Child Weight Gain Trajectories Linked To Oral Microbiota Composition

Sarah J C Craig, Daniel Blankenberg, Alice Carla Luisa Parodi, Ian M Paul, Leann L Birch, Jennifer S Savage, Michele E Marini, Jennifer L Stokes, Anton Nekrutenko, Matthew Reimherr, Francesca Chiaromonte, Kateryna D Makova, Sarah J C Craig, Daniel Blankenberg, Alice Carla Luisa Parodi, Ian M Paul, Leann L Birch, Jennifer S Savage, Michele E Marini, Jennifer L Stokes, Anton Nekrutenko, Matthew Reimherr, Francesca Chiaromonte, Kateryna D Makova

Abstract

Gut and oral microbiota perturbations have been observed in obese adults and adolescents; less is known about their influence on weight gain in young children. Here we analyzed the gut and oral microbiota of 226 two-year-olds with 16S rRNA gene sequencing. Weight and length were measured at seven time points and used to identify children with rapid infant weight gain (a strong risk factor for childhood obesity), and to derive growth curves with innovative Functional Data Analysis (FDA) techniques. We showed that growth curves were associated negatively with diversity, and positively with the Firmicutes-to-Bacteroidetes ratio, of the oral microbiota. We also demonstrated an association between the gut microbiota and child growth, even after controlling for the effect of diet on the microbiota. Lastly, we identified several bacterial genera that were associated with child growth patterns. These results suggest that by the age of two, the oral microbiota of children with rapid infant weight gain may have already begun to establish patterns often seen in obese adults. They also suggest that the gut microbiota at age two, while strongly influenced by diet, does not harbor obesity signatures many researchers identified in later life stages.

Conflict of interest statement

The authors declare no competing interests.

Figures

Figure 1
Figure 1
Growth curves construction. (a) Example growth curve. Points: observed weight-for-length ratios (i.e. growth indexes); line: estimated growth curve. (b) Final aligned growth curves for all children studied.
Figure 2
Figure 2
Oral and Gut microbiota’s relationships with growth curves. Estimated regression coefficient curves expressing the associations of growth curves with (a) children’s gut α-diversity, (b) children’s oral α-diversity, (c) mothers’ oral α-diversity, (d) children’s gut Firmicutes-to-Bacteroidetes ratio, (e) children’s oral Firmicutes-to-Bacteroidetes ratio and (f) mothers’ oral Firmicutes-to-Bacteroidetes ratio. Each curve is accompanied by a point-wise confidence band.
Figure 3
Figure 3
Oral and Gut microbiota’s relationships with conditional weight gain. Notched box-plots contrasting α-diversity and Firmicutes-to-Bacteroidetes (F:B) ratio in two-year-old children with rapid (CWG ≥ 0) vs. non-rapid (CWG a,d) for the gut microbiota in children with rapid (N = 90) vs. non-rapid (N = 99) weight gain; (b,e) for the oral microbiota in children with rapid (N = 97) vs. non-rapid infant weight gain (N = 117); (c,f) for the oral microbiota in mothers of children with rapid infant weight gain (N = 102) vs. mothers of children without rapid infant weight gain (N = 113). All p-values were obtained using one-tailed Mann-Whitney U tests, significant p-values are shown in bold. Outliers were not plotted but were included in the statistical tests.
Figure 4
Figure 4
Identification of influential taxonomic groups. Estimated regression coefficient curves for taxonomic groups affecting growth curves, as identified by FLAME in (a) children’s gut microbiota, (b) children’s oral microbiota, (c) mothers’ oral microbiota. The zero line (dashed) corresponds to no effect. Linear Discriminant Analysis scores for taxonomic groups distinguishing children with rapid vs. non-rapid infant weight gain, as identified by LEfSe in (d) children’s gut microbiota, (e) children’s oral microbiota. See Supplementary Table S8 for a list of genera belonging to each group identified by FLAME and LEfSe.

References

    1. Ogden CL, et al. Trends in Obesity Prevalence Among Children and Adolescents in the United States, 1988–1994 Through 2013–2014. JAMA. 2016;315:2292–2299. doi: 10.1001/jama.2016.6361.
    1. Whiteside SA, Razvi H, Dave S, Reid G, Burton JP. The microbiome of the urinary tract−a role beyond infection. Nat. Rev. Urol. 2015;12:81–90. doi: 10.1038/nrurol.2014.361.
    1. Boulangé CL, Neves AL, Chilloux J, Nicholson JK, Dumas M-E. Impact of the gut microbiota on inflammation, obesity, and metabolic disease. Genome Med. 2016;8:42. doi: 10.1186/s13073-016-0303-2.
    1. Ridaura VK, et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science. 2013;341:1241214. doi: 10.1126/science.1241214.
    1. Turnbaugh PJ, et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444:1027–1031. doi: 10.1038/nature05414.
    1. Ley RE, et al. Obesity alters gut microbial ecology. Proceedings of the National Academy of Sciences. 2005;102:11070–11075. doi: 10.1073/pnas.0504978102.
    1. Bervoets L, et al. Differences in gut microbiota composition between obese and lean children: a cross-sectional study. Gut Pathog. 2013;5:10. doi: 10.1186/1757-4749-5-10.
    1. Ferrer M, et al. Microbiota from the distal guts of lean and obese adolescents exhibit partial functional redundancy besides clear differences in community structure. Environ. Microbiol. 2013;15:211–226. doi: 10.1111/j.1462-2920.2012.02845.x.
    1. Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature. 2006;444:1022–1023. doi: 10.1038/4441022a.
    1. Ley RE. Obesity and the human microbiome. Curr. Opin. Gastroenterol. 2010;26:5–11. doi: 10.1097/MOG.0b013e328333d751.
    1. Sze, M. A. & Schloss, P. D. Looking for a Signal in the Noise: Revisiting Obesity and the Microbiome. MBio7 (2016).
    1. David LA, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505:559–563. doi: 10.1038/nature12820.
    1. Xu Z, Knight R. Dietary effects on human gut microbiome diversity. Br. J. Nutr. 2014;113:S1–S5. doi: 10.1017/S0007114514004127.
    1. Yallapragada SG, Nash CB, Robinson DT. Early-Life Exposure to Antibiotics, Alterations in the Intestinal Microbiome, and Risk of Metabolic Disease in Children and Adults. Pediatr. Ann. 2015;44:e265–9. doi: 10.3928/00904481-20151112-09.
    1. Rogers MAM, Aronoff DM. The influence of non-steroidal anti-inflammatory drugs on the gut microbiome. Clin. Microbiol. Infect. 2016;22:178.e1–9. doi: 10.1016/j.cmi.2015.10.003.
    1. Blekhman, R. et al. Host genetic variation impacts microbiome composition across human body sites. Genome Biol. 16 (2015).
    1. Davenport ER. Elucidating the role of the host genome in shaping microbiome composition. Gut Microbes. 2016;7:178–184. doi: 10.1080/19490976.2016.1155022.
    1. Gomez A, et al. Host Genetic Control of the Oral Microbiome in Health and Disease. Cell Host Microbe. 2017;22:269–278.e3. doi: 10.1016/j.chom.2017.08.013.
    1. Yatsunenko T, et al. Human gut microbiome viewed across age and geography. Nature. 2012;486:222–227. doi: 10.1038/nature11053.
    1. Smego, A. et al. High Body Mass Index in Infancy May Predict Severe Obesity in Early Childhood. J. Pediatr. 10.1016/j.jpeds.2016.11.020 (2016).
    1. Al-Zahrani MS, Bissada NF, Borawski EA. Obesity and Periodontal Disease in Young, Middle-Aged, and Older Adults. J. Periodontol. 2003;74:610–615. doi: 10.1902/jop.2003.74.5.610.
    1. Kâ K, et al. Metabolic syndrome and gingival inflammation in Caucasian children with a family history of obesity. J. Clin. Periodontol. 2013;40:986–993. doi: 10.1111/jcpe.12146.
    1. Wade WG. The oral microbiome in health and disease. Pharmacol. Res. 2013;69:137–143. doi: 10.1016/j.phrs.2012.11.006.
    1. Said HS, et al. Dysbiosis of salivary microbiota in inflammatory bowel disease and its association with oral immunological biomarkers. DNA Res. 2014;21:15–25. doi: 10.1093/dnares/dst037.
    1. Liu B, et al. Deep sequencing of the oral microbiome reveals signatures of periodontal disease. PLoS One. 2012;7:e37919. doi: 10.1371/journal.pone.0037919.
    1. Serra e Silva Filho W, et al. Microbial Diversity Similarities in Periodontal Pockets and Atheromatous Plaques of Cardiovascular Disease Patients. PLoS One. 2014;9:e109761. doi: 10.1371/journal.pone.0109761.
    1. Chen L, et al. Extensive description and comparison of human supra-gingival microbiome in root caries and health. PLoS One. 2015;10:e0117064. doi: 10.1371/journal.pone.0117064.
    1. Zeigler CC, et al. Microbiota in the oral subgingival biofilm is associated with obesity in adolescence. Obesity. 2012;20:157–164. doi: 10.1038/oby.2011.305.
    1. Goodson JM, Groppo D, Halem S, Carpino E. Is obesity an oral bacterial disease? J. Dent. Res. 2009;88:519–523. doi: 10.1177/0022034509338353.
    1. Haffajee AD, Socransky SS. Relation of body mass index, periodontitis andTannerella forsythia. J. Clin. Periodontol. 2009;36:89–99. doi: 10.1111/j.1600-051X.2008.01356.x.
    1. Palmer C, Bik EM, DiGiulio DB, Relman DA, Brown PO. Development of the human infant intestinal microbiota. PLoS Biol. 2007;5:e177. doi: 10.1371/journal.pbio.0050177.
    1. Koenig JE, et al. Succession of microbial consortia in the developing infant gut microbiome. Proc. Natl. Acad. Sci. USA. 2011;108(Suppl 1):4578–4585. doi: 10.1073/pnas.1000081107.
    1. Vallès Y, et al. Microbial succession in the gut: directional trends of taxonomic and functional change in a birth cohort of Spanish infants. PLoS Genet. 2014;10:e1004406. doi: 10.1371/journal.pgen.1004406.
    1. Bäckhed F, et al. Dynamics and Stabilization of the Human Gut Microbiome during the First Year of Life. Cell Host Microbe. 2015;17:852. doi: 10.1016/j.chom.2015.05.012.
    1. Chu, D. M. et al. Maturation of the infant microbiome community structure and function across multiple body sites and in relation to mode of delivery. Nat. Med. 10.1038/nm.4272 (2017).
    1. Dominguez-Bello MG, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc. Natl. Acad. Sci. USA. 2010;107:11971–11975. doi: 10.1073/pnas.1002601107.
    1. Lif Holgerson P, Harnevik L, Hernell O, Tanner ACR, Johansson I. Mode of Birth Delivery Affects Oral Microbiota in Infants. J. Dent. Res. 2011;90:1183–1188. doi: 10.1177/0022034511418973.
    1. Madan JC, et al. Association of Cesarean Delivery and Formula Supplementation With the Intestinal Microbiome of 6-Week-Old Infants. JAMA Pediatr. 2016;170:212. doi: 10.1001/jamapediatrics.2015.3732.
    1. Leng J, et al. GDM Women’s Pre-Pregnancy Overweight/Obesity and Gestational Weight Gain on Offspring Overweight Status. PLoS One. 2015;10:e0129536. doi: 10.1371/journal.pone.0129536.
    1. Hu J, et al. Diversified microbiota of meconium is affected by maternal diabetes status. PLoS One. 2013;8:e78257. doi: 10.1371/journal.pone.0078257.
    1. Li L, et al. Maternal smoking in pregnancy association with childhood adiposity and blood pressure. Pediatr. Obes. 2016;11:202–209. doi: 10.1111/ijpo.12046.
    1. Holgerson PL, et al. Oral microbial profile discriminates breast-fed from formula-fed infants. J. Pediatr. Gastroenterol. Nutr. 2013;56:127–136. doi: 10.1097/MPG.0b013e31826f2bc6.
    1. Ismail NA, et al. Frequency of Firmicutes and Bacteroidetes in gut microbiota in obese and normal weight Egyptian children and adults. Arch. Med. Sci. 2011;3:501–507. doi: 10.5114/aoms.2011.23418.
    1. Trasande L, et al. Infant antibiotic exposures and early-life body mass. Int. J. Obes. 2013;37:16–23. doi: 10.1038/ijo.2012.132.
    1. Ajslev TA, Andersen CS, Gamborg M, Sørensen TIA, Jess T. Childhood overweight after establishment of the gut microbiota: the role of delivery mode, pre-pregnancy weight and early administration of antibiotics. Int. J. Obes. 2011;35:522–529. doi: 10.1038/ijo.2011.27.
    1. Murphy R, et al. Antibiotic treatment during infancy and increased body mass index in boys: an international cross-sectional study. Int. J. Obes. 2014;38:1115–1119. doi: 10.1038/ijo.2013.218.
    1. Gerber JS, et al. Antibiotic Exposure During the First 6 Months of Life and Weight Gain During Childhood. JAMA. 2016;315:1258–1265. doi: 10.1001/jama.2016.2395.
    1. Ianiro, G., Tilg, H. & Gasbarrini, A. Antibiotics as deep modulators of gut microbiota: between good and evil. Gut, 10.1136/gutjnl-2016-312297 (2016).
    1. Imhann F, et al. Proton pump inhibitors affect the gut microbiome. Gut. 2015;65:740–748. doi: 10.1136/gutjnl-2015-310376.
    1. Jackson MA, et al. Proton pump inhibitors alter the composition of the gut microbiota. Gut. 2016;65:749–756. doi: 10.1136/gutjnl-2015-310861.
    1. Gupta RW, et al. Histamine-2 receptor blockers alter the fecal microbiota in premature infants. J. Pediatr. Gastroenterol. Nutr. 2013;56:397–400. doi: 10.1097/MPG.0b013e318282a8c2.
    1. Dinh DM, et al. Longitudinal Analysis of the Intestinal Microbiota in Persistently Stunted Young Children in South India. PLoS One. 2016;11:e0155405. doi: 10.1371/journal.pone.0155405.
    1. Paul IM, et al. The Intervention Nurses Start Infants Growing on Healthy Trajectories (INSIGHT) study. BMC Pediatr. 2014;14:184. doi: 10.1186/1471-2431-14-184.
    1. Afgan E, et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update. Nucleic Acids Res. 2016;44:W3–W10. doi: 10.1093/nar/gkw343.
    1. Whittaker RH. Evolution and Measurement of Species Diversity. Taxon. 1972;21:213. doi: 10.2307/1218190.
    1. Jari Oksanen, F. F. et al. vegan: Community Ecology Package (2015).
    1. Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R. Diversity, stability and resilience of the human gut microbiota. Nature. 2012;489:220–230. doi: 10.1038/nature11550.
    1. Dewhirst FE, et al. The human oral microbiome. J. Bacteriol. 2010;192:5002–5017. doi: 10.1128/JB.00542-10.
    1. Daniels SR, Hassink SG, Committee On Nutrition The Role of the Pediatrician in Primary Prevention of Obesity. Pediatrics. 2015;136:e275–92. doi: 10.1542/peds.2015-1558.
    1. Yao F, Müller H-G, Wang J-L. Functional Data Analysis for Sparse LongitudinalData. J. Am. Stat. Assoc. 2005;100:577–590. doi: 10.1198/016214504000001745.
    1. Xin Z, Marron JS, Martin T. Wells. Functional data analysis view of longitudinal data. Stat. Sin. 2004;14:789–808.
    1. Choi, H. & Reimherr, M. A Geometric Approach to Confidence Regions and Bands for Functional Parameters (2017).
    1. Griffiths LJ, Smeeth L, Hawkins SS, Cole TJ, Dezateux C. Effects of infant feeding practice on weight gain from birth to 3 years. Arch. Dis. Child. 2009;94:577–582. doi: 10.1136/adc.2008.137554.
    1. Savage JS, Birch LL, Marini M, Anzman-Frasca S, Paul IM. Effect of the INSIGHT Responsive Parenting Intervention on Rapid Infant Weight Gain and Overweight Status at Age 1 Year. JAMA Pediatr. 2016;170:742. doi: 10.1001/jamapediatrics.2016.0445.
    1. Taveras EM, et al. Weight status in the first 6 months of life and obesity at 3 years of age. Pediatrics. 2009;123:1177–1183. doi: 10.1542/peds.2008-1149.
    1. Parodi, A. & Reimherr, M. FLAME: Simultaneous Variable Selection and Smoothing for Function-on-Scalar Regression. Submitted (2017).
    1. Segata N, et al. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12:R60. doi: 10.1186/gb-2011-12-6-r60.
    1. Bullon P, et al. Metabolic syndrome and periodontitis: is oxidative stress a common link? J. Dent. Res. 2009;88:503–518. doi: 10.1177/0022034509337479.
    1. Li P, He L, Sha Y-Q, Luan Q-X. Relationship of metabolic syndrome to chronic periodontitis. J. Periodontol. 2009;80:541–549. doi: 10.1902/jop.2009.080387.
    1. Kwon Y-E, Ha J-E, Paik D-I, Jin B-H, Bae K-H. The relationship between periodontitis and metabolic syndrome among a Korean nationally representative sample of adults. J. Clin. Periodontol. 2011;38:781–786. doi: 10.1111/j.1600-051X.2011.01756.x.
    1. Lundin M, Yucel-Lindberg T, Dahllöf G, Marcus C, Modéer T. Correlation between TNFa in gingival crevicular fluid and body mass index in obese subjects. Acta Odontol. Scand. 2004;62:273–277. doi: 10.1080/00016350410000172.
    1. Fadel HT, et al. Clinical and biological indicators of dental caries and periodontal disease in adolescents with or without obesity. Clin. Oral Investig. 2013;18:359–368. doi: 10.1007/s00784-013-0972-9.
    1. De Filippo C, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl. Acad. Sci. USA. 2010;107:14691–14696. doi: 10.1073/pnas.1005963107.
    1. Davenport ER, et al. Seasonal variation in human gut microbiome composition. PLoS One. 2014;9:e90731. doi: 10.1371/journal.pone.0090731.
    1. Wu GD, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011;334:105–108. doi: 10.1126/science.1208344.
    1. Campos-Sánchez R, Cremona MA, Pini A, Chiaromonte F, Makova KD. Integration and Fixation Preferences of Human and Mouse Endogenous Retroviruses Uncovered with Functional Data Analysis. PLoS Comput. Biol. 2016;12:e1004956. doi: 10.1371/journal.pcbi.1004956.
    1. Freeman B, et al. DNA from buccal swabs recruited by mail: evaluation of storage effects on long-term stability and suitability for multiplex polymerase chain reaction genotyping. Behav. Genet. 2003;33:67–72. doi: 10.1023/A:1021055617738.
    1. Resources, B. The following reagent was obtained through BEI Resources, NIAID, NIH as part of the Human Microbiome Project: Genomic DNA from Microbial Mock Community B (Staggered, Low Concentration), v5.2L, for 16S rRNA Gene Sequencing, HM-783D.
    1. Website. Available at: Andrews FastQC, (Accessed: 27th February 2017).
    1. Blankenberg D, et al. Manipulation of FASTQ data with Galaxy. Bioinformatics. 2010;26:1783–1785. doi: 10.1093/bioinformatics/btq281.
    1. Ewels P, Magnusson M, Lundin S, Käller M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics. 2016;32:3047–3048. doi: 10.1093/bioinformatics/btw354.
    1. Website. Available at: Aronesty ea-utils command-line tools for processing, (Accessed: 27th February 2017).
    1. Aronesty, E. Command-line tools for processing biological sequencing data 2011.
    1. Aronesty, E. Comparison of sequencing utility programs. Open Bioinforma. J. (2013).
    1. Andrews, S. FastQC: a quality control tool for high throughput sequence data. (2010).
    1. Blankenberg, D. et al. Galaxy: A Web-Based Genome Analysis Tool for Experimentalists. In Current Protocols in Molecular Biology (2010).
    1. Rognes T, Flouri T, Nichols B, Quince C, Mahé F. VSEARCH: a versatile open source tool for metagenomics. PeerJ. 2016;4:e2584. doi: 10.7717/peerj.2584.
    1. Wood DE, Salzberg SL. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol. 2014;15:R46. doi: 10.1186/gb-2014-15-3-r46.
    1. DeSantis TZ, et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 2006;72:5069–5072. doi: 10.1128/AEM.03006-05.
    1. Daniels SR, Hassink SG. & COMMITTEE ON NUTRITION. The Role of the Pediatrician in Primary Prevention of Obesity. Pediatrics. 2015;136:e275–e292. doi: 10.1542/peds.2015-1558.
    1. The World Health Organization. WHO Child Growth Standards.
    1. Ramsay, J. O. & Silverman, B. W. Functional Data Analysis. (Springer, 2005).
    1. Kokoszka, P. & Reimherr, M. Introduction to Functional Data Analysis. (CRC Press, 2017).
    1. Wei, T. corrplot: Visualization of a correlation matrix. (2013).
    1. McLeod, A. I. & Xu, C. bestglm: Best Subset GLM. (2014).
    1. Zou H. The Adaptive Lasso and Its Oracle Properties. J. Am. Stat. Assoc. 2006;101:1418–1429. doi: 10.1198/016214506000000735.

Source: PubMed

3
Iratkozz fel