Evaluation of least significant changes of pulse contour analysis-derived parameters

Hugues de Courson, Loic Ferrer, Grégoire Cane, Eric Verchère, Musa Sesay, Karine Nouette-Gaulain, Matthieu Biais, Hugues de Courson, Loic Ferrer, Grégoire Cane, Eric Verchère, Musa Sesay, Karine Nouette-Gaulain, Matthieu Biais

Abstract

Background: Many maneuvers assessing fluid responsiveness (minifluid challenge, lung recruitment maneuver, end-expiratory occlusion test, passive leg raising) are considered as positive when small variations in cardiac index, stroke volume index, stroke volume variation or pulse pressure variation occur. Pulse contour analysis allows continuous and real-time cardiac index, stroke volume, stroke volume variation and pulse pressure variation estimations. To use these maneuvers with pulse contour analysis, the knowledge of the minimal change that needs to be measured by a device to recognize a real change (least significant change) has to be studied. The aim of this study was to evaluate the least significant change of cardiac index, stroke volume index, stroke volume variation and pulse pressure variation obtained using pulse contour analysis (ProAQT®, Pulsion Medical System, Germany).

Methods: In this observational study, we included 50 mechanically ventilated patients undergoing neurosurgery in the operating room. Cardiac index, stroke volume index, pulse pressure variation and stroke volume variation obtained using ProAQT® (Pulsion Medical System, Germany) were recorded every 12 s during 15-min steady-state periods. Least significant changes were calculated every minute.

Results: Least significant changes statistically differed over time for cardiac index, stroke volume index, pulse pressure variation and stroke volume variation (p < 0.001). Least significant changes ranged from 1.3 to 0.7% for cardiac index, from 1.3 to 0.8% for stroke volume index, from 10 to 4.9% for pulse pressure variation and from 10.8 to 4.3% for stroke volume variation.

Conclusion: To conclude, the present study suggests that pulse contour analysis is able to detect rapid and small changes in cardiac index and stroke volume index, but the interpretation of rapid and small changes of pulse pressure variation and stroke volume variation must be done with caution.

Keywords: Precision; Pulse contour; Pulse pressure variation; Stroke volume; Stroke volume variation.

Conflict of interest statement

Pr Biais received honoraria from Edwards Lifesciences and Pulsion Medical System as a lecturer. Other authors have no competing interests.

Figures

Fig. 1
Fig. 1
Spaghetti plots: Individual values (solid lines), mean (circle) and standard deviation of stroke volume index (SVI) during the 15 min of recording
Fig. 2
Fig. 2
a Representation of the least significant changes of cardiac index at predefined times: 30 s (s), 45 s, 60 s, 5 min (min), 10 min and 15 min). Individual values (circles) and box plot (lines corresponding to median, upper and lower bars represent 5–95th percentiles). b Representation of the least significant changes of stroke volume index at predefined times: 30 s (s), 45 s, 60 s, 5 min (min), 10 min and 15 min). Individual values (circles) and box plot (lines corresponding to median, upper and lower bars represent 5–95th percentiles). c Representation of the least significant changes of pulse pressure variation at predefined times: 30 s (s), 45 s, 60 s, 5 min (min), 10 min and 15 min). Individual values (circles) and box plot (lines corresponding to median, upper and lower bars represent 5–95th percentiles). d Representation of the least significant changes of stroke volume variation at predefined times: 30 s (s), 45 s, 60 s, 5 min (min), 10 min and 15 min). Individual values (circles) and box plot (lines corresponding to median, upper and lower bars represent 5–95th percentiles)

References

    1. National Institute for Health and Clinical Excellence, CardioQ-ODM Oesophageal doppler monitor. . Accessed May 5 2014.
    1. Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Crit Care Med. 2017;45(3):486–552. doi: 10.1097/CCM.0000000000002255.
    1. Vallet B, Blanloeil Y, Cholley B, Orliaguet G, Pierre S, Tavernier B, et al. Guidelines for perioperative haemodynamic optimization. Ann Fr Anesth Reanim. 2013;32(10):e151–e158. doi: 10.1016/j.annfar.2013.09.010.
    1. Ahmad T, Beilstein CM, Aldecoa C, Moreno RP, Molnár Z, Novak-Jankovic V, et al. Variation in haemodynamic monitoring for major surgery in European nations: secondary analysis of the EuSOS dataset. Perioper Med Lond Engl. 2015;4:8. doi: 10.1186/s13741-015-0018-8.
    1. Biais M, Nouette-Gaulain K, Cottenceau V, Vallet A, Cochard JF, Revel P, et al. Cardiac output measurement in patients undergoing liver transplantation: pulmonary artery catheter versus uncalibrated arterial pressure waveform analysis. Anesth Analg. 2008;106(5):1480–1486. doi: 10.1213/ane.0b013e318168b309.
    1. Biais M, Mazocky E, Stecken L, Pereira B, Sesay M, Roullet S, et al. Impact of systemic vascular resistance on the accuracy of the pulsioflex device. Anesth Analg. 2017;124(2):487–493. doi: 10.1213/ANE.0000000000001591.
    1. Monnet X, Anguel N, Naudin B, Jabot J, Richard C, Teboul J-L. Arterial pressure-based cardiac output in septic patients: different accuracy of pulse contour and uncalibrated pressure waveform devices. Crit Care Lond Engl. 2010;14(3):R109. doi: 10.1186/cc9058.
    1. Monnet X, Marik P, Teboul J-L. Passive leg raising for predicting fluid responsiveness: a systematic review and meta-analysis. Intensive Care Med. 2016;42(12):1935–1947. doi: 10.1007/s00134-015-4134-1.
    1. Monnet X, Osman D, Ridel C, Lamia B, Richard C, Teboul J-L. Predicting volume responsiveness by using the end-expiratory occlusion in mechanically ventilated intensive care unit patients. Crit Care Med. 2009;37(3):951–956. doi: 10.1097/CCM.0b013e3181968fe1.
    1. Biais M, Larghi M, Henriot J, de Courson H, Sesay M, Nouette-Gaulain K. End-expiratory occlusion test predicts fluid responsiveness in patients with protective ventilation in the operating room. Anesth Analg. 2017;125(6):1889–1895. doi: 10.1213/ANE.0000000000002322.
    1. Biais M, de Courson H, Lanchon R, Pereira B, Bardonneau G, Griton M, et al. Mini-fluid challenge of 100 ml of crystalloid predicts fluid responsiveness in the operating room. Anesthesiology. 2017;127(3):450–456. doi: 10.1097/ALN.0000000000001753.
    1. Biais M, Lanchon R, Sesay M, Le Gall L, Pereira B, Futier E, et al. Changes in stroke volume induced by lung recruitment maneuver predict fluid responsiveness in mechanically ventilated patients in the operating room. Anesthesiology. 2017;126(2):260–267. doi: 10.1097/ALN.0000000000001459.
    1. Myatra SN, Prabu NR, Divatia JV, Monnet X, Kulkarni AP, Teboul J-L. The changes in pulse pressure variation or stroke volume variation after a “tidal volume challenge” reliably predict fluid responsiveness during low tidal volume ventilation. Crit Care Med. 2017;45(3):415–421. doi: 10.1097/CCM.0000000000002183.
    1. Jacquet-Lagrèze M, Izaute G, Fellahi J-L. Diagnostic accuracy studies: the methodologic approach matters! Anesthesiology. 2017;127(4):728–729. doi: 10.1097/ALN.0000000000001824.
    1. Cecconi M, Dawson D, Grounds RM, Rhodes A. Lithium dilution cardiac output measurement in the critically ill patient: determination of precision of the technique. Intensive Care Med. 2009;35(3):498–504. doi: 10.1007/s00134-008-1292-4.
    1. Monnet X, Persichini R, Ktari M, Jozwiak M, Richard C, Teboul J-L. Precision of the transpulmonary thermodilution measurements. Crit Care Lond Engl. 2011;15(4):R204. doi: 10.1186/cc10421.
    1. Jozwiak M, Mercado P, Teboul J-L, Benmalek A, Gimenez J, Dépret F, et al. What is the lowest change in cardiac output that transthoracic echocardiography can detect? Crit Care Lond Engl. 2019;23(1):116. doi: 10.1186/s13054-019-2413-x.
    1. Georges D, de Courson H, Lanchon R, Sesay M, Nouette-Gaulain K, Biais M. End-expiratory occlusion maneuver to predict fluid responsiveness in the intensive care unit: an echocardiographic study. Crit Care Lond Engl. 2018;22(1):32. doi: 10.1186/s13054-017-1938-0.
    1. Cecconi M, Monge García MI, Gracia Romero M, Mellinghoff J, Caliandro F, Grounds RM, et al. The use of pulse pressure variation and stroke volume variation in spontaneously breathing patients to assess dynamic arterial elastance and to predict arterial pressure response to fluid administration. Anesth Analg. 2015;120(1):76–84. doi: 10.1213/ANE.0000000000000442.
    1. Jozwiak M, Depret F, Teboul J-L, Alphonsine J-E, Lai C, Richard C, et al. Predicting fluid responsiveness in critically ill patients by using combined end-expiratory and end-inspiratory occlusions with echocardiography. Crit Care Med. 2017;45(11):e1131–e1138. doi: 10.1097/CCM.0000000000002704.
    1. Hamzaoui O, Monnet X, Richard C, Osman D, Chemla D, Teboul J-L. Effects of changes in vascular tone on the agreement between pulse contour and transpulmonary thermodilution cardiac output measurements within an up to 6-hour calibration-free period. Crit Care Med. 2008;36(2):434–440. doi: 10.1097/01.CCM.OB013E318161FEC4.
    1. Squara P, Cecconi M, Rhodes A, Singer M, Chiche J-D. Tracking changes in cardiac output: methodological considerations for the validation of monitoring devices. Intensive Care Med. 2009;35(10):1801–1808. doi: 10.1007/s00134-009-1570-9.
    1. Cecconi M, Rhodes A, Poloniecki J, Della Rocca G, Grounds RM. Bench-to-bedside review: the importance of the precision of the reference technique in method comparison studies–with specific reference to the measurement of cardiac output. Crit Care Lond Engl. 2009;13(1):201. doi: 10.1186/cc7129.
    1. Le Manach Y, Hofer CK, Lehot J-J, Vallet B, Goarin J-P, Tavernier B, et al. Can changes in arterial pressure be used to detect changes in cardiac output during volume expansion in the perioperative period? Anesthesiology. 2012;117(6):1165–1174. doi: 10.1097/ALN.0b013e318275561d.
    1. Cherpanath TGV, Hirsch A, Geerts BF, Lagrand WK, Leeflang MM, Schultz MJ, et al. Predicting fluid responsiveness by passive leg raising: a systematic review and meta-analysis of 23 clinical trials. Crit Care Med. 2016;44(5):981–991. doi: 10.1097/CCM.0000000000001556.
    1. Yonis H, Bitker L, Aublanc M, Perinel Ragey S, Riad Z, Lissonde F, et al. Change in cardiac output during Trendelenburg maneuver is a reliable predictor of fluid responsiveness in patients with acute respiratory distress syndrome in the prone position under protective ventilation. Crit Care. 2017;21(1):295. doi: 10.1186/s13054-017-1881-0.
    1. Mallat J, Meddour M, Durville E, Lemyze M, Pepy F, Temime J, et al. Decrease in pulse pressure and stroke volume variations after mini-fluid challenge accurately predicts fluid responsiveness. Br J Anaesth. 2015;115(3):449–456. doi: 10.1093/bja/aev222.
    1. Hapfelmeier A, Cecconi M, Saugel B. Cardiac output method comparison studies: the relation of the precision of agreement and the precision of method. J Clin Monit Comput. 2016;30(2):149–155. doi: 10.1007/s10877-015-9711-x.

Source: PubMed

3
Iratkozz fel