Systems Biology ARDS Research with a Focus on Metabolomics

Sayed M Metwaly, Brent W Winston, Sayed M Metwaly, Brent W Winston

Abstract

Acute respiratory distress syndrome (ARDS) is a clinical syndrome that inflicts a considerably heavy toll in terms of morbidity and mortality. While there are multitudes of conditions that can lead to ARDS, the vast majority of ARDS cases are caused by a relatively small number of diseases, especially sepsis and pneumonia. Currently, there is no clinically agreed upon reliable diagnostic test for ARDS, and the detection or diagnosis of ARDS is based on a constellation of laboratory and radiological tests in the absence of evidence of left ventricular dysfunction, as specified by the Berlin definition of ARDS. Virtually all the ARDS biomarkers to date have been proven to be of very limited clinical utility. Given the heterogeneity of ARDS due to the wide variation in etiology, clinical and molecular manifestations, there is a current scientific consensus agreement that ARDS is not just a single entity but rather a spectrum of conditions that need further study for proper classification, the identification of reliable biomarkers and the adequate institution of therapeutic targets. This scoping review aims to elucidate ARDS omics research, focusing on metabolomics and how metabolomics can boost the study of ARDS biomarkers and help to facilitate the identification of ARDS subpopulations.

Keywords: acute respiratory distress syndrome; biomarkers; metabolomics.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Exudative Diffuse Alveolar Damage (DAD) in early ARDS. Comparison between ARDS and normal lung tissue demonstrates the presence of alveolar collapse, neutrophil infiltration, areas of microscopic hemorrhage, hyaline membrane formation and alveolar edema in ARDS. Histopathology images were adapted and reproduced under Creative Commons licenses: ARDS histopathology component by Nephron (Own work) [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0) or GFDL (http://www.gnu.org/copyleft/fdl.html)], via Wikimedia Commons; and Normal lung alveoli component By Jpogi —Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=46568489.

References

    1. Blank R., Napolitano L.M. Epidemiology of ARDS and ALI. Crit. Care Clin. 2011;27:439–458. doi: 10.1016/j.ccc.2011.05.005.
    1. Rubenfeld G.D., Caldwell E., Peabody E., Weaver J., Martin D.P., Neff M., Stern E.J., Hudson L.D. Incidence and Outcomes of Acute Lung Injury. New Engl. J. Med. 2005;353:1685–1693. doi: 10.1056/NEJMoa050333.
    1. Ranieri V.M., Rubenfeld G.D., Thompson B.T., Ferguson N.D., Caldwell E., Fan E., Camporota L., Slutsky A.S. Acute Respiratory Distress Syndrome. JAMA. 2012;307:2526–2533. doi: 10.1001/jama.2012.5669.
    1. Parhar K.K.S., Zjadewicz K., Soo A., Sutton A., Zjadewicz M., Doig L., Lam C., Ferland A., Niven D.J., Fiest K.M., et al. Epidemiology, Mechanical Power, and 3-Year Outcomes in Acute Respiratory Distress Syndrome Patients Using Standardized Screening. An Observational Cohort Study. Ann. Am. Thorac. Soc. 2019;16:1263–1272. doi: 10.1513/AnnalsATS.201812-910OC.
    1. Kollef M.H., Schuster D.P. The Acute Respiratory Distress Syndrome. New Engl. J. Med. 1995;332:27–37. doi: 10.1056/NEJM199501053320106.
    1. Thille A.W., Esteban A., Fernandez-Segoviano P., Rodriguez J.-M., Aramburu J.-A., Penuelas O., Cortés-Puch I., Cardinal P., Lorente J.A., Vivar F.F. Comparison of the Berlin Definition for Acute Respiratory Distress Syndrome with Autopsy. Am. J. Respir. Crit. Care Med. 2013;187:761–767. doi: 10.1164/rccm.201211-1981OC.
    1. Levitt J.E., Vinayak A.G., Gehlbach B.K., Pohlman A., Van Cleve W., Hall J.B., Kress J.P. Diagnostic utility of B-type natriuretic peptide in critically ill patients with pulmonary edema: A prospective cohort study. Crit. Care. 2008;12:R3. doi: 10.1186/cc6764.
    1. Rana R., Vlahakis N.E., Daniels C.E., Jaffe A.S., Klee G.G., Hubmayr R.D., Gajic O. B-type natriuretic peptide in the assessment of acute lung injury and cardiogenic pulmonary edema*. Crit. Care Med. 2006;34:1941–1946. doi: 10.1097/01.CCM.0000220492.15645.47.
    1. Luyt C.-E., Combes A., Reynaud C., Hekimian G., Nieszkowska A., Tonnellier M., Aubry A., Trouillet J.-L., Bernard M., Chastre J. Usefulness of procalcitonin for the diagnosis of ventilator-associated pneumonia. Intensiv. Care Med. 2008;34:1434–1440. doi: 10.1007/s00134-008-1112-x.
    1. A Matthay M., Zemans R.L., Zimmerman G.A., Arabi Y.M., Beitler J.R., Mercat A., Herridge M., Randolph A.G., Calfee C.S. Acute respiratory distress syndrome. Nat. Rev. Dis. Prim. 2019;5:18. doi: 10.1038/s41572-019-0069-0.
    1. Rubenfeld G.D., Caldwell E., Granton J., Hudson L.D., Matthay M.A. Interobserver variability in applying a radiographic definition for ARDS. Chest. 1999;116:1347–1353. doi: 10.1378/chest.116.5.1347.
    1. Hoegl S., Burns N., Angulo M., Francis D., Osborne C.M., Mills T.W., Blackburn M.R., Eltzschig H.K., Vohwinkel C.U. Capturing the multifactorial nature of ARDS - “Two-hit” approach to model murine acute lung injury. Physiol. Rep. 2018;6:e13648. doi: 10.14814/phy2.13648.
    1. Yehya N. Lessons learned in acute respiratory distress syndrome from the animal laboratory. Ann. Transl. Med. 2019;7:503. doi: 10.21037/atm.2019.09.33.
    1. Schneemann M., Schoedon G. Species differences in macrophage NO production are important. Nat. Immunol. 2002;3:102. doi: 10.1038/ni0202-102a.
    1. Rehli M. Of mice and men: Species variations of Toll-like receptor expression. Trends Immunol. 2002;23:375–378. doi: 10.1016/S1471-4906(02)02259-7.
    1. Sone Y., Serikov V.B., Staub N.C. Intravascular macrophage depletion attenuates endotoxin lung injury in anesthetized sheep. J. Appl. Physiol. 1999;87:1354–1359. doi: 10.1152/jappl.1999.87.4.1354.
    1. Schroder K., Tschopp J. The inflammasomes. Cell. 2010;140:821–832. doi: 10.1016/j.cell.2010.01.040.
    1. Dolinay T., Kim Y.S., Howrylak J., Hunninghake G.M., An C.H., Fredenburgh L., Massaro A.F., Rogers A., Gazourian L., Nakahira K., et al. Inflammasome-regulated Cytokines Are Critical Mediators of Acute Lung Injury. Am. J. Respir. Crit. Care Med. 2012;185:1225–1234. doi: 10.1164/rccm.201201-0003OC.
    1. Jones H.D., Crother T.R., Gonzalez-Villalobos R.A., Jupelli M., Chen S., Dagvadorj J., Arditi M., Shimada K. The NLRP3 Inflammasome Is Required for the Development of Hypoxemia in LPS/Mechanical Ventilation Acute Lung Injury. Am. J. Respir. Cell Mol. Boil. 2013;50:270–280. doi: 10.1165/rcmb.2013-0087OC.
    1. Grailer J.J., Canning B.A., Kalbitz M., Haggadone M.D., Dhond R.M., Andjelkovic A.V., Zetoune F.S., Ward P.A. Critical role for the NLRP3 inflammasome during acute lung injury. J. Immunol. 2014;192:5974–5983. doi: 10.4049/jimmunol.1400368.
    1. Cohen T.S., Prince A.S. Activation of inflammasome signaling mediates pathology of acute P. aeruginosa pneumonia. J. Clin. Investig. 2013;123:1630–1637. doi: 10.1172/JCI66142.
    1. Jabaudon M., Blondonnet R., Roszyk L., Bouvier D., Audard J., Clairefond G., Fournier M., Marceau G., Dechelotte P., Pereira B., et al. Soluble RAGE Predicts Impaired Alveolar Fluid Clearance in Acute Respiratory Distress Syndrome. Am. J. Respir. Crit. Care Med. 2015;192:191–199. doi: 10.1164/rccm.201501-0020OC.
    1. Blondonnet R., Audard J., Belville C., Clairefond G., Lutz J., Bouvier D., Roszyk L., Gross C., Lavergne M., Fournet M., et al. RAGE inhibition reduces acute lung injury in mice. Sci. Rep. 2017;7:7208. doi: 10.1038/s41598-017-07638-2.
    1. Rogers A.J. Genome-Wide Association Study in Acute Respiratory Distress Syndrome. Finding the Needle in the Haystack to Advance Our Understanding of Acute Respiratory Distress Syndrome. Am. J. Respir. Crit. Care Med. 2018;197:1373–1374. doi: 10.1164/rccm.201801-0098ED.
    1. Erickson S.E., Shlipak M.G., Martin G.S., Wheeler A.P., Ancukiewicz M., Matthay M.A., Eisner M.D. National Institutes of Health National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome Network Racial and ethnic disparities in mortality from acute lung injury*. Crit. Care Med. 2009;37:1–6. doi: 10.1097/CCM.0b013e31819292ea.
    1. Ryb G.E., Cooper C. Race/ethnicity and acute respiratory distress syndrome: A National Trauma Data Bank study. J. Natl. Med Assoc. 2010;102:865–869. doi: 10.1016/S0027-9684(15)30700-8.
    1. Jones T.K., Feng R., Kerchberger V.E., Reilly J.P., Anderson B.J., Shashaty M.G.S., Wang F., Dunn T.G., Riley T.R., Abbott J., et al. Plasma sRAGE Acts as a Genetically Regulated Causal Intermediate in Sepsis-associated Acute Respiratory Distress Syndrome. Am. J. Respir. Crit. Care Med. 2020;201:47–56. doi: 10.1164/rccm.201810-2033OC.
    1. Agrawal A., Matthay M.A., Kangelaris K.N., Stein J., Chu J.C., Imp B.M., Cortez A., Abbott J., Liu K.D., Calfee C.S. Plasma Angiopoietin-2 Predicts the Onset of Acute Lung Injury in Critically Ill Patients. Am. J. Respir. Crit. Care Med. 2013;187:736–742. doi: 10.1164/rccm.201208-1460OC.
    1. Bos L.D., Schouten L.R., A Van Vught L., A Wiewel M., Ong D.S.Y., Cremer O., Artigas A., Martin-Loeches I., Hoogendijk A.J., Van Der Poll T., et al. Identification and validation of distinct biological phenotypes in patients with acute respiratory distress syndrome by cluster analysis. Thorax. 2017;72:876–883. doi: 10.1136/thoraxjnl-2016-209719.
    1. Calfee C.S., Delucchi K., Parsons P.E., Thompson B.T., Ware L.B., Matthay M.A., Network N.A. Subphenotypes in acute respiratory distress syndrome: Latent class analysis of data from two randomised controlled trials. Lancet Respir. Med. 2014;2:611–620. doi: 10.1016/S2213-2600(14)70097-9.
    1. Calfee C.S., Network A.T.N.A.R.D.S.C.T., Eisner M.D., Parsons P.E., Thompson B.T., Conner E.R., Matthay M.A., Ware L.B. Soluble intercellular adhesion molecule-1 and clinical outcomes in patients with acute lung injury. Intensiv. Care Med. 2008;35:248–257. doi: 10.1007/s00134-008-1235-0.
    1. Calfee C.S., Gallagher D., Abbott J., Thompson B.T., Matthay M.A., Network N.A. Plasma angiopoietin-2 in clinical acute lung injury. Crit. Care Med. 2012;40:1731–1737. doi: 10.1097/CCM.0b013e3182451c87.
    1. Calfee C.S., Ware L.B., Eisner M.D., E Parsons P., Thompson B.T., Wickersham N., A Matthay M., Network N.A. Plasma receptor for advanced glycation end products and clinical outcomes in acute lung injury. Thorax. 2008;63:1083–1089. doi: 10.1136/thx.2008.095588.
    1. Famous K.R., Delucchi K., Ware L.B., Kangelaris K.N., Liu K.D., Thompson B.T., Calfee C.S. Acute Respiratory Distress Syndrome Subphenotypes Respond Differently to Randomized Fluid Management Strategy. Am. J. Respir. Crit. Care Med. 2017;195:331–338. doi: 10.1164/rccm.201603-0645OC.
    1. Bos L.D., Scicluna B.P., Ong D.S.Y., Cremer O., Van Der Poll T., Schultz M.J. On behalf of the MARS consortium Understanding Heterogeneity in Biologic Phenotypes of Acute Respiratory Distress Syndrome by Leukocyte Expression Profiles. Am. J. Respir. Crit. Care Med. 2019;200:42–50. doi: 10.1164/rccm.201809-1808OC.
    1. Wilson J.G., Calfee C.S. ARDS Subphenotypes: Understanding a Heterogeneous Syndrome. Crit. Care. 2020;24:1–8. doi: 10.1186/s13054-020-2778-x.
    1. Fermier B., Blasco H., Godat E., Bocca C., Moënne-Loccoz J., Emond P., Andres C.R., Laffon M., Ferrandière M. Specific Metabolome Profile of Exhaled Breath Condensate in Patients with Shock and Respiratory Failure: A Pilot Study. Metab. 2016;6:26. doi: 10.3390/metabo6030026.
    1. Rogers A.J., Matthay M.A. Applying metabolomics to uncover novel biology in ARDS. Am. J. Physiol. Cell. Mol. Physiol. 2014;306:L957–L961. doi: 10.1152/ajplung.00376.2013.
    1. Banoei M.M., Donnelly S.J., Mickiewicz B., Weljie A., Vogel H.J., Winston B.W. Metabolomics in critical care medicine: A new approach to biomarker discovery. Clin. Investig. Med. 2014;37:E363–E376. doi: 10.25011/cim.v37i6.22241.
    1. Metwaly S., Côté A., Donnelly S.J., Banoei M.M., Mourad A.I., Winston B.W. Evolution of ARDS biomarkers: Will metabolomics be the answer? Am. J. Physiol. Cell. Mol. Physiol. 2018;315:L526–L534. doi: 10.1152/ajplung.00074.2018.
    1. Bowler R.P., Wendt C.H., Fessler M.B., Foster M.W., Kelly R., Lasky-Su J., Rogers A.J., Stringer K.A., Winston B.W. New Strategies and Challenges in Lung Proteomics and Metabolomics. An Official American Thoracic Society Workshop Report. Ann. Am. Thorac. Soc. 2017;14:1721–1743. doi: 10.1513/AnnalsATS.201710-770WS.
    1. Schubert J., Müller W.P.E., Benzing A., Geiger K. Application of a new method for analysis of exhaled gas in critically ill patients. Intensiv. Care Med. 1998;24:415–421. doi: 10.1007/s001340050589.
    1. King J., Koc H., Unterkofler K., Mochalski P., Kupferthaler A., Teschl G., Teschl S., Hinterhuber H., Amann A. Physiological modeling of isoprene dynamics in exhaled breath. J. Theor. Boil. 2010;267:626–637. doi: 10.1016/j.jtbi.2010.09.028.
    1. King J., Mochalski P., Unterkofler K., Teschl G., Klieber M., Stein M., Amann A., Baumann M. Breath isoprene: Muscle dystrophy patients support the concept of a pool of isoprene in the periphery of the human body. Biochem. Biophys. Res. Commun. 2012;423:526–530. doi: 10.1016/j.bbrc.2012.05.159.
    1. Bos L.D., Weda H., Wang Y., Knobel H., Nijsen T.M., Vink T.J., Zwinderman A.H., Sterk P.J., Schultz M.J. Exhaled breath metabolomics as a noninvasive diagnostic tool for acute respiratory distress syndrome. Eur. Respir. J. 2014;44:188–197. doi: 10.1183/09031936.00005614.
    1. Bos L.D., Schultz M.J., Sterk P.J. Exhaled breath profiling for diagnosing acute respiratory distress syndrome. BMC Pulm. Med. 2014;14:72. doi: 10.1186/1471-2466-14-72.
    1. Stringer K.A., McKay R., Karnovsky A., Quémerais B., Lacy P. Metabolomics and Its Application to Acute Lung Diseases. Front. Immunol. 2016;7:263. doi: 10.3389/fimmu.2016.00044.
    1. Stringer K.A., Serkova N.J., Karnovsky A., Guire K., Paine R., Standiford T.J. Metabolic consequences of sepsis-induced acute lung injury revealed by plasma 1H-nuclear magnetic resonance quantitative metabolomics and computational analysis. Am. J. Physiol. Cell. Mol. Physiol. 2011;300:L4–L11. doi: 10.1152/ajplung.00231.2010.
    1. Biswas S.K., Rahman I. Environmental toxicity, redox signaling and lung inflammation: The role of glutathione. Mol. Asp. Med. 2008;30:60–76. doi: 10.1016/j.mam.2008.07.001.
    1. Brealey D., Brand M., Hargreaves I., Heales S., Land J., Smoleński R., A Davies N., Cooper C., Singer M. Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet. 2002;360:219–223. doi: 10.1016/S0140-6736(02)09459-X.
    1. Lucas R., Verin A.D., Black S.M., Catravas J.D. Regulators of endothelial and epithelial barrier integrity and function in acute lung injury. Biochem. Pharmacol. 2009;77:1763–1772. doi: 10.1016/j.bcp.2009.01.014.
    1. Stringer K.A., Jones A.E., Puskarich M.A., Karnovsky A., Serkova N.J. 1H-Nuclear Magnetic Resonance (NMR)-Detected Lipids Associated with Apoptosis Differentiate Early Acute Respiratory Distress Syndrome (ARDS) from Sepsis. Am. J. Respir. Crit. Care Med. 2014;189:A5000.
    1. Owens R.L., Stigler W.S., Hess D.R. Do Newer Monitors of Exhaled Gases, Mechanics, and Esophageal Pressure Add Value? Clin. Chest Med. 2008;29:297–312. doi: 10.1016/j.ccm.2008.02.001.
    1. Izquierdo-García J.L., Naz S., Nin N., Rojas Y., Erazo M., Martínez-Caro L., Garcia A., De Paula M., Fernandez-Segoviano P., Casals C., et al. A Metabolomic Approach to the Pathogenesis of Ventilator-induced Lung Injury. Anesthesiol. 2014;120:694–702. doi: 10.1097/ALN.0000000000000074.
    1. Rai R., Azim A., Sinha N., Sahoo J.N., Singh C., Ahmed A., Saigal S., Baronia A.K., Gupta D., Gurjar M., et al. Metabolic profiling in human lung injuries by high-resolution nuclear magnetic resonance spectroscopy of bronchoalveolar lavage fluid (BALF) Metabolomics. 2012;9:667–676. doi: 10.1007/s11306-012-0472-y.
    1. Evans C., Karnovsky A., Kovach M.A., Standiford T.J., Burant C., Stringer K.A. Untargeted LC–MS Metabolomics of Bronchoalveolar Lavage Fluid Differentiates Acute Respiratory Distress Syndrome from Health. J. Proteome Res. 2013;13:640–649. doi: 10.1021/pr4007624.
    1. Singh C., Rai R., Azim A., Sinha N., Ahmed A., Singh K., Kayastha A.M., Baronia A.K., Gurjar M., Poddar B., et al. Metabolic profiling of human lung injury by 1H high-resolution nuclear magnetic resonance spectroscopy of blood serum. Metabolomics. 2014;11:166–174. doi: 10.1007/s11306-014-0688-0.
    1. Rogers A.J., Contrepois K., Wu M., Zheng M., Peltz G., Ware L.B., Matthay M.A. Profiling of ARDS pulmonary edema fluid identifies a metabolically distinct subset. Am. J. Physiol. Cell. Mol. Physiol. 2017;312:L703–L709. doi: 10.1152/ajplung.00438.2016.
    1. Izquierdo-García J.L., Nin N., Jimenez-Clemente J., Horcajada J.P., Arenas-Miras M.D.M., Gea J., Esteban A., Ruíz-Cabello J., Lorente J.A. Metabolomic Profile of ARDS by Nuclear Magnetic Resonance Spectroscopy in Patients with H1N1 Influenza Virus Pneumonia. Shock. 2018;50:504–510. doi: 10.1097/SHK.0000000000001099.
    1. Izquierdo-García J.L., Nin N., Cardinal-Fernandez P., Ruiz-Cabello J., Lorente J. Ángel Metabolomic profile of acute respiratory distress syndrome of different etiologies. Intensiv. Care Med. 2019;45:1318–1320. doi: 10.1007/s00134-019-05634-w.
    1. Lin S., Yue X., Wu H., Han T.-L., Zhu J., Wang C., Lei M., Zhang M., Liu Q., Xu F. Explore potential plasma biomarkers of acute respiratory distress syndrome (ARDS) using GC-MS metabolomics analysis. Clin. Biochem. 2019;66:49–56. doi: 10.1016/j.clinbiochem.2019.02.009.
    1. Barnett N., Ware L.B. Biomarkers in Acute Lung Injury—Marking Forward Progress. Crit. Care Clin. 2011;27:661–683. doi: 10.1016/j.ccc.2011.04.001.
    1. Viswan A., Singh C., Rai R., Azim A., Sinha N., Baronia A.K. Metabolomics based predictive biomarker model of ARDS: A systemic measure of clinical hypoxemia. PLOS ONE. 2017;12:e0187545. doi: 10.1371/journal.pone.0187545.
    1. Viswan A., Ghosh P., Gupta D., Azim A., Sinha N. Distinct Metabolic Endotype Mirroring Acute Respiratory Distress Syndrome (ARDS) Subphenotype and its Heterogeneous Biology. Sci. Rep. 2019;9:2108. doi: 10.1038/s41598-019-39017-4.
    1. Thille A.W., Richard J.-C.M., Maggiore S.M., Ranieri V.M., Brochard L. Alveolar recruitment in pulmonary and extrapulmonary acute respiratory distress syndrome: Comparison using pressure-volume curve or static compliance. Anesthesiology. 2007;106:212–217. doi: 10.1097/00000542-200702000-00007.

Source: PubMed

3
Iratkozz fel