Hypocholesterolemic and Prebiotic Effects of a Whole-Grain Oat-Based Granola Breakfast Cereal in a Cardio-Metabolic "At Risk" Population

Michael L Connolly, Xenofon Tzounis, Kieran M Tuohy, Julie A Lovegrove, Michael L Connolly, Xenofon Tzounis, Kieran M Tuohy, Julie A Lovegrove

Abstract

Meta-analyses of randomized controlled trials (RTC) have confirmed the hypocholesterolaemic effect of oats and oat based fibers. However, the mechanisms by which oats or oat fractions lower cholesterol is not totally clear. Recognizing the important role of the gut microbiome in metabolism and metabolic disease risk, we examined the impact of whole grain oat Granola (WGO) on the human gut microbiota and cardio-metabolic risk factors using a randomized crossover dietary intervention in at risk individuals (ClinicalTrials.gov Identifier: NCT01925365). We randomized 32 individuals at risk of developing cardio-metabolic disease by virtue of mild hypercholesterolaemia or glucose intolerance, into two groups consuming either 45 g of WGO or non-whole grain (NWG) breakfast cereals daily for two 6-week intervention periods separated by a 4-week wash out period in a randomized, controlled, crossover, double-blinded design. Confirming the cholesterol lowering effect of WGO, we observed a significant time by treatment interaction, for total cholesterol (TC) (P = 0.0001) and LDL-cholesterol (LDL-C) (P = 0.02) compared to NWG. A significant time by treatment interaction was also observed for the relative abundance of fecal bifidobacteria (P = 0.0001), lactobacilli (P = 0.001) and total bacterial count (P = 0.008), which were all elevated after consumption of WGO. Daily consumption of WGO resulted in a prebiotic effect on the human gut microbiota composition and significant reductions in TC and LDL-C concentrations. Prebiotic modulation of the human gut microbiota may thus constitute a previously unrecognized mechanism contributing to the hypocholesterolaemic effects of whole grain oat Granola.

Keywords: Bifidobacterium; cardiovascular risk; cholesterol; prebiotic; whole-grain oat granola.

Figures

Figure 1
Figure 1
Mean (± SEM) fecal bacteria changes over the trial period for both cereal treatments (n = 30). (A) Bifidobacteria, (B) Lactobacilli, and (C) Total Population in stool samples as determined by fluorescence in situ hybridization. * Significantly different from baseline (P <0.05, Tukey's post-test).
Figure 2
Figure 2
TC and LDL-C concentrations in fasted blood plasma over the trial period for both cereal treatments (n = 30). (A) TC and (B) LDL-C. * Significantly different from baseline (P <0.05, Tukey's post-test).

References

    1. Andersson K. E., Axling U., Xu J., Swärd K., Ahrné S., Molin G., et al. . (2013). Diverse effects of oats on cholesterol metabolism in C57BL/6 mice correlate with expression of hepatic bile acid-producing enzymes. Eur. J. Nutr. 52, 1755–1769. 10.1007/s00394-012-0479-1
    1. Begley M., Hill C., Gahan C. G. (2006). Bile salt hydrolase activity in probiotics. Appl. Environ. Microbiol. 72, 1729–1738. 10.1128/AEM.72.3.1729-1738.2006
    1. Beylot M. (2005). Effects of inulin-type fructans on lipid metabolism in man and in animal models. Br. J. Nutr. 93(Suppl. 1), S163–S168. 10.1079/BJN20041339
    1. Borneo R., León A. E. (2012). Whole grain cereals: functional components and health benefits. Food Funct. 3, 110–119. 10.1039/C1FO10165J
    1. Borthakur A., Priyamvada S., Kumar A., Natarajan A. A., Gill R. K., Alrefai W. A., et al. . (2012). A novel nutrient sensing mechanism underlies substrate-induced regulation of monocarboxylate transporter-1. Am. J. Physiol. Gastrointest. Liver Physiol. 303, 1126–1133. 10.1152/ajpgi.00308.2012
    1. Carvalho-Wells A. L., Helmolz K., Nodet C., Molzer C., Leonard C., McKevith B., et al. . (2010). Determination of the in vivo prebiotic potential of a maize-based whole grain breakfast cereal: a human feeding study. Br. J. Nutr. 104, 1353–1356. 10.1017/S0007114510002084
    1. Charlton K. E., Tapsell L. C., Batterham M. J., O'Shea J., Thorne R., Beck E., et al. . (2012). Effect of 6 weeks' consumption of β-glucan-rich oat products on cholesterol levels in mildly hypercholesterolaemic overweight adults. Br. J. Nutr. 107, 1037–1047. 10.1017/S0007114511003850
    1. Chatenoud L., Tavani A., La Vecchia C., Jacobs D. R., Negri E., Levi F., et al. . (1998). Whole grain food intake and cancer risk. Int. J. Cancer 77, 24–28.
    1. Connolly M. L., Lovegrove J. A., Tuohy K. M. (2010). In vitro evaluation of the microbiota modulation abilities of different sized whole oat grain flakes. Anaerobe 16, 483–488. 10.1016/j.anaerobe.2010.07.001
    1. Connolly M. L., Tuohy K. M., Lovegrove J. A. (2012). Wholegrain oat-based cereals have prebiotic potential and low glycaemic index. Br. J. Nutr. 108, 2198–2206. 10.1017/S0007114512000281
    1. Costabile A., Klinder A., Fava F., Napolitano A., Fogliano V., Leonard C., et al. (2008) Whole-grain wheat breakfast cereal has a prebiotic effect on the human gut microbiota: a double-blind, placebo-controlled, crossover study. Br. J. Nutr. 99, 110–120. 10.1017/S0007114507793923.
    1. Daims H., Stoecker K., Wagner M. (2005). Fluorescence in situ hybridization for the detection of prokaryotes in Molecular Microbial Ecology, eds Osborn M., Smith C. (New York, NY: Taylor & Francis; ), 192–201.
    1. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). (2010). Scientific Opinion on the substantiation of a health claim related to oat beta glucan and lowering blood cholesterol and reduced risk of (coronary) heart disease pursuant to Article 14 of Regulation (EC) No 1924/2006. EFSA J. 8:1885 10.2903/j.efsa.2010.1885
    1. Ejtahed H. S., Mohtadi-Nia J., Homayouni-Rad A., Niafar M., Asghari-Jafarabadi M., Mofid V., et al. . (2011). Effect of probiotic yogurt containing Lactobacillus acidophilus and Bifidobacterium lactis on lipid profile in individuals with type 2 diabetes mellitus. J. Dairy Sci. 94, 3288–3294. 10.3168/jds.2010-4128
    1. Franks A. H., Harmsen H. J., Raangs G. C., Jansen G. J., Schut F., Welling G. W. (1998). Variations of bacterial populations in human feces measured by fluorescent in situ hybridization with group-specific 16S rRNA-targeted oligonucleotide probes. Appl. Environ. Microbiol. 64, 3336–3345.
    1. Gunness P., Gidley M. J. (2010). Mechanisms underlying the cholesterol-lowering properties of soluble dietary fiber polysaccharides. Food Funct. 1, 149–155. 10.1039/c0fo00080a
    1. Harmsen H. J., Wildeboer-Veloo A. C., Grijpstra J., Knol J., Degener J. E., Welling G. W. (2000). Development of 16S rRNA-based probes for the Coriobacterium group and the Atopobium cluster and their application for enumeration of Coriobacteriaceae in human feces from volunteers of different age groups. Appl. Environ. Microbiol. 66, 4523–4527. 10.1128/AEM.66.10.4523-4527.2000
    1. He M., van Dam R. M., Rimm E., Hu F. B., Qi L. (2010). Whole-grain, cereal fiber, bran, and germ intake and the risks of all-cause and cardiovascular disease-specific mortality among women with type 2 diabetes mellitus. Circulation 121, 2162–2168. 10.1161/CIRCULATIONAHA.109.907360
    1. Hughes S. A., Shewry P. R., Gibson G. R., McCleary B. V., Rastall R. A. (2008). In vitro fermentation of oat and barley derived beta-glucans by human fecal microbiota. FEMS Microbiol. Ecol. 64, 482–493. 10.1111/j.1574-6941.2008.00478.x
    1. Jacobs D. R., Meyer K. A., Kushi L. H., Folsom A. R. (1999). Is whole grain intake associated with reduced total and cause-specific death rates in older women? The Iowa Women's Health Study. Am. J. Public Health. 89, 322–329. 10.2105/AJPH.89.3.322
    1. Jones M. L., Martoni C. J., Parent M., Prakash S. (2012a). Cholesterol-lowering efficacy of a microencapsulated bile salt hydrolase-active Lactobacillus reuteri NCIMB 30242 yoghurt formulation in hypercholesterolaemic adults. Br. J. Nutr. 107, 1505–1513. 10.1017/S0007114511004703
    1. Jones M. L., Martoni C. J., Prakash S. (2012b). Cholesterol lowering and inhibition of sterol absorption by Lactobacillus reuteri NCIMB 30242: a randomized controlled trial. Eur. J. Clin. Nutr. 66, 1234–1241. 10.1038/ejcn.2012.126
    1. Kim G. B., Yi S. H., Lee B. H. (2004). Purification and characterization of three different types of bile salt hydrolases from Bifidobacterium strains. J. Dairy Sci. 87, 258–266. 10.3168/jds.S0022-0302(04)73164-1
    1. Kim H. J., White P. J. (2009). In vitro fermentation of oat flours from typical and high beta-glucan oat lines. J. Agric. Food Chem. 57, 7529–7536. 10.1021/jf900788c
    1. Langendijk P. S., Schut F., Jansen G. J., Raangs G. C., Kamphuis G. R., Wilkinson M. H., et al. . (1995). Quantitative fluorescence in situ hybridization of Bifidobacterium spp. with genus-specific 16S rRNA-targeted probes and its application in fecal samples. Appl. Environ. Microbiol. 61, 3069–3075.
    1. Levrat M. A., Favier M. L., Moundras C., Rémésy C., Demigné C., Morand C. (1994). Role of dietary propionic acid and bile acid excretion in the hypocholesterolemic effects of oligosaccharides in rats. J. Nutr. 124, 531–538.
    1. Manz W., Amann R., Ludwig W., Vancanneyt M., Schleifer K. H. (1996). Application of a suite of 16S rRNA-specific oligonucleotide probes designed to investigate bacteria of the phylum cytophaga-flavobacter-bacteroides in the natural environment. Microbiology 142, 1097–1106. 10.1099/13500872-142-5-1097
    1. Mellen P. B., Walsh T. F., Herrington D. M. (2008). Whole grain intake and cardiovascular disease: a meta-analysis. Nutr. Metab. Cardiovasc. Dis. 18, 283–290. 10.1016/j.numecd.2006.12.008
    1. Mensink R. P., Zock P. L., Kester A. D., Katan M. B. (2003). Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: a meta-analysis of 60 controlled trials. Am. J. Clin. Nutr. 77, 1146–1155.
    1. Montonen J., Knekt P., Järvinen R., Aromaa A., Reunanen A. (2003). Whole-grain and fiber intake and the incidence of type 2 diabetes. Am. J. Clin. Nutr. 77, 622–629.
    1. Nilsson U., Johansson M., Nilsson A., Björck I., Nyman M. (2008). Dietary supplementation with beta-glucan enriched oat bran increases fecal concentration of carboxylic acids in healthy subjects. Eur. J. Clin. Nutr. 62, 978–984. 10.1038/sj.ejcn.1602816
    1. Nordlund E., Aura A. M., Mattila I., Kössö T., Rouau X., Poutanen K. (2012). Formation of phenolic microbial metabolites and short-chain fatty acids from rye, wheat, and oat bran and their fractions in the metabolical in vitro colon model. J. Agric. Food Chem. 60, 8134–8145. 10.1021/jf3008037
    1. Ooi L. G., Ahmad R., Yuen K. H., Liong M. T. (2010). Lactobacillus gasseri [corrected] CHO-220 and inulin reduced plasma total cholesterol and low-density lipoprotein cholesterol via alteration of lipid transporters. J. Dairy Sci. 93, 5048–5058. 10.3168/jds.2010-3311
    1. Park O. J., Kang N. E., Chang M. J., Kim W. K. (2004). Resistant starch supplementation influences blood lipid concentrations and glucose control in overweight subjects. J. Nutr. Sci. Vitaminol. 50, 93–99. 10.3177/jnsv.50.93
    1. Queenan K. M., Stewart M. L., Smith K. N., Thomas W., Fulcher R. G., Slavin J. L. (2007). Concentrated oat beta-glucan, a fermentable fiber, lowers serum cholesterol in hypercholesterolemic adults in a randomized controlled trial. Nutr. J. 6, 6–6. 10.1186/1475-2891-6-6
    1. Ripsin C. M., Keenan J. M., Jacobs D. R., Elmer P. J., Welch R. R., Van Horn L., et al. . (1992). Oat products and lipid lowering. A meta-analysis. JAMA 267, 3317–3325. 10.1001/jama.1992.03480240079039
    1. Ryan D., Kendall M., Robards K. (2007). Bioactivity of oats as it relates to cardiovascular disease. Nutr. Res. Rev. 20, 147–162. 10.1017/S0954422407782884
    1. Rycroft C. E., Jones M. R., Gibson G. R., Rastall R. A. (2001). A comparative in vitro evaluation of the fermentation properties of prebiotic oligosaccharides. J. Appl. Microbiol. 91, 878–887. 10.1046/j.1365-2672.2001.01446.x
    1. Shapiro D. J., Rodwell V. W. (1971). Regulation of hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase and cholesterol synthesis. J. Biol. Chem. 246, 3210–3216.
    1. Sheu W. H.-H., Lee I. T., Chen W., Chan Y.-C. (2008). Effects of xylooligosaccharides in type 2 diabetes mellitus. J. Nutr. Sci. Vitaminol. 54, 396–401. 10.3177/jnsv.54.396
    1. Tanaka H., Doesburg K., Iwasaki T., Mierau I. (1999). Screening of lactic acid bacteria for bile salt hydrolase activity. J. Dairy Sci. 82, 2530–2535. 10.3168/jds.S0022-0302(99)75506-2
    1. Tiwari U., Cummins E. (2011). Meta-analysis of the effect of β-glucanăintake on blood cholesterol and glucose levels. Nutrition 27, 1008–1016. 10.1016/j.nut.2010.11.006
    1. Turunen K., Tsouvelakidou E., Nomikos T., Mountzouris K. C., Karamanolis D., Triantafillidis J., et al. . (2011). Impact of beta-glucan on the fecal microbiota of polypectomized patients: a pilot study. Anaerobe 17, 403–406. 10.1016/j.anaerobe.2011.03.025
    1. Vulevic J., Juric A., Tzortzis G., Gibson G. R. (2013). A mixture of trans-galactooligosaccharides reduces markers of metabolic syndrome and modulates the fecal microbiota and immune function of overweight adults. J. Nutr. 143, 324–331. 10.3945/jn.112.166132
    1. Wolever T. M., Gibbs A. L., Brand-Miller J., Duncan A. M., Hart V., Lamarche B., et al. . (2011). Bioactive oat β-glucan reduces LDL cholesterol in Caucasians and non-Caucasians. Nutr. J. 10,130. 10.1186/1475-2891-10-130
    1. Ye E. Q., Chacko S. A., Chou E. L., Kugizaki M., Liu S. (2012). Greater whole-grain intake is associated with lower risk of type 2 diabetes, cardiovascular disease, and weight gain. J. Nutr. 142, 1304–1313. 10.3945/jn.111.155325
    1. Zhang J., Li L., Song P., Wang C., Man Q., Meng L., et al. . (2012). Randomized controlled trial of oatmeal consumption versus noodle consumption on blood lipids of urban Chinese adults with hypercholesterolemia. Nutr. J. 11:54. 10.1186/1475-2891-11-54

Source: PubMed

3
Iratkozz fel