1300990.
    1. Lee Y., Thompson J.T., de Lera A.R., Vanden Heuvel J.P. Isomer-specific effects of conjugated linoleic acid on gene expression in RAW 264.7. J. Nutr. Biochem. 2009;20:848–859, 859.e1-5. doi: 10.1016/j.jnutbio.2008.07.013.
    1. McClelland S., Cox C., O’Connor R., de Gaetano M., McCarthy C., Cryan L., Fitzgerald D., Belton O. Conjugated linoleic acid suppresses the migratory and inflammatory phenotype of the monocyte/macrophage cell. Atherosclerosis. 2010;211:96–102. doi: 10.1016/j.atherosclerosis.2010.02.003.
    1. Wynn T.A., Chawla A., Pollard J.W. Macrophage biology in development, homeostasis and disease. Nature. 2013;496:445–455. doi: 10.1038/nature12034.
    1. Coats B.R., Schoenfelt K.Q., Barbosa-Lorenzi V.C., Peris E., Cui C., Hoffman A., Zhou G., Fernandez S., Zhai L., Hall B.A., et al. Metabolically Activated Adipose Tissue Macrophages Perform Detrimental and Beneficial Functions during Diet-Induced Obesity. Cell Rep. 2017;20:3149–3161. doi: 10.1016/j.celrep.2017.08.096.
    1. Bobryshev Y.V., Ivanova E.A., Chistiakov D.A., Nikiforov N.G., Orekhov A.N. Macrophages and Their Role in Atherosclerosis: Pathophysiology and Transcriptome Analysis. Biomed. Res. Int. 2016;2016:9582430. doi: 10.1155/2016/9582430.
    1. De Gaetano M., Crean D., Barry M., Belton O. M1- and M2-Type Macrophage Responses Are Predictive of Adverse Outcomes in Human Atherosclerosis. Front. Immunol. 2016;7:275. doi: 10.3389/fimmu.2016.00275.
    1. Lee Y., Thompson J.T., Vanden Heuvel J.P. 9E,11E-conjugated linoleic acid increases expression of the endogenous antiinflammatory factor, interleukin-1 receptor antagonist, in RAW 264.7 cells. J. Nutr. 2009;139:1861–1866. doi: 10.3945/jn.108.100461.
    1. McCarthy C., Duffy M.M., Mooney D., James W.G., Griffin M.D., Fitzgerald D.J., Belton O. IL-10 mediates the immunoregulatory response in conjugated linoleic acid-induced regression of atherosclerosis. FASEB J. 2013;27:499–510. doi: 10.1096/fj.12-215442.
    1. Sluijs I., Plantinga Y., de Roos B., Mennen L.I., Bots M.L. Dietary supplementation with cis-9,trans-11 conjugated linoleic acid and aortic stiffness in overweight and obese adults. Am. J. Clin. Nutr. 2010;91:175–183. doi: 10.3945/ajcn.2009.28192.
    1. Pfeuffer M., Fielitz K., Laue C., Winkler P., Rubin D., Helwig U., Giller K., Kammann J., Schwedhelm E., Böger R.H., et al. CLA does not impair endothelial function and decreases body weight as compared with safflower oil in overweight and obese male subjects. J. Am. Coll. Nutr. 2011;30:19–28. doi: 10.1080/07315724.2011.10719940.
    1. Tricon S., Burdge G.C., Kew S., Banerjee T., Russell J.J., Jones E.L., Grimble R.F., Williams C.M., Yaqoob P., Calder P.C. Opposing effects of cis-9,trans-11 and trans-10,cis-12 conjugated linoleic acid on blood lipids in healthy humans. Am. J. Clin. Nutr. 2004;80:614–620. doi: 10.1093/ajcn/80.3.614.
    1. Tricon S., Burdge G.C., Jones E.L., Russell J.J., El-Khazen S., Moretti E., Hall W.L., Gerry A.B., Leake D.S., Grimble R.F., et al. Effects of dairy products naturally enriched with cis-9,trans-11 conjugated linoleic acid on the blood lipid profile in healthy middle-aged men. Am. J. Clin. Nutr. 2006;83:744–753. doi: 10.1093/ajcn/83.4.744.
    1. Raff M., Tholstrup T., Basu S., Nonboe P., Sørensen M.T., Straarup E.M. A diet rich in conjugated linoleic acid and butter increases lipid peroxidation but does not affect atherosclerotic, inflammatory, or diabetic risk markers in healthy young men. J. Nutr. 2008;138:509–514. doi: 10.1093/jn/138.3.509.
    1. Dus-Zuchowska M., Madry E., Krzyzanowska P., Bogdanski P., Walkowiak J. Twelve-week-conjugated linoleic acid supplementation has no effects on the selected markers of atherosclerosis in obese and overweight women. Food Nutr. Res. 2016;60:32776. doi: 10.3402/fnr.v60.32776.
    1. Noone E.J., Roche H.M., Nugent A.P., Gibney M.J. The effect of dietary supplementation using isomeric blends of conjugated linoleic acid on lipid metabolism in healthy human subjects. Br. J. Nutr. 2002;88:243–251. doi: 10.1079/BJN2002615.
    1. Raff M., Tholstrup T., Sejrsen K., Straarup E.M., Wiinberg N. Diets rich in conjugated linoleic acid and vaccenic acid have no effect on blood pressure and isobaric arterial elasticity in healthy young men. J. Nutr. 2006;136:992–997. doi: 10.1093/jn/136.4.992.
    1. Naumann E., Carpentier Y.A., Saebo A., Lassel T.S., Chardigny J.M., Sébédio J.L., Mensink R.P., Group F.S. Cis-9, trans- 11 and trans-10, cis-12 conjugated linoleic acid (CLA) do not affect the plasma lipoprotein profile in moderately overweight subjects with LDL phenotype B. Atherosclerosis. 2006;188:167–174. doi: 10.1016/j.atherosclerosis.2005.10.019.
    1. Mullen A., Moloney F., Nugent A.P., Doyle L., Cashman K.D., Roche H.M. Conjugated linoleic acid supplementation reduces peripheral blood mononuclear cell interleukin-2 production in healthy middle-aged males. J. Nutr. Biochem. 2007;18:658–666. doi: 10.1016/j.jnutbio.2006.12.008.
    1. Bachmair E.M., Wood S.G., Keizer H.G., Horgan G.W., Ford I., de Roos B. Supplementation with a 9c,11t-rich conjugated linoleic acid blend shows no clear inhibitory effects on platelet function in healthy subjects at low and moderate cardiovascular risk: A randomized controlled trial. Mol. Nutr. Food Res. 2015;59:741–750. doi: 10.1002/mnfr.201400495.
    1. Eftekhari M.H., Aliasghari F., Beigi M.A., Hasanzadeh J. The effect of conjugated linoleic acids and omega-3 fatty acids supplementation on lipid profile in atherosclerosis. Adv. Biomed. Res. 2014;3:15.
    1. Pitta D.W., Indugu N., Vecchiarelli B., Rico D.E., Harvatine K.J. Alterations in ruminal bacterial populations at induction and recovery from diet-induced milk fat depression in dairy cows. J. Dairy Sci. 2018;101:295–309. doi: 10.3168/jds.2016-12514.
    1. Kepler C.R., Hirons K.P., McNeill J.J., Tove S.B. Intermediates and products of the biohydrogenation of linoleic acid by Butyrinvibrio fibrisolvens. J. Biol. Chem. 1966;241:1350–1354.
    1. Lee Y.J., Jenkins T.C. Biohydrogenation of linolenic acid to stearic acid by the rumen microbial population yields multiple intermediate conjugated diene isomers. J. Nutr. 2011;141:1445–1450. doi: 10.3945/jn.111.138396.
    1. Huws S.A., Kim E.J., Lee M.R., Scott M.B., Tweed J.K., Pinloche E., Wallace R.J., Scollan N.D. As yet uncultured bacteria phylogenetically classified as Prevotella, Lachnospiraceae incertae sedis and unclassified Bacteroidales, Clostridiales and Ruminococcaceae may play a predominant role in ruminal biohydrogenation. Environ. Microbiol. 2011;13:1500–1512. doi: 10.1111/j.1462-2920.2011.02452.x.
    1. Jiang J., Björck L., Fondén R. Production of conjugated linoleic acid by dairy starter cultures. J. Appl. Microbiol. 1998;85:95–102. doi: 10.1046/j.1365-2672.1998.00481.x.
    1. Ogawa J., Matsumura K., Kishino S., Omura Y., Shimizu S. Conjugated linoleic acid accumulation via 10-hydroxy-12-octadecaenoic acid during microaerobic transformation of linoleic acid by Lactobacillus acidophilus. Appl. Environ. Microbiol. 2001;67:1246–1252. doi: 10.1128/AEM.67.3.1246-1252.2001.
    1. Kishino S., Ogawa J., Ando A., Omura Y., Shimizu S. Ricinoleic acid and castor oil as substrates for conjugated linoleic acid production by washed cells of Lactobacillus plantarum. Biosci. Biotechnol. Biochem. 2002;66:2283–2286. doi: 10.1271/bbb.66.2283.
    1. Coakley M., Ross R.P., Nordgren M., Fitzgerald G., Devery R., Stanton C. Conjugated linoleic acid biosynthesis by human-derived Bifidobacterium species. J. Appl. Microbiol. 2003;94:138–145. doi: 10.1046/j.1365-2672.2003.01814.x.
    1. Lee S.O., Hong G.W., Oh D.K. Bioconversion of linoleic acid into conjugated linoleic acid by immobilized Lactobacillus reuteri. Biotechnol. Prog. 2003;19:1081–1084. doi: 10.1021/bp0257933.
    1. Rosberg-Cody E., Ross R.P., Hussey S., Ryan C.A., Murphy B.P., Fitzgerald G.F., Devery R., Stanton C. Mining the microbiota of the neonatal gastrointestinal tract for conjugated linoleic acid-producing bifidobacteria. Appl. Environ. Microbiol. 2004;70:4635–4641. doi: 10.1128/AEM.70.8.4635-4641.2004.
    1. Ewaschuk J.B., Walker J.W., Diaz H., Madsen K.L. Bioproduction of conjugated linoleic acid by probiotic bacteria occurs in vitro and in vivo in mice. J. Nutr. 2006;136:1483–1487. doi: 10.1093/jn/136.6.1483.
    1. Lee H.Y., Park J.H., Seok S.H., Baek M.W., Kim D.J., Lee K.E., Paek K.S., Lee Y. Human originated bacteria, Lactobacillus rhamnosus PL60, produce conjugated linoleic acid and show anti-obesity effects in diet-induced obese mice. Biochim. Biophys. Acta. 2006;1761:736–744. doi: 10.1016/j.bbalip.2006.05.007.
    1. Barrett E., Ross R.P., Fitzgerald G.F., Stanton C. Rapid screening method for analyzing the conjugated linoleic acid production capabilities of bacterial cultures. Appl. Environ. Microbiol. 2007;73:2333–2337. doi: 10.1128/AEM.01855-06.
    1. Alonso L., Cuesta E.P., Gilliland S.E. Production of free conjugated linoleic acid by Lactobacillus acidophilus and Lactobacillus casei of human intestinal origin. J. Dairy Sci. 2003;86:1941–1946. doi: 10.3168/jds.S0022-0302(03)73781-3.
    1. Lee K., Paek K., Lee H.Y., Park J.H., Lee Y. Antiobesity effect of trans-10,cis-12-conjugated linoleic acid-producing Lactobacillus plantarum PL62 on diet-induced obese mice. J. Appl. Microbiol. 2007;103:1140–1146. doi: 10.1111/j.1365-2672.2007.03336.x.
    1. Devillard E., McIntosh F.M., Duncan S.H., Wallace R.J. Metabolism of linoleic acid by human gut bacteria: Different routes for biosynthesis of conjugated linoleic acid. J. Bacteriol. 2007;189:2566–2570. doi: 10.1128/JB.01359-06.
    1. Gorissen L., Raes K., Weckx S., Dannenberger D., Leroy F., De Vuyst L., De Smet S. Production of conjugated linoleic acid and conjugated linolenic acid isomers by Bifidobacterium species. Appl. Microbiol. Biotechnol. 2010;87:2257–2266. doi: 10.1007/s00253-010-2713-1.
    1. O’Shea E.F., Cotter P.D., Stanton C., Ross R.P., Hill C. Production of bioactive substances by intestinal bacteria as a basis for explaining probiotic mechanisms: Bacteriocins and conjugated linoleic acid. Int. J. Food Microbiol. 2012;152:189–205. doi: 10.1016/j.ijfoodmicro.2011.05.025.
    1. Druart C., Neyrinck A.M., Vlaeminck B., Fievez V., Cani P.D., Delzenne N.M. Role of the lower and upper intestine in the production and absorption of gut microbiota-derived PUFA metabolites. PLoS ONE. 2014;9:e87560. doi: 10.1371/journal.pone.0087560.
    1. Marques T.M., Wall R., O’Sullivan O., Fitzgerald G.F., Shanahan F., Quigley E.M., Cotter P.D., Cryan J.F., Dinan T.G., Ross R.P., et al. Dietary trans-10, cis-12-conjugated linoleic acid alters fatty acid metabolism and microbiota composition in mice. Br. J. Nutr. 2015;113:728–738. doi: 10.1017/S0007114514004206.
    1. Den Hartigh L.J., Gao Z., Goodspeed L., Wang S., Das A.K., Burant C.F., Chait A., Blaser M.J. Obese Mice Losing Weight Due to trans-10,cis-12 Conjugated Linoleic Acid Supplementation or Food Restriction Harbor Distinct Gut Microbiota. J. Nutr. 2018;148:562–572. doi: 10.1093/jn/nxy011.
    1. Delmastro-Greenwood M., Hughan K.S., Vitturi D.A., Salvatore S.R., Grimes G., Potti G., Shiva S., Schopfer F.J., Gladwin M.T., Freeman B.A., et al. Nitrite and nitrate-dependent generation of anti-inflammatory fatty acid nitroalkenes. Free Radic. Biol. Med. 2015;89:333–341. doi: 10.1016/j.freeradbiomed.2015.07.149.
    1. Bonacci G., Baker P.R., Salvatore S.R., Shores D., Khoo N.K., Koenitzer J.R., Vitturi D.A., Woodcock S.R., Golin-Bisello F., Cole M.P., et al. Conjugated linoleic acid is a preferential substrate for fatty acid nitration. J. Biol. Chem. 2012;287:44071–44082. doi: 10.1074/jbc.M112.401356.
    1. Salvatore S.R., Vitturi D.A., Baker P.R., Bonacci G., Koenitzer J.R., Woodcock S.R., Freeman B.A., Schopfer F.J. Characterization and quantification of endogenous fatty acid nitroalkene metabolites in human urine. J. Lipid Res. 2013;54:1998–2009. doi: 10.1194/jlr.M037804.
    1. Villacorta L., Minarrieta L., Salvatore S.R., Khoo N.K., Rom O., Gao Z., Berman R.C., Jobbagy S., Li L., Woodcock S.R., et al. In situ generation, metabolism and immunomodulatory signaling actions of nitro-conjugated linoleic acid in a murine model of inflammation. Redox Biol. 2018;15:522–531. doi: 10.1016/j.redox.2018.01.005.
    1. Druart C., Dewulf E.M., Cani P.D., Neyrinck A.M., Thissen J.P., Delzenne N.M. Gut microbial metabolites of polyunsaturated fatty acids correlate with specific fecal bacteria and serum markers of metabolic syndrome in obese women. Lipids. 2014;49:397–402. doi: 10.1007/s11745-014-3881-z.

Source: PubMed

3
Iratkozz fel