Increased mortality of acute respiratory distress syndrome was associated with high levels of plasma phenylalanine

Jing Xu, Tingting Pan, Xiaoling Qi, Ruoming Tan, Xiaoli Wang, Zhaojun Liu, Zheying Tao, Hongping Qu, Yi Zhang, Hong Chen, Yihui Wang, Jingjing Zhang, Jie Wang, Jialin Liu, Jing Xu, Tingting Pan, Xiaoling Qi, Ruoming Tan, Xiaoli Wang, Zhaojun Liu, Zheying Tao, Hongping Qu, Yi Zhang, Hong Chen, Yihui Wang, Jingjing Zhang, Jie Wang, Jialin Liu

Abstract

Background: There is a dearth of drug therapies available for the treatment of acute respiratory distress syndrome (ARDS). Certain metabolites play a key role in ARDS and could serve as potential targets for developing therapies against this respiratory disorder. The present study was designed to determine such "functional metabolites" in ARDS using metabolomics and in vivo experiments in a mouse model.

Methods: Metabolomic profiles of blood plasma from 42 ARDS patients and 28 healthy controls were captured using Ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) assay. Univariate and multivariate statistical analysis were performed on metabolomic profiles from blood plasma of ARDS patients and healthy controls to screen for "functional metabolites", which were determined by variable importance in projection (VIP) scores and P value. Pathway analysis of all the metabolites was performed. The mouse model of ARDS was established to investigate the role of "functional metabolites" in the lung injury and mortality caused by the respiratory disorder.

Results: The metabolomic profiles of patients with ARDS were significantly different from healthy controls, difference was also observed between metabolomic profiles of the non-survivors and the survivors among the ARDS patient pool. Levels of Phenylalanine, D-Phenylalanine and Phenylacetylglutamine were significantly increased in non-survivors compared to the survivors of ARDS. Phenylalanine metabolism was the most notably altered pathway between the non-survivors and survivors of ARDS patients. In vivo animal experiments demonstrated that high levels of Phenylalanine might be associated with the severer lung injury and increased mortality of ARDS.

Conclusion: Increased mortality of acute respiratory distress syndrome was associated with high levels of plasma Phenylalanine.

Trial registration: Chinese Clinical Trial Registry, ChiCTR1800015930. Registered 29 April 2018, http://www.chictr.org.cn/edit.aspx?pid=25609&htm=4.

Keywords: Acute respiratory distress syndrome; Metabolites; Metabolomics; Phenylacetylglutamine; Phenylalanine; Phenylalanine metabolism.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Multivariate data analysis of the metabolites. a Principal Component Analysis (PCA) scores plots (left panels) and Partial Least Square-Discriminant Analysis (PLS-DA) scores plots (right panels) of ARDS patients vs healthy controls. Shaded areas are the 95% confidence regions of each group. b PCA and PLS-DA scores plots of the survivors vs the non-survivors of ARDS. Shaded areas are the 95% confidence regions of each group. c The cross validation test for PLS-DA model of the ARDS patients vs the healthy controls. d The cross validation test for PLS-DA model of the survivors vs non-survivors of ARDS. Deep blue represents the cross-validated R2 (also known as Q2),pink represent the sum of squares captured by the model (R2), and light blue represents the prediction accuracy. Red star indicates the best component number in building the model. In PLS-DA of the ARDS patients vs the healthy controls analysis, R2 = 0.93 and Q2 = 0.86, the survivors vs the non-survivors of ARDS analysis, R2 = 0.89 and Q2 = 0.49, respectively
Fig. 2
Fig. 2
VIP score plot and Heatmap of metabolites. a Variable Importance in Projection (VIP) score plot of the metabolites that differed in ARDS patients vs healthy controls. b Variable Importance in Projection (VIP) score plot of the metabolites that differed in survivors vs the non-survivors of ARDS. c The heatmap showing abundance of the top 30 metabolites based on VIP scores of ARDS patients vs healthy controls. d The heatmap showing abundance of the top 30 metabolites based on VIP scores of the survivors vs the non-survivors of ARDS
Fig. 3
Fig. 3
Screening of differentially expressed metabolites as potential mortality predictors for ARDS. a The differentially expressed metabolites in both the comparison groups, the pink circle representing the group of ARDS vs healthy controls, and the blue circle representing the group of survivors vs non-survivors. The metabolites in the cross area were those identified in both comparison groups. b The box whisker plot of Phenylalanine in the survivors (n = 28) and the non-survivors (n = 15) of ARDS and healthy controls (n = 42). c The box whisker plot of D-Phenylalanine in the survivors (n = 28) and the non-survivors (n = 15) of ARDS and healthy controls (n = 42). d The box whisker plot of phenylacetylglutamine in the survivors (n = 28) and the non-survivors (n = 15) of ARDS and healthy controls (n = 42). e ROC curve of Phenylalanine (AUC = 0.803), D-Phenylalanine (AUC = 0.785) and phenylacetylglutamine (AUC = 0.709) in predicting the mortality of ARDS. In the combined model the area under the curve (AUC) was 0.882. The data was normalized. 1-Lino = 1-Linoleoylglycerophosphocholine; 1,2,3,4-Tera = 1,2,3,4-Tetrahydro-beta-carboline-1,3-dicarboxylic acid; 2-Amino = 2-Aminoacetophenone
Fig. 4
Fig. 4
Pathway analysis reveals the Phenylalanine pathway to be one of the most altered pathways in ARDS patients. a Pathway analysis uncovered the altered pathways in ARDS patients vs healthy controls. b Pathway analysis uncovered the altered pathways in the survivors vs non-survivors of ARDS. All matched pathways were shown according to P values from pathway enrichment analysis (y-axis) and all pathway impact values were according to pathway topology analysis (x-axis). The color and size of each circle are based on P values and pathway impact values, respectively. The deeper the red of the nod, the more significant alteration of the pathway is observed. Small P value and big pathway impact circles indicate that the pathway is greatly influenced. c The pathways that are altered between ARDS and healthy controls (pink circle) or between survivors and non-survivors (blue circle). The pathways in the cross area were identified in both groups. d Schematic diagram of metabolic pathway networks. The metabolites involved in the selected pathways (P < 0.05,impact factor > 0) altered between the survivors and the non-survivors were marked in different colors. Light blue means those metabolites are not in my data and are used as background for enrichment analysis; red (P < 0.05) and yellow (P > 0.05) means the metabolites are upregulated in the survivors deep green (P < 0.05) and light green (P > 0.05) mean that the metabolites are downregulated in survivors with different levels of significance. The metabolites in the box belong to the same pathway
Fig. 5
Fig. 5
Phenylalanine administration increased the lung injury and mortality of ARDS. a The protocol of Phenylalanine administration and ARDS model establishment b The survival rate of ARDS mice (n = 27/group) and Sham mice (n = 5/group) treated with Phenylalanine or PBS. c The levels of Phenylalanine and tyrosine in BALF of sham mice treated with Phenylalanine or PBS (n = 4–5/group). d The protein concentration in bronchoalveolar lavage fluid (BALF) (n = 3–5 /group). e The white cell counts in BALF (n = 3–5 /group). f The hematoxylin and eosin staining of lung tissue (n = 3–5 /group) Phe = Phenylalanine. Each value represents the mean ± SEM of one of the three independent experiments. Kaplan Meier Survival analysis and comparisons were performed by log-rank test

References

    1. Bellani G, Laffey JG, Pham T, Fan E, Brochard L, Esteban A, Gattinoni L, van Haren F, Larsson A, McAuley DF, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA. 2016;315:788–800. doi: 10.1001/jama.2016.0291.
    1. Wishart DS. Metabolomics for investigating physiological and pathophysiological processes. Physiol Rev. 2019;99:1819–1875. doi: 10.1152/physrev.00035.2018.
    1. Lin S, Yue X, Wu H, Han TL, Zhu J, Wang C, Lei M, Zhang M, Liu Q, Xu F. Explore potential plasma biomarkers of acute respiratory distress syndrome (ARDS) using GC-MS metabolomics analysis. Clin Biochem. 2019;66:49–56. doi: 10.1016/j.clinbiochem.2019.02.009.
    1. Viswan A, Ghosh P, Gupta D, Azim A, Sinha N. Distinct metabolic Endotype mirroring acute respiratory distress syndrome (ARDS) subphenotype and its heterogeneous biology. Sci Rep. 2019;9:2108. doi: 10.1038/s41598-019-39017-4.
    1. Evans CR, Karnovsky A, Kovach MA, Standiford TJ, Burant CF, Stringer KA. Untargeted LC-MS metabolomics of bronchoalveolar lavage fluid differentiates acute respiratory distress syndrome from health. J Proteome Res. 2014;13:640–649. doi: 10.1021/pr4007624.
    1. Rogers AJ, Contrepois K, Wu M, Zheng M, Peltz G, Ware LB, Matthay MA. Profiling of ARDS pulmonary edema fluid identifies a metabolically distinct subset. Am J Physiol Lung Cell Mol Physiol. 2017;312:L703–L709. doi: 10.1152/ajplung.00438.2016.
    1. Liu PS, Wang H, Li X, Chao T, Teav T, Christen S, Di Conza G, Cheng WC, Chou CH, Vavakova M, et al. Alpha-ketoglutarate orchestrates macrophage activation through metabolic and epigenetic reprogramming. Nat Immunol. 2017;18:985–994. doi: 10.1038/ni.3796.
    1. Murphy MP, O’Neill LAJ. Krebs cycle reimagined: the emerging roles of succinate and Itaconate as signal transducers. Cell. 2018;174:780–784. doi: 10.1016/j.cell.2018.07.030.
    1. Tojo K, Tamada N, Nagamine Y, Yazawa T, Ota S, Goto T. Enhancement of glycolysis by inhibition of oxygen-sensing prolyl hydroxylases protects alveolar epithelial cells from acute lung injury. FASEB J. 2018:fj201700888R. 10.1096/fj.201700888R.
    1. Force ADT, Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, Fan E, Camporota L, Slutsky AS. Acute respiratory distress syndrome: the Berlin definition. JAMA. 2012;307:2526–2533.
    1. Yi WJ, Han YS, Wei LL, Shi LY, Huang H, Jiang TT, Li ZB, Chen J, Hu YT, Tu HH, Li JC. l-Histidine, arachidonic acid, biliverdin, and l-cysteine-glutathione disulfide as potential biomarkers for cured pulmonary tuberculosis. Biomed Pharmacother. 2019;116:108980. doi: 10.1016/j.biopha.2019.108980.
    1. Sikalidis AK. Amino acids and immune response: a role for cysteine, glutamine, phenylalanine, tryptophan and arginine in T-cell function and cancer? Pathol Oncol Res. 2015;21:9–17. doi: 10.1007/s12253-014-9860-0.
    1. Levy HL, Sarkissian CN, Scriver CR. Phenylalanine ammonia lyase (PAL): from discovery to enzyme substitution therapy for phenylketonuria. Mol Genet Metab. 2018;124:223–229. doi: 10.1016/j.ymgme.2018.06.002.
    1. Ploder M, Neurauter G, Spittler A, Schroecksnadel K, Roth E, Fuchs D. Serum phenylalanine in patients post trauma and with sepsis correlate to neopterin concentrations. Amino Acids. 2008;35:303–307. doi: 10.1007/s00726-007-0625-x.
    1. Murr C, Grammer TB, Meinitzer A, Kleber ME, Marz W, Fuchs D. Immune activation and inflammation in patients with cardiovascular disease are associated with higher phenylalanine to tyrosine ratios: the ludwigshafen risk and cardiovascular health study. J Amino Acids. 2014;2014:783730. doi: 10.1155/2014/783730.
    1. Neurauter G, Grahmann AV, Klieber M, Zeimet A, Ledochowski M, Sperner-Unterweger B, Fuchs D. Serum phenylalanine concentrations in patients with ovarian carcinoma correlate with concentrations of immune activation markers and of isoprostane-8. Cancer Lett. 2008;272:141–147. doi: 10.1016/j.canlet.2008.07.002.
    1. Huang SS, Lin JY, Chen WS, Liu MH, Cheng CW, Cheng ML, Wang CH. Phenylalanine- and leucine-defined metabolic types identify high mortality risk in patients with severe infection. Int J Infect Dis. 2019;85:143–149. doi: 10.1016/j.ijid.2019.05.030.
    1. Neurauter G, Schrocksnadel K, Scholl-Burgi S, Sperner-Unterweger B, Schubert C, Ledochowski M, Fuchs D. Chronic immune stimulation correlates with reduced phenylalanine turnover. Curr Drug Metab. 2008;9:622–627. doi: 10.2174/138920008785821738.
    1. Strasser B, Sperner-Unterweger B, Fuchs D, Gostner JM. Mechanisms of inflammation-associated depression: immune influences on tryptophan and phenylalanine metabolisms. Curr Top Behav Neurosci. 2017;31:95–115. doi: 10.1007/7854_2016_23.
    1. Dong Y, Bai Y, Liu G, Wang Z, Cao J, Chen Y, Yang H. The immunologic and antioxidant effects of L-phenylalanine on the uterine implantation of mice embryos during early pregnancy. Histol Histopathol. 2014;29:1335–1342.
    1. Jiang M, Gong QY, Lai SS, Cheng ZX, Chen ZG, Zheng J, Peng B. Phenylalanine enhances innate immune response to clear ceftazidime-resistant Vibrio alginolyticus in Danio rerio. Fish Shellfish Immunol. 2019;84:912–919. doi: 10.1016/j.fsi.2018.10.071.
    1. Han S, Mallampalli RK. The acute respiratory distress syndrome: from mechanism to translation. J Immunol. 2015;194:855–860. doi: 10.4049/jimmunol.1402513.
    1. Poesen R, Claes K, Evenepoel P, de Loor H, Augustijns P, Kuypers D, Meijers B. Microbiota-derived Phenylacetylglutamine associates with overall mortality and cardiovascular disease in patients with CKD. J Am Soc Nephrol. 2016;27:3479–3487. doi: 10.1681/ASN.2015121302.
    1. Dixon B. The role of microvascular thrombosis in sepsis. Anaesth Intensive Care. 2004;32:619–629. doi: 10.1177/0310057X0403200502.
    1. Evans CE, Zhao YY. Impact of thrombosis on pulmonary endothelial injury and repair following sepsis. Am J Physiol Lung Cell Mol Physiol. 2017;312:L441–L451. doi: 10.1152/ajplung.00441.2016.
    1. Nagendran M, McAuley DF, Kruger PS, Papazian L, Truwit JD, Laffey JG, Thompson BT, Clarke M, Gordon AC. Statin therapy for acute respiratory distress syndrome: an individual patient data meta-analysis of randomised clinical trials. Intensive Care Med. 2017;43:663–671. doi: 10.1007/s00134-016-4649-0.
    1. Polverino E, Rosales-Mayor E, Dale GE, Dembowsky K, Torres A. The role of neutrophil Elastase inhibitors in lung diseases. Chest. 2017;152:249–262. doi: 10.1016/j.chest.2017.03.056.
    1. Aschner Y, Zemans RL, Yamashita CM, Downey GP. Matrix metalloproteinases and protein tyrosine kinases: potential novel targets in acute lung injury and ARDS. Chest. 2014;146:1081–1091. doi: 10.1378/chest.14-0397.
    1. Shaw TD, McAuley DF, O’Kane CM. Emerging drugs for treating the acute respiratory distress syndrome. Expert Opin Emerg Drugs. 2019;24:29–41. doi: 10.1080/14728214.2019.1591369.
    1. Malaviya R, Laskin JD, Laskin DL. Anti-TNFα therapy in inflammatory lung diseases. Pharmacol Ther. 2017;180:90–98. doi: 10.1016/j.pharmthera.2017.06.008.
    1. Matthay MA, Zemans RL, Zimmerman GA, Arabi YM, Beitler JR, Mercat A, Herridge M, Randolph AG, Calfee CS. Acute respiratory distress syndrome. Nat Rev Dis Primers. 2019;5:18. doi: 10.1038/s41572-019-0069-0.
    1. Zhu D, Zhang Y, Li S, Gan L, Feng H, Nie W. Enteral omega-3 fatty acid supplementation in adult patients with acute respiratory distress syndrome: a systematic review of randomized controlled trials with meta-analysis and trial sequential analysis. Intensive Care Med. 2014;40:504–512. doi: 10.1007/s00134-014-3244-5.
    1. McClave SA, Taylor BE, Martindale RG, Warren MM, Johnson DR, Braunschweig C, McCarthy MS, Davanos E, Rice TW, Cresci GA, et al. Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.) JPEN J Parenter Enteral Nutr. 2016;40:159–211. doi: 10.1177/0148607115621863.

Source: PubMed

3
Iratkozz fel