Space GlucoseControl system for blood glucose control in intensive care patients--a European multicentre observational study

Jan Blaha, Barbara Barteczko-Grajek, Pawel Berezowicz, Jiri Charvat, Jiri Chvojka, Teodoro Grau, Jonathan Holmgren, Ulrich Jaschinski, Petr Kopecky, Jan Manak, Mette Moehl, Jonathan Paddle, Marcello Pasculli, Johan Petersson, Sirak Petros, Danilo Radrizzani, Vinodkumar Singh, Joel Starkopf, Jan Blaha, Barbara Barteczko-Grajek, Pawel Berezowicz, Jiri Charvat, Jiri Chvojka, Teodoro Grau, Jonathan Holmgren, Ulrich Jaschinski, Petr Kopecky, Jan Manak, Mette Moehl, Jonathan Paddle, Marcello Pasculli, Johan Petersson, Sirak Petros, Danilo Radrizzani, Vinodkumar Singh, Joel Starkopf

Abstract

Background: Glycaemia control (GC) remains an important therapeutic goal in critically ill patients. The enhanced Model Predictive Control (eMPC) algorithm, which models the behaviour of blood glucose (BG) and insulin sensitivity in individual ICU patients with variable blood samples, is an effective, clinically proven computer based protocol successfully tested at multiple institutions on medical and surgical patients with different nutritional protocols. eMPC has been integrated into the B.Braun Space GlucoseControl system (SGC), which allows direct data communication between pumps and microprocessor. The present study was undertaken to assess the clinical performance and safety of the SGC for glycaemia control in critically ill patients under routine conditions in different ICU settings and with various nutritional protocols.

Methods: The study endpoints were the percentage of time the BG was within the target range 4.4 - 8.3 mmol.l(-1), the frequency of hypoglycaemic episodes, adherence to the advice of the SGC and BG measurement intervals. BG was monitored, and insulin was given as a continuous infusion according to the advice of the SGC. Nutritional management (enteral, parenteral or both) was carried out at the discretion of each centre.

Results: 17 centres from 9 European countries included a total of 508 patients, the median study time was 2.9 (1.9-6.1) days. The median (IQR) time-in-target was 83.0 (68.7-93.1) % of time with the mean proposed measurement interval 2.0 ± 0.5 hours. 99.6% of the SGC advices on insulin infusion rate were accepted by the user. Only 4 episodes (0.01% of all BG measurements) of severe hypoglycaemia <2.2 mmol.l(-1) in 4 patients occurred (0.8%; 95% CI 0.02-1.6%).

Conclusion: Under routine conditions and under different nutritional protocols the Space GlucoseControl system with integrated eMPC algorithm has exhibited its suitability for glycaemia control in critically ill patients.

Trial registration: ClinicalTrials.gov NCT01523665.

Figures

Fig. 1
Fig. 1
Correlation between entry blood glucose level and time to reach the target range. (Pearson Correlation)
Fig. 2
Fig. 2
Time in target range. Time in each blood glucose range (mmol/l) for the entire study period (black) and from the first time in target range (white). Data are presented as median (IQR)

References

    1. Kanji S, Singh A, Tierney M, Meggison H, McIntyre L, Hebert PC. Standardization of intravenous insulin therapy improves the efficiency and safety of blood glucose control in critically ill adults. Intensive care medicine. 2004;30(5):804–810. doi: 10.1007/s00134-004-2252-2.
    1. Meijering S, Corstjens AM, Tulleken JE, Meertens JH, Zijlstra JG, Ligtenberg JJ. Towards a feasible algorithm for tight glycaemic control in critically ill patients: a systematic review of the literature. Crit Care. 2006;10(1):R19. doi: 10.1186/cc3981.
    1. Hoekstra M, Vogelzang M, Verbitskiy E, Nijsten MW. Health technology assessment review: Computerized glucose regulation in the intensive care unit--how to create artificial control. Crit Care. 2009;13(5):223. doi: 10.1186/cc8023.
    1. Bouw JW, Campbell N, Hull MA, Juneja R, Guzman O, Overholser BR. A retrospective cohort study of a nurse-driven computerized insulin infusion program versus a paper-based protocol in critically ill patients. Diabetes technology & therapeutics. 2012;14(2):125–130. doi: 10.1089/dia.2011.0130.
    1. Dortch MJ, Mowery NT, Ozdas A, Dossett L, Cao H, Collier B, et al. A computerized insulin infusion titration protocol improves glucose control with less hypoglycemia compared to a manual titration protocol in a trauma intensive care unit. JPEN Journal of parenteral and enteral nutrition. 2008;32(1):18–27. doi: 10.1177/014860710803200118.
    1. Juneja R, Roudebush C, Kumar N, Macy A, Golas A, Wall D, et al. Utilization of a computerized intravenous insulin infusion program to control blood glucose in the intensive care unit. Diabetes technology & therapeutics. 2007;9(3):232–240. doi: 10.1089/dia.2006.0015.
    1. Boord JB, Sharifi M, Greevy RA, Griffin MR, Lee VK, Webb TA, et al. Computer-based insulin infusion protocol improves glycemia control over manual protocol. Journal of the American Medical Informatics Association: JAMIA. 2007;14(3):278–287. doi: 10.1197/jamia.M2292.
    1. Jacobi J, Bircher N, Krinsley J, Agus M, Braithwaite SS, Deutschman C, et al. Guidelines for the use of an insulin infusion for the management of hyperglycemia in critically ill patients. Critical care medicine. 2012;40(12):3251–3276. doi: 10.1097/CCM.0b013e3182653269.
    1. Eslami S, Abu-Hanna A, de Jonge E, de Keizer NF. Tight glycemic control and computerized decision-support systems: a systematic review. Intensive care medicine. 2009;35(9):1505–1517. doi: 10.1007/s00134-009-1542-0.
    1. Blaha J, Kopecky P, Matias M, Hovorka R, Kunstyr J, Kotulak T, et al. Comparison of three protocols for tight glycemic control in cardiac surgery patients. Diabetes care. 2009;32(5):757–761. doi: 10.2337/dc08-1851.
    1. Cordingley JJ, Vlasselaers D, Dormand NC, Wouters PJ, Squire SD, Chassin LJ, et al. Intensive insulin therapy: enhanced Model Predictive Control algorithm versus standard care. Intensive care medicine. 2009;35(1):123–128. doi: 10.1007/s00134-008-1236-z.
    1. Hovorka R, Kremen J, Blaha J, Matias M, Anderlova K, Bosanska L, et al. Blood glucose control by a model predictive control algorithm with variable sampling rate versus a routine glucose management protocol in cardiac surgery patients: a randomized controlled trial. The Journal of clinical endocrinology and metabolism. 2007;92(8):2960–2964. doi: 10.1210/jc.2007-0434.
    1. Kulnik R, Plank J, Pachler C, Wilinska ME, Groselj-Strele A, Rothlein D, et al. Evaluation of implementation of a fully automated algorithm (enhanced model predictive control) in an interacting infusion pump system for establishment of tight glycemic control in medical intensive care unit patients. Journal of diabetes science and technology. 2008;2(6):963–970. doi: 10.1177/193229680800200606.
    1. Amrein K, Ellmerer M, Hovorka R, Kachel N, Fries H, von Lewinski D, et al. Efficacy and safety of glucose control with Space GlucoseControl in the medical intensive care unit--an open clinical investigation. Diabetes technology & therapeutics. 2012;14(8):690–695. doi: 10.1089/dia.2012.0021.
    1. Amrein K, Kachel N, Fries H, Hovorka R, Pieber TR, Plank J, et al. Glucose control in intensive care: usability, efficacy and safety of Space GlucoseControl in two medical European intensive care units. BMC endocrine disorders. 2014;14:62. doi: 10.1186/1472-6823-14-62.
    1. Finfer S, Chittock DR, Su SY, Blair D, Foster D, Dhingra V, et al. Intensive versus conventional glucose control in critically ill patients. The New England journal of medicine. 2009;360(13):1283–1297. doi: 10.1056/NEJMoa0810625.
    1. The NICE-SUGAR Study Web Page []. Accessed 2 Dec 2014.
    1. Brunkhorst FM, Engel C, Bloos F, Meier-Hellmann A, Ragaller M, Weiler N, et al. Intensive insulin therapy and pentastarch resuscitation in severe sepsis. The New England journal of medicine. 2008;358(2):125–139. doi: 10.1056/NEJMoa070716.
    1. van den Berghe G, Wouters P, Weekers F, Verwaest C, Bruyninckx F, Schetz M, et al. Intensive insulin therapy in critically ill patients. The New England journal of medicine. 2001;345(19):1359–1367. doi: 10.1056/NEJMoa011300.
    1. Van den Berghe G, Wilmer A, Hermans G, Meersseman W, Wouters PJ, Milants I, et al. Intensive insulin therapy in the medical ICU. The New England journal of medicine. 2006;354(5):449–461. doi: 10.1056/NEJMoa052521.
    1. Vriesendorp TM, van Santen S, DeVries JH, de Jonge E, Rosendaal FR, Schultz MJ, et al. Predisposing factors for hypoglycemia in the intensive care unit. Critical care medicine. 2006;34(1):96–101. doi: 10.1097/01.CCM.0000194536.89694.06.
    1. Davidson PC, Steed RD, Bode BW. Glucommander: a computer-directed intravenous insulin system shown to be safe, simple, and effective in 120,618 h of operation. Diabetes care. 2005;28(10):2418–2423. doi: 10.2337/diacare.28.10.2418.
    1. Yamashita S, Ng E, Brommecker F, Silverberg J, Adhikari NK. Implementation of the glucommander method of adjusting insulin infusions in critically ill patients. The Canadian journal of hospital pharmacy. 2011;64(5):333–339. doi: 10.4212/cjhp.v64i5.1068.
    1. Vogelzang M, Zijlstra F, Nijsten MW. Design and implementation of GRIP: a computerized glucose control system at a surgical intensive care unit. BMC medical informatics and decision making. 2005;5:38. doi: 10.1186/1472-6947-5-38.
    1. Dumont C, Bourguignon C. Effect of a computerized insulin dose calculator on the process of glycemic control. American journal of critical care : an official publication, American Association of Critical-Care Nurses. 2012;21(2):106–115. doi: 10.4037/ajcc2012956.
    1. Saur NM, Kongable GL, Holewinski S, O'Brien K, Nasraway SA., Jr Software-guided insulin dosing: tight glycemic control and decreased glycemic derangements in critically ill patients. Mayo Clinic proceedings. 2013;88(9):920–929. doi: 10.1016/j.mayocp.2013.07.003.
    1. Benyo B, Illyes A, Nemedi NS, Le Compte AJ, Havas A, Kovacs L, et al. Pilot study of the SPRINT glycemic control protocol in a Hungarian medical intensive care unit. Journal of diabetes science and technology. 2012;6(6):1464–1477. doi: 10.1177/193229681200600628.
    1. Marvin MR, Inzucchi SE, Besterman BJ. Computerization of the Yale insulin infusion protocol and potential insights into causes of hypoglycemia with intravenous insulin. Diabetes technology & therapeutics. 2013;15(3):246–252. doi: 10.1089/dia.2012.0277.
    1. Campion TR, Jr, May AK, Waitman LR, Ozdas A, Gadd CS. Effects of blood glucose transcription mismatches on a computer-based intensive insulin therapy protocol. Intensive care medicine. 2010;36(9):1566–1570. doi: 10.1007/s00134-010-1868-7.
    1. Sward K, Orme J, Jr, Sorenson D, Baumann L, Morris AH. Reasons for declining computerized insulin protocol recommendations: application of a framework. Journal of biomedical informatics. 2008;41(3):488–497. doi: 10.1016/j.jbi.2008.04.002.
    1. Vogelzang M, Loef BG, Regtien JG, van der Horst IC, van Assen H, Zijlstra F, et al. Computer-assisted glucose control in critically ill patients. Intensive care medicine. 2008;34(8):1421–1427. doi: 10.1007/s00134-008-1091-y.
    1. Campion TR, Jr, May AK, Waitman LR, Ozdas A, Lorenzi NM, Gadd CS. Characteristics and effects of nurse dosing over-rides on computer-based intensive insulin therapy protocol performance. Journal of the American Medical Informatics Association : JAMIA. 2011;18(3):251–258. doi: 10.1136/amiajnl-2011-000129.
    1. Kavanagh MH, Ashkanasy NM. The impact of leadership and change management strategy on organizational culture and individual acceptance of change during a merger. Br J Management. 2006;17:S81–S103. doi: 10.1111/j.1467-8551.2006.00480.x.
    1. Kopecky P, Mraz M, Blaha J, Lindner J, Svacina S, Hovorka R, et al. The use of continuous glucose monitoring combined with computer-based eMPC algorithm for tight glucose control in cardiosurgical ICU. BioMed research international. 2013;2013:186439. doi: 10.1155/2013/186439.

Source: PubMed

3
Iratkozz fel