The future of intensive care: delirium should no longer be an issue

Katarzyna Kotfis, Irene van Diem-Zaal, Shawniqua Williams Roberson, Marek Sietnicki, Mark van den Boogaard, Yahya Shehabi, E Wesley Ely, Katarzyna Kotfis, Irene van Diem-Zaal, Shawniqua Williams Roberson, Marek Sietnicki, Mark van den Boogaard, Yahya Shehabi, E Wesley Ely

Abstract

In the ideal intensive care unit (ICU) of the future, all patients are free from delirium, a syndrome of brain dysfunction frequently observed in critical illness and associated with worse ICU-related outcomes and long-term cognitive impairment. Although screening for delirium requires limited time and effort, this devastating disorder remains underestimated during routine ICU care. The COVID-19 pandemic brought a catastrophic reduction in delirium monitoring, prevention, and patient care due to organizational issues, lack of personnel, increased use of benzodiazepines and restricted family visitation. These limitations led to increases in delirium incidence, a situation that should never be repeated. Good sedation practices should be complemented by novel ICU design and connectivity, which will facilitate non-pharmacological sedation, anxiolysis and comfort that can be supplemented by balanced pharmacological interventions when necessary. Improvements in the ICU sound, light control, floor planning, and room arrangement can facilitate a healing environment that minimizes stressors and aids delirium prevention and management. The fundamental prerequisite to realize the delirium-free ICU, is an awake non-sedated, pain-free comfortable patient whose management follows the A to F (A-F) bundle. Moreover, the bundle should be expanded with three additional letters, incorporating humanitarian care: gaining (G) insight into patient needs, delivering holistic care with a 'home-like' (H) environment, and redefining ICU architectural design (I). Above all, the delirium-free world relies upon people, with personal challenges for critical care teams to optimize design, environmental factors, management, time spent with the patient and family and to humanize ICU care.

Keywords: Architecture; ICU design; Intensive care unit; Neuroesthetics; Outcome; PICS; PICS-F.

Conflict of interest statement

None.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
a Future of delirium-free ICU-design – hotel space vs medical space. b Future of delirium-free ICU-design—the importance of healing environment
Fig. 1
Fig. 1
a Future of delirium-free ICU-design – hotel space vs medical space. b Future of delirium-free ICU-design—the importance of healing environment
Fig. 2
Fig. 2
The ABCDEFGHI bundle—A–I bundle. A—Assessment and management of pain: subjective (NRS, VAS) behavioral tools (CPOT, BPS) should be complemented by novel pain assessment technology (ANI, NOL, PPI), multimodal approach to pain, pain-free noninvasive monitoring, pain-free blood drawing for labs. B—Both SATs and SBTs: daily, regular spontaneous awakening trials and spontaneous breathing trials to limit analgesia and sedation needs. C—Choice of analgesia and sedation: good sedation practices complemented by a rethink of design and connectivity of ICU to facilitate optimal sedation, anxiolysis and comfort using non-pharmacological means supplemented by balanced pharmacological interventions when necessary. D—Delirium detection and management: traditional validated tools (CAM-ICU or ICDSC) complemented by novel tools (wireless EEG, NIRS, noninvasive brain electrolyte monitoring, video-assisted delirium signs recognition, electrodermal activity measured by wristband devices). E—Early mobility and exercise: tailor made stepwise physical and cognitive activity programs using specially adapted equipment (virtual reality) and easy access to the outside world. F—Family engagement and empowerment: allowing visits 24/7 (including children and pets), family can sleep in the same room, large picture frames for family photographs, video panel to allow easy reach of key family members. G—Gaining insight: acknowledging patients’ personal needs, preferences, and habits (music therapy, colors, scents) for holistic and personalized care. H—Holistic and personalized care with ‘Home-like’ aspects: providing familiar, safe environment within a customized ICU including provision of circadian rhythm and adequate sleep hygiene. I—ICU design redefinition: environment where patient’s feel safe, comfortable, with recognizable things, not overwhelming (separate hi-tech environment and noisy alarm systems from patient accommodation; remote, minimally invasive monitoring, natural light, access to nature, VR aids). Abbreviations: NRS, numeric rating scale; VAS, visual analogue scale; CPOT, critical care pain observation tool; BPS, behavioral pain scale; ANI, analgesia nociception index; NOL, nociception level index; PPI, pupillary pain index; ICU, intensive care unit; EEG, electroencephalography; VR, virtual reality; NIRS, Near Infrared Spectroscopy, CAM-ICU, Cognitive Assessment Method for Intensive Care Unit; ICDSC, Intensive Care Delirium Screening Checklist

References

    1. American Psychiatric Association. Diagnostic and statistical manual of mental disorders: DSM-5. American Psychiatric Association; 2013.
    1. Kotfis K, Williams Roberson S, Wilson JE, Dabrowski W, Pun BT, Ely EW. COVID-19: ICU delirium management during SARS-CoV-2 pandemic. Crit Care. 2020;24(1):176. doi: 10.1186/s13054-020-02882-x.
    1. Pun BT, Badenes R, Heras La Calle G, et al. Prevalence and risk factors for delirium in critically ill patients with COVID-19 (COVID-D): a multicentre cohort study [published correction appears in Lancet Respir Med. 2021 Jan 27;:] Lancet Respir Med. 2021;9(3):239–250. doi: 10.1016/S2213-2600(20)30552-X.
    1. Kotfis K, Williams Roberson S, Wilson J, et al. COVID-19: What do we need to know about ICU delirium during the SARS-CoV-2 pandemic? Anaesthesiol Intensive Ther. 2020;52(2):132–138. doi: 10.5114/ait.2020.95164.
    1. Rood P, Huisman-de Waal G, Vermeulen H, Schoonhoven L, Pickkers P, van den Boogaard M. Effect of organisational factors on the variation in incidence of delirium in intensive care unit patients: a systematic review and meta-regression analysis. Aust Crit Care. 2018;31(3):180–187. doi: 10.1016/j.aucc.2018.02.002.
    1. Salluh JI, Wang H, Schneider EB, et al. Outcome of delirium in critically ill patients: systematic review and meta-analysis. BMJ. 2015;350:h2538. doi: 10.1136/bmj.h2538.
    1. van Eijk MM, van den Boogaard M, van Marum RJ, et al. Routine use of the confusion assessment method for the intensive care unit: a multicenter study. Am J Respir Crit Care Med. 2011;184(3):340–344. doi: 10.1164/rccm.201101-0065OC.
    1. Barnes-Daly MA, Phillips G, Ely EW. Improving hospital survival and reducing brain dysfunction at Seven California Community Hospitals: implementing PAD guidelines via the abcdef bundle in 6,064 patients. Crit Care Med. 2017;45(2):171–178. doi: 10.1097/CCM.0000000000002149.
    1. Pun BT, Balas MC, Barnes-Daly MA, Thompson JL, Aldrich JM, Barr J, Byrum D, Carson SS, Devlin JW, Engel HJ, et al. Caring for critically ill patients with the ABCDEF bundle: results of the ICU liberation collaborative in over 15,000 adults. Crit Care Med. 2019;47(1):3–14. doi: 10.1097/CCM.0000000000003482.
    1. Devlin JW, Skrobik Y, Gélinas C, et al. Clinical practice guidelines for the prevention and management of pain, agitation/sedation, delirium, immobility, and sleep disruption in adult patients in the ICU. Crit Care Med. 2018;46(9):e825–e873. doi: 10.1097/CCM.0000000000003299.
    1. Breitbart W, Gibson C, Tremblay A. The delirium experience: delirium recall and delirium-related distress in hospitalized patients with cancer, their spouses/caregivers, and their nurses. Psychosomatics. 2002;43(3):183–194. doi: 10.1176/appi.psy.43.3.183.
    1. Adamis D, Treloar A, Martin FC, Macdonald AJ. A brief review of the history of delirium as a mental disorder. Hist Psychiatry. 2007;18(72 Pt 4):459–469. doi: 10.1177/0957154X07076467.
    1. Dubois MJ, Bergeron N, Dumont M, Dial S, Skrobik Y. Delirium in an intensive care unit: a study of risk factors. Intensive Care Med. 2001;27(8):1297–1304. doi: 10.1007/s001340101017.
    1. van den Boogaard M, Schoonhoven L, Evers AW, van der Hoeven JG, van Achterberg T, Pickkers P. Delirium in critically ill patients: impact on long-term health-related quality of life and cognitive functioning. Crit Care Med. 2012;40(1):112–118. doi: 10.1097/CCM.0b013e31822e9fc9.
    1. Zhang Z, Pan L, Ni H. Impact of delirium on clinical outcome in critically ill patients: a meta-analysis. Gen Hosp Psychiatry. 2013;35(2):105–111. doi: 10.1016/j.genhosppsych.2012.11.003.
    1. Milbrandt EB, Deppen S, Harrison PL, et al. Costs associated with delirium in mechanically ventilated patients. Crit Care Med. 2004;32(4):955–962. doi: 10.1097/01.ccm.0000119429.16055.92.
    1. Sanchez D, Brennan K, Al Sayfe M, et al. Frailty, delirium and hospital mortality of older adults admitted to intensive care: the Delirium (Deli) in ICU study. Crit Care. 2020;24(1):609. doi: 10.1186/s13054-020-03318-2.
    1. Klein Klouwenberg PM, Zaal IJ, Spitoni C, et al. The attributable mortality of delirium in critically ill patients: prospective cohort study. BMJ. 2014;349:6652. doi: 10.1136/bmj.g6652.
    1. Duprey MS, van den Boogaard M, van der Hoeven JG, et al. Association between incident delirium and 28- and 90-day mortality in critically ill adults: a secondary analysis. Crit Care. 2020;24(1):161. doi: 10.1186/s13054-020-02879-6.
    1. Rood PJT, van de Schoor F, van Tertholen K, Pickkers P, van den Boogaard M. Differences in 90-day mortality of delirium subtypes in the intensive care unit: a retrospective cohort study. J Crit Care. 2019;53:120–124. doi: 10.1016/j.jcrc.2019.06.007.
    1. Ely EW, Shintani A, Truman B, et al. Delirium as a predictor of mortality in mechanically ventilated patients in the intensive care unit. JAMA. 2004;291(14):1753–1762. doi: 10.1001/jama.291.14.1753.
    1. Pisani MA, Kong SY, Kasl SV, Murphy TE, Araujo KL, Van Ness PH. Days of delirium are associated with 1-year mortality in an older intensive care unit population. Am J Respir Crit Care Med. 2009;180(11):1092–1097. doi: 10.1164/rccm.200904-0537OC.
    1. Wolters AE, van Dijk D, Pasma W, et al. Long-term outcome of delirium during intensive care unit stay in survivors of critical illness: a prospective cohort study. Crit Care. 2014;18(3):125. doi: 10.1186/cc13929.
    1. Brummel NE, Girard TD, Ely EW, et al. Feasibility and safety of early combined cognitive and physical therapy for critically ill medical and surgical patients: the Activity and Cognitive Therapy in ICU (ACT-ICU) trial. Intensive Care Med. 2014;40(3):370–379. doi: 10.1007/s00134-013-3136-0.
    1. Girard TD, Jackson JC, Pandharipande PP, et al. Delirium as a predictor of long-term cognitive impairment in survivors of critical illness. Crit Care Med. 2010;38(7):1513–1520. doi: 10.1097/CCM.0b013e3181e47be1.
    1. Pandharipande PP, Girard TD, Jackson JC, et al. Long-term cognitive impairment after critical illness. N Engl J Med. 2013;369(14):1306–1316. doi: 10.1056/NEJMoa1301372.
    1. Parker AM, Sricharoenchai T, Raparla S, Schneck KW, Bienvenu OJ, Needham DM. Posttraumatic stress disorder in critical illness survivors: a metaanalysis. Crit Care Med. 2015;43(5):1121–1129. doi: 10.1097/CCM.0000000000000882.
    1. Davydow DS, Gifford JM, Desai SV, Bienvenu OJ, Needham DM. Depression in general intensive care unit survivors: a systematic review. Intensive Care Med. 2009;35(5):796–809. doi: 10.1007/s00134-009-1396-5.
    1. Bulic D, Bennett M, Georgousopoulou EN, et al. Cognitive and psychosocial outcomes of mechanically ventilated intensive care patients with and without delirium. Ann Intensive Care. 2020;10(1):104. doi: 10.1186/s13613-020-00723-2.
    1. Morandi A, Piva S, Ely EW, et al. Worldwide survey of the "Assessing Pain, Both Spontaneous Awakening and Breathing Trials, Choice of Drugs, Delirium Monitoring/Management, Early Exercise/Mobility, and Family Empowerment" (ABCDEF) bundle. Crit Care Med. 2017;45(11):e1111–e1122. doi: 10.1097/CCM.0000000000002640.
    1. Hanidziar D, Bittner EA. Sedation of mechanically ventilated COVID-19 patients: challenges and special considerations. Anesth Analg. 2020;131(1):e40–e41. doi: 10.1213/ANE.0000000000004887.
    1. Olsen HT, Nedergaard HK, Strøm T, et al. Nonsedation or light sedation in critically ill, mechanically ventilated patients. N Engl J Med. 2020;382(12):1103–1111. doi: 10.1056/NEJMoa1906759.
    1. Shehabi Y, Howe BD, Bellomo R, et al. Early sedation with dexmedetomidine in critically ill patients. N Engl J Med. 2019;380(26):2506–2517. doi: 10.1056/NEJMoa1904710.
    1. Hughes CG, Mailloux PT, Devlin JW, et al. Dexmedetomidine or propofol for sedation in mechanically ventilated adults with sepsis. N Engl J Med. 2021;384(15):1424–1436. doi: 10.1056/NEJMoa2024922.
    1. Devlin JW, Skrobik Y, Rochwerg B, et al. Methodologic innovation in creating clinical practice guidelines: insights from the 2018 Society of Critical Care Medicine Pain, Agitation/Sedation, Delirium, Immobility, and Sleep Disruption Guideline Effort. Crit Care Med. 2018;46(9):1457–1463. doi: 10.1097/CCM.0000000000003298.
    1. Zaal IJ, Devlin JW, Hazelbag M, et al. Benzodiazepine-associated delirium in critically ill adults. Intensive Care Med. 2015;41(12):2130–2137. doi: 10.1007/s00134-015-4063-z.
    1. Shehabi Y, Serpa Neto A, Howe BD, et al. Early sedation with dexmedetomidine in ventilated critically ill patients and heterogeneity of treatment effect in the SPICE III randomised controlled trial. Intensive Care Med. 2021;47(4):455–466. doi: 10.1007/s00134-021-06356-8.
    1. Lewis K, Alshamsi F, Carayannopoulos KL, et al. Dexmedetomidine vs other sedatives in critically ill mechanically ventilated adults: a systematic review and meta-analysis of randomized trials. Intensive Care Med. 2022 doi: 10.1007/s00134-022-06712-2.
    1. Chlan LL, Weinert CR, Tracy MF, et al. Study protocol to test the efficacy of self-administration of dexmedetomidine sedative therapy on anxiety, delirium, and ventilator days in critically ill mechanically ventilated patients: an open-label randomized clinical trial. Trials. 2022;23(1):406. doi: 10.1186/s13063-022-06391-w.
    1. Vincent JL, Slutsky AS, Gattinoni L. Intensive care medicine in 2050: the future of ICU treatments. Intensive Care Med. 2017;43(9):1401–1402. doi: 10.1007/s00134-016-4556-4.
    1. Thompson DR, Hamilton DK, Cadenhead CD, et al. Guidelines for intensive care unit design. Crit Care Med. 2012;40(5):1586–1600. doi: 10.1097/CCM.0b013e3182413bb2.
    1. Ulrich RS, Zimring C, Zhu X, et al. A review of the research literature on evidence-based healthcare design. HERD. 2008;1(3):61–125. doi: 10.1177/193758670800100306.
    1. Pearce MT, Zaidel DW, Vartanian O, et al. Neuroaesthetics: the cognitive neuroscience of aesthetic experience. Perspect Psychol Sci. 2016;11(2):265–279. doi: 10.1177/1745691615621274.
    1. Cinzia DD, Vittorio G. Neuroaesthetics: a review. Curr Opin Neurobiol. 2009;19(6):682–687. doi: 10.1016/j.conb.2009.09.001.
    1. Gallo LMH, Giampietro V, Zunszain PA, Tan KS. Covid-19 and mental health: could visual art exposure help? Front Psychol. 2021;12:650314. doi: 10.3389/fpsyg.2021.650314.
    1. Saha S, Noble H, Xyrichis A, et al. Mapping the impact of ICU design on patients, families and the ICU team: a scoping review. J Crit Care. 2022;67:3–13. doi: 10.1016/j.jcrc.2021.07.002.
    1. Ulrich RS, Zimring C, Joseph A, Quan X, Choudhary R. The role of the physical environment in the hospital of the 21st century: a once-in-a-lifetime opportunity. Concord: The Center for Health Design; 2004.
    1. Bazuin D, Cardon K. Creating healing intensive care unit environments: physical and psychological considerations in designing critical care areas. Crit Care Nurs Q. 2011;34(4):259–267. doi: 10.1097/CNQ.0b013e31822b8f76.
    1. Caruso P, Guardian L, Tiengo T, Dos Santos LS, Junior PM. ICU architectural design affects the delirium prevalence: a comparison between single-bed and multibed rooms*. Crit Care Med. 2014;42(10):2204–2210. doi: 10.1097/CCM.0000000000000502.
    1. Graven SN. Clinical research data illuminating the relationship between the physical environment & patient medical outcomes. J Healthc Des. 1997;9:15–24.
    1. Zaal IJ, Spruyt CF, Peelen LM, et al. Intensive care unit environment may affect the course of delirium. Intensive Care Med. 2013;39(3):481–488. doi: 10.1007/s00134-012-2726-6.
    1. Luetz A, Grunow JJ, Mörgeli R, et al. Innovative ICU solutions to prevent and reduce delirium and post-intensive care unit syndrome. Semin Respir Crit Care Med. 2019;40(5):673–686. doi: 10.1055/s-0039-1698404.
    1. Lee HJ, Bae E, Lee HY, Lee SM, Lee J. Association of natural light exposure and delirium according to the presence or absence of windows in the intensive care unit. Acute Crit Care. 2021;36(4):332–341. doi: 10.4266/acc.2021.00556.
    1. Smonig R, Magalhaes E, Bouadma L, et al. Impact of natural light exposure on delirium burden in adult patients receiving invasive mechanical ventilation in the ICU: a prospective study. Ann Intensive Care. 2019;9(1):120. doi: 10.1186/s13613-019-0592-x.
    1. Fan EP, Abbott SM, Reid KJ, Zee PC, Maas MB. Abnormal environmental light exposure in the intensive care environment. J Crit Care. 2017;40:11–14. doi: 10.1016/j.jcrc.2017.03.002.
    1. Ely EW. The ABCDEF bundle: science and philosophy of how ICU liberation serves patients and families. Crit Care Med. 2017;45(2):321–330. doi: 10.1097/CCM.0000000000002175.
    1. Wilk C, Petrinec A. Caregiver willingness to provide care in the ICU: a concept analysis. Nurs Forum. 2021;56(3):684–692. doi: 10.1111/nuf.12563.
    1. Kynoch K, Chang A, Coyer F, McArdle A. The effectiveness of interventions to meet family needs of critically ill patients in an adult intensive care unit: a systematic review update. JBI Database System Rev Implement Rep. 2016;14(3):181–234. doi: 10.11124/JBISRIR-2016-2477.
    1. Kiwanuka F, Sak-Dankosky N, Alemayehu YH, Nanyonga RC, Kvist T. The evidence base of nurse-led family interventions for improving family outcomes in adult critical care settings: a mixed method systematic review. Int J Nurs Stud. 2022;125:104100. doi: 10.1016/j.ijnurstu.2021.104100.
    1. Stollings JL, Kotfis K, Chanques G, Pun BT, Pandharipande PP, Ely EW. Delirium in critical illness: clinical manifestations, outcomes, and management. Intensive Care Med. 2021;47(10):1089–1103. doi: 10.1007/s00134-021-06503-1.
    1. Kotfis K, Marra A, Ely EW. ICU delirium—a diagnostic and therapeutic challenge in the intensive care unit. Anaesthesiol Intensive Ther. 2018;50(2):160–167. doi: 10.5603/AIT.a2018.0011.
    1. Rood PJT, Zegers M, Ramnarain D, et al. The impact of nursing delirium preventive interventions in the ICU: a multicenter cluster-randomized controlled clinical trial. Am J Respir Crit Care Med. 2021;204(6):682–691. doi: 10.1164/rccm.202101-0082OC.
    1. Chen TJ, Traynor V, Wang AY, Shih CY, Tu MC, Chuang CH, Chiu HY, Chang HR. Comparative effectiveness of non-pharmacological interventions for preventing delirium in critically ill adults: a systematic review and network meta-analysis. Int J Nurs Stud. 2022;131:104239. doi: 10.1016/j.ijnurstu.2022.104239.
    1. Girard TD, Kress JP, Fuchs BD, et al. Efficacy and safety of a paired sedation and ventilator weaning protocol for mechanically ventilated patients in intensive care (Awakening and Breathing Controlled trial): a randomised controlled trial. Lancet. 2008;371(9607):126–134. doi: 10.1016/S0140-6736(08)60105-1.
    1. Kamdar BB, Combs MP, Colantuoni E, et al. The association of sleep quality, delirium, and sedation status with daily participation in physical therapy in the ICU. Crit Care. 2016;19:261. doi: 10.1186/s13054-016-1433-z.
    1. Morandi A, Brummel NE, Ely EW. Sedation, delirium and mechanical ventilation: the 'ABCDE' approach. Curr Opin Crit Care. 2011;17(1):43–49. doi: 10.1097/MCC.0b013e3283427243.
    1. Trogrlić Z, van der Jagt M, Bakker J, et al. A systematic review of implementation strategies for assessment, prevention, and management of ICU delirium and their effect on clinical outcomes. Crit Care. 2015;19(1):157. doi: 10.1186/s13054-015-0886-9.
    1. Morandi A, Pozzi C, Milisen K, et al. An interdisciplinary statement of scientific societies for the advancement of delirium care across Europe (EDA, EANS, EUGMS, COTEC, IPTOP/WCPT) BMC Geriatr. 2019;19(1):253. doi: 10.1186/s12877-019-1264-2.
    1. Wade DF, Moon Z, Windgassen SS, Harrison AM, Morris L, Weinman JA. Non-pharmacological interventions to reduce ICU-related psychological distress: a systematic review. Minerva Anestesiol. 2016;82(4):465–478.
    1. Peris A, Bonizzoli M, Iozzelli D, et al. Early intra-intensive care unit psychological intervention promotes recovery from post traumatic stress disorders, anxiety and depression symptoms in critically ill patients [published correction appears in Crit Care. 2011;15(2):418. Trevisan, Monica [added]] Crit Care. 2011;15(1):R41. doi: 10.1186/cc10003.
    1. Dabrowski W, Siwicka-Gieroba D, Gasinska-Blotniak M, et al. Pathomechanisms of non-traumatic acute brain injury in critically ill patients. Medicina (Kaunas) 2020;56(9):469. doi: 10.3390/medicina56090469.
    1. Xu X, Hu Y, Yan E, Zhan G, Liu C, Yang C. Perioperative neurocognitive dysfunction: thinking from the gut? Aging (Albany NY) 2020;12(15):15797–15817. doi: 10.18632/aging.103738.
    1. Liu L, Shang L, Jin D, Wu X, Long B. General anesthesia bullies the gut: a toxic relationship with dysbiosis and cognitive dysfunction. Psychopharmacology. 2022;239(3):709–728. doi: 10.1007/s00213-022-06096-7.
    1. Kanova M, Kohout P. Tryptophan: a unique role in the critically ill. Int J Mol Sci. 2021;22(21):11714. doi: 10.3390/ijms222111714.
    1. Ely EW, Margolin R, Francis J, et al. Evaluation of delirium in critically ill patients: validation of the Confusion Assessment Method for the Intensive Care Unit (CAM-ICU) Crit Care Med. 2001;29(7):1370–1379. doi: 10.1097/00003246-200107000-00012.
    1. Bergeron N, Dubois MJ, Dumont M, Dial S, Skrobik Y. Intensive Care Delirium Screening Checklist: evaluation of a new screening tool. Intensive Care Med. 2001;27(5):859–864. doi: 10.1007/s001340100909.
    1. MacLullich AM, Shenkin SD, Goodacre S, et al. The 4 'A's test for detecting delirium in acute medical patients: a diagnostic accuracy study. Health Technol Assess. 2019;23(40):1–194. doi: 10.3310/hta23400.
    1. Liu K, Nakamura K, Katsukawa H, et al. Implementation of the ABCDEF bundle for critically ill ICU patients during the COVID-19 pandemic: a multi-national 1-day point prevalence study. Front Med (Lausanne) 2021;8:735860. doi: 10.3389/fmed.2021.735860.
    1. Reznik ME, Daiello LA, Thompson BB, et al. Fluctuations of consciousness after stroke: associations with the confusion assessment method for the intensive care unit (CAM-ICU) and potential undetected delirium. J Crit Care. 2020;56:58–62. doi: 10.1016/j.jcrc.2019.12.008.
    1. Osse RJ, Tulen JH, Bogers AJ, Hengeveld MW. Disturbed circadian motor activity patterns in postcardiotomy delirium. Psychiatry Clin Neurosci. 2009;63(1):56–64. doi: 10.1111/j.1440-1819.2008.01888.x.
    1. Numan T, van den Boogaard M, Kamper AM, et al. Delirium detection using relative delta power based on 1-minute single-channel EEG: a multicentre study. Br J Anaesth. 2019;122(1):60–68. doi: 10.1016/j.bja.2018.08.021.
    1. Koponen H, Partanen J, Pääkkönen A, Mattila E, Riekkinen PJ. EEG spectral analysis in delirium. J Neurol Neurosurg Psychiatry. 1989;52(8):980–985. doi: 10.1136/jnnp.52.8.980.
    1. van der Kooi AW, Slooter AJ, van Het Klooster MA, Leijten FS. EEG in delirium: Increased spectral variability and decreased complexity. Clin Neurophysiol. 2014;125(10):2137–2139. doi: 10.1016/j.clinph.2014.02.010.
    1. Kimchi EY, Neelagiri A, Whitt W, et al. Clinical EEG slowing correlates with delirium severity and predicts poor clinical outcomes. Neurology. 2019;93(13):e1260–e1271. doi: 10.1212/WNL.0000000000008164.
    1. Williams Roberson S, Azeez NA, Taneja R, et al. Quantitative EEG during critical illness correlates with patterns of long-term cognitive impairment. Clin EEG Neurosci. 2020 doi: 10.1177/1550059420978009.
    1. Drover D, Ortega HR. Patient state index. Best Pract Res Clin Anaesthesiol. 2006;20(1):121–128. doi: 10.1016/j.bpa.2005.07.008.
    1. Hobbs K, Krishnamohan P, Legault C, et al. Rapid Bedside evaluation of seizures in the ICU by listening to the sound of brainwaves: a prospective observational clinical trial of Ceribell's brain stethoscope function. Neurocrit Care. 2018;29(2):302–312. doi: 10.1007/s12028-018-0543-7.
    1. Watson PL, Shintani AK, Tyson R, Pandharipande PP, Pun BT, Ely EW. Presence of electroencephalogram burst suppression in sedated, critically ill patients is associated with increased mortality. Crit Care Med. 2008;36(12):3171–3177. doi: 10.1097/CCM.0b013e318186b9ce.
    1. Caricato A, Della Marca G, Ioannoni E, et al. Continuous EEG monitoring by a new simplified wireless headset in intensive care unit. BMC Anesthesiol. 2020;20(1):298. doi: 10.1186/s12871-020-01213-5.
    1. Eertmans W, De Deyne C, Genbrugge C, et al. Association between postoperative delirium and postoperative cerebral oxygen desaturation in older patients after cardiac surgery. Br J Anaesth. 2020;124(2):146–153. doi: 10.1016/j.bja.2019.09.042.
    1. Guilfoyle MR, Helmy A, Donnelly J, et al. Characterising the dynamics of cerebral metabolic dysfunction following traumatic brain injury: a microdialysis study in 619 patients. PLoS ONE. 2021;16(12):e0260291. doi: 10.1371/journal.pone.0260291.
    1. Saknite I, Patrinely JR, Zhao Z, et al. Association of leukocyte adhesion and rolling in skin with patient outcomes after hematopoietic cell transplantation using noninvasive reflectance confocal videomicroscopy. JAMA Dermatol. 2022 doi: 10.1001/jamadermatol.2022.0924.
    1. Poh MZ, Loddenkemper T, Swenson NC, Goyal S, Madsen JR, Picard RW. Continuous monitoring of electrodermal activity during epileptic seizures using a wearable sensor. Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:4415–4418. doi: 10.1109/IEMBS.2010.5625988.
    1. Onorati F, Regalia G, Caborni C, et al. Prospective study of a multimodal convulsive seizure detection wearable system on pediatric and adult patients in the epilepsy monitoring unit. Front Neurol. 2021;12:724904. doi: 10.3389/fneur.2021.724904.

Source: PubMed

3
Iratkozz fel