Fetal Central Nervous System Anomalies Detected by Magnetic Resonance Imaging: A Two-Year Experience

Sepideh Sefidbakht, Sakineh Dehghani, Maryam Safari, Homeira Vafaei, Maryam Kasraeian, Sepideh Sefidbakht, Sakineh Dehghani, Maryam Safari, Homeira Vafaei, Maryam Kasraeian

Abstract

Background: Magnetic resonance imaging (MRI) is gradually becoming more common for thorough visualization of the fetus than ultrasound (US), especially for neurological anomalies, which are the most common indications for fetal MRI and are a matter of concern for both families and society.

Objectives: We investigated fetal MRIs carried out in our center for frequency of central nervous system anomalies. This is the first such report in southern Iran.

Materials and methods: One hundred and seven (107) pregnant women with suspicious fetal anomalies in prenatal ultrasound entered a cross-sectional retrospective study from 2011 to 2013. A 1.5 T Siemens Avanto scanner was employed for sequences, including T2 HASTE and Trufisp images in axial, coronal, and sagittal planes to mother's body, T2 HASTE and Trufisp relative to the specific fetal body part being evaluated, and T1 flash images in at least one plane based on clinical indication. We investigated any abnormality in the central nervous system and performed descriptive analysis to achieve index of frequency.

Results: Mean gestational age ± standard deviation (SD) for fetuses was 25.54 ± 5.22 weeks, and mean maternal age ± SD was 28.38 ± 5.80 years Eighty out of 107 (74.7%) patients who were referred with initial impression of borderline ventriculomegaly. A total of 18 out of 107 (16.82%) patients were found to have fetuses with CNS anomalies and the remainder were neurologically normal. Detected anomalies were as follow: 3 (16.6%) fetuses each had the Dandy-Walker variant and Arnold-Chiari II (with myelomeningocele). Complete agenesis of corpus callosum, partial agenesis of corpus callosum, and aqueductal stenosis were each seen in 2 (11.1%) fetuses. Arnold-Chiari II without myelomeningocele, anterior spina bifida associated with neurenteric cyst, arachnoid cyst, lissencephaly, and isolated enlarged cisterna magna each presented in one (5.5%) fetus. One fetus had concomitant schizencephaly and complete agenesis of the corpus callosum.

Conclusions: MRI is superior to ultrasound and physical exam of live births in detection of CNS anomalies. In this investigation within a single referral center in southern Iran, anomalies included Dandy-Walker variant and Arnold-Chiari II as the most common findings. Other findings with lower incidence were complete and partial agenesis of corpus callosum, aqueductal stenosis, anterior spina bifida, schizencephaly, arachnoid cyst, lissencephaly, and isolated enlarged cisterna magna.

Keywords: CNS Anomalies; Fetus; MRI.

Figures

Figure 1.. Aqueductal stenosis in a fetus…
Figure 1.. Aqueductal stenosis in a fetus with 28 weeks gestational age (wks GA). Axial(A), coronal(B) and sagittal(C) T2 HASTE image of fetal brain showing significant dilatation of lateral ventricle(arrow) and third ventricle(arrow head). Normal diameter of fourth ventricle (curved arrow) is the clue to diagnosis of aqueductal stenosis.
Figure 2.. Complete agenesis of corpus callosum…
Figure 2.. Complete agenesis of corpus callosum in a fetus with 35 wks GA. Coronal T2 HASTE image shows no fusion between two cerebral hemispheres and absence of corpus callosum(straight arrow) as direct signs and parallel alignment of lateral ventricles resembling “Tear Drop” (curved arrows)as an indirect sign of complete agenesis of corpus callosum.
Figure 3.. A and B, Schizencephaly in…
Figure 3.. A and B, Schizencephaly in a fetus with 34wks GA. Coronal T2 HASTE images show Cleavage in gray matter extending from ventricular margin to brain surface in two different sections (arrows). Both side of cleavage are covered by hypo-intense thin cortex. Abnormal fusion of midline structures and complete agenesis of corpus callosum is also present.
Figure 4.. Dandy-Walker variant in a fetus…
Figure 4.. Dandy-Walker variant in a fetus with 27wks GA. Axial(A and B) and sagittal(C and D) T2 HASTE images show hypoplastic lower vermis (arrows) and enlarged cisterna magna (curved arrows) and otherwise normal brain parenchyma.
Figure 5.. Arnold Chiari II in a…
Figure 5.. Arnold Chiari II in a fetus at 20wks GA; (A) Axial T2 HASTE image of fetal brain shows a “lemon Shape” skull(straight arrow) and dilatation of posterior horns of lateral ventricles (curved arrow). (B) axial T2 HASTE image of lumbar spine; open neural tube defect with associated myelomeningocele(straight arrow). (C) Sagittal T2 HASTE image of entire fetal body shows combination of findings; small crowded posterior fossa, herniation of inferior vermis and fourth ventricle(large arrow), dilatation of lateral ventricles(small arrow) and myelomeningocele in lumosacral spine(curved arrow).

References

    1. Mohammed AR, Mohammed SA, AbdulFatah AM. congenital anomalies among children: Knowledge and attitude of Egyptian and Saudi Mothers. Biol Agr Healthcare. 2013;3:2224–3208.
    1. Joel-Medewase VI, Adeleye AO. The social-economic and family background of the child with a CNS birth defect in a developing country in the current era. Nigerian J Paediatr. 2014;42(1):55–8.
    1. Karim R, Wahab S, Akhtar R, Jamala F, Jabeen S. Frequency and pattern of distribution of antenatally diagnosed congenital anomalies and the associated risk factors. J Postgraduate Med Inst. 2014;28(2)
    1. Jadav SHR. Study of congenital malformations in Central nervous system and gastrointestinal Tract. Nat J Med Res. 2012;2(2):121–3.
    1. Sarrafan N, Mahdinasab SAH, Arastoo L. Incidence of congenital malformations of extremities in live-born neonates in Ahvaz. Sci Med J Jondishapoor. 2011;10(1):13–9.
    1. Masoodpoor N, Arab-Baniasad F, Jafari A. Prevalence and pattern of congenital malformations in newborn in Rafsanjan, Iran (2007-08). J Gorgan Univ Med Sci. 2013;15(3)
    1. Ahmadzadeh A, Safikhani Z,, Abdulahi M, Ahmadzadeh A. Congenital malformations among live births at Arvand Hospital, Ahwaz, Iran-A prospective study. Pak J Med Sci. 2008;24(1):33.
    1. Kazmi SS, Nejat F, Tajik P, Roozbeh H. The prenatal ultrasonographic detection of myelomeningocele in patients referred to Children's Hospital Medical Center: a cross sectional study. Reprod Health. 2006;3:6. doi: 10.1186/1742-4755-3-6.
    1. Ghavami M, Abedinzadeh R. Prevalence of perinatal central nervous system anomalies in East azarbaijan-iran. Iran J Radiol. 2011;8(2):79–81.
    1. Glenn OA, Coakley FV. MRI of the fetal central nervous system and body. Clin Perinatol. 2009;36(2):273–300. doi: 10.1016/j.clp.2009.03.016. viii.
    1. Kosus A, Kosus N, Usluogullari B, Duran M, Turhan NO, Teksam M. Fetal magnetic resonance imaging in obstetric practice. J Turk Ger Gynecol Assoc. 2011;12(1):39–46. doi: 10.5152/jtgga.2011.09.
    1. Kosla K, Majos M, Polguj M, Antosik-Biernacka A, Stefanczyk L, Majos A. Prenatal diagnosis of a vein of Galen aneurysmal malformation with MR imaging - report of two cases. Pol J Radiol. 2013;78(4):88–92. doi: 10.12659/PJR.889613.
    1. Zhan J, Dinov ID, Li J, Zhang Z, Hobel S, Shi Y, et al. Spatial-temporal atlas of human fetal brain development during the early second trimester. Neuroimage. 2013;82:115–26. doi: 10.1016/j.neuroimage.2013.05.063.
    1. Kuklisova-Murgasova M, Cifor A, Napolitano R, Papageorghiou A, Quaghebeur G, Rutherford MA, et al. Registration of 3D fetal neurosonography and MRI. Med Image Anal. 2013;17(8):1137–50. doi: 10.1016/j.media.2013.07.004.
    1. Manganaro L, Saldari M, Bernardo S, Aliberti C, Silvestri E. Bilateral subependymal heterotopia, ventriculomegaly and cerebellar asymmetry: fetal MRI findings of a rare association of brain anomalies. J Radiol Case Rep. 2013;7(11):38–45. doi: 10.3941/jrcr.v7i11.1457.
    1. Liu F, Zhang Z, Lin X, Teng G, Meng H, Yu T, et al. Development of the human fetal cerebellum in the second trimester: a post mortem magnetic resonance imaging evaluation. J Anat. 2011;219(5):582–8. doi: 10.1111/j.1469-7580.2011.01418.x.
    1. Wang GB, Shan RQ, Ma YX, Shi H, Chen LG, Liu W, et al. Fetal central nervous system anomalies: comparison of magnetic resonance imaging and ultrasonography for diagnosis. Chin Med J (Engl). 2006;119(15):1272–7.
    1. Coakley FV, Glenn OA, Qayyum A, Barkovich AJ, Goldstein R, Filly RA. Fetal MRI: a developing technique for the developing patient. AJR Am J Roentgenol. 2004;182(1):243–52. doi: 10.2214/ajr.182.1.1820243.
    1. Griffiths PD, Porteous M, Mason G, Russell S, Morris J, Fanou EM, et al. The use of in utero MRI to supplement ultrasound in the foetus at high risk of developmental brain or spine abnormality. Br J Radiol. 2012;85(1019):e1038–45. doi: 10.1259/bjr/23696508.
    1. Glenn OA, Cuneo AA, Barkovich AJ, Hashemi Z, Bartha AI, Xu D. Malformations of cortical development: diagnostic accuracy of fetal MR imaging. Radiology. 2012;263(3):843–55. doi: 10.1148/radiol.12102492.
    1. Hosseinzadeh K, Luo J, Borhani A, Hill L. Non-visualisation of cavum septi pellucidi: implication in prenatal diagnosis? Insights Imaging. 2013;4(3):357–67. doi: 10.1007/s13244-013-0244-x.
    1. Glenn OA, Barkovich J. Magnetic resonance imaging of the fetal brain and spine: an increasingly important tool in prenatal diagnosis: part 2. AJNR Am J Neuroradiol. 2006;27(9):1807–14.
    1. Simon EM, Goldstein RB, Coakley FV, Filly RA, Broderick KC, Musci TJ, et al. Fast MR imaging of fetal CNS anomalies in utero. AJNR Am J Neuroradiol. 2000;21(9):1688–98.
    1. Wieseler KM, Bhargava P, Kanal KM, Vaidya S, Stewart BK, Dighe MK. Imaging in pregnant patients: examination appropriateness. Radiographics. 2010;30(5):1215–29. doi: 10.1148/rg.305105034. discussion 1230-3.
    1. Poutamo J, Vanninen R, Partanen K, Ryynanen, Kirkinen P. Magnetic resonance imaging supplements ultrasonographic imaging of the posterior fossa, pharynx and neck in malformed fetuses. Ultrasound Obstet Gynecol. 1999;13(5):327–34. doi: 10.1046/j.1469-0705.1999.13050327.x.
    1. Griffiths PD, Russell SA, Mason G, Morris J, Fanou E, Reeves MJ. The use of in utero MR imaging to delineate developmental brain abnormalities in multifetal pregnancies. AJNR Am J Neuroradiol. 2012;33(2):359–65. doi: 10.3174/ajnr.A2762.
    1. Saleem SN. Fetal MRI: An approach to practice: A review. J Adv Res. 2014;5(5):507–23. doi: 10.1016/j.jare.2013.06.001.
    1. Glenn OA. MR imaging of the fetal brain. Pediatr Radiol. 2010;40(1):68–81. doi: 10.1007/s00247-009-1459-3.
    1. Glenn OA, Barkovich AJ. Magnetic resonance imaging of the fetal brain and spine: an increasingly important tool in prenatal diagnosis, part 1. AJNR Am J Neuroradiol. 2006;27(8):1604–11.
    1. Beeghly M, Ware J, Soul J, du Plessis A, Khwaja O, Senapati GM, et al. Neurodevelopmental outcome of fetuses referred for ventriculomegaly. Ultrasound Obstet Gynecol. 2010;35(4):405–16. doi: 10.1002/uog.7554.
    1. Lyall AE, Woolson S, Wolfe HM, Goldman BD, Reznick JS, Hamer RM, et al. Prenatal isolated mild ventriculomegaly is associated with persistent ventricle enlargement at ages 1 and 2. Early Hum Dev. 2012;88(8):691–8. doi: 10.1016/j.earlhumdev.2012.02.003.
    1. Li Y, Estroff JA, Mehta TS, Robertson RL, Robson CD, Poussaint TY, et al. Ultrasound and MRI of fetuses with ventriculomegaly: can cortical development be used to predict postnatal outcome? AJR Am J Roentgenol. 2011;196(6):1457–67. doi: 10.2214/AJR.10.5422.
    1. Santo S, D'Antonio F, Homfray T, Rich P, Pilu G, Bhide A, et al. Counseling in fetal medicine: agenesis of the corpus callosum. Ultrasound Obstet Gynecol. 2012;40(5):513–21. doi: 10.1002/uog.12315.
    1. Malinger G, Lev D, Oren M, Lerman-Sagie T. Non-visualization of the cavum septi pellucidi is not synonymous with agenesis of the corpus callosum. Ultrasound Obstet Gynecol. 2012;40(2):165–70. doi: 10.1002/uog.11206.
    1. Li Y, Sansgiri RK, Estroff JA, Mehta TS, Poussaint TY, Robertson RL, et al. Outcome of fetuses with cerebral ventriculomegaly and septum pellucidum leaflet abnormalities. AJR Am J Roentgenol. 2011;196(1):W83–92. doi: 10.2214/AJR.10.4434.
    1. Zhang Z, Hou Z, Lin X, Teng G, Meng H, Zang F, et al. Development of the fetal cerebral cortex in the second trimester: assessment with 7T postmortem MR imaging. AJNR Am J Neuroradiol. 2013;34(7):1462–7. doi: 10.3174/ajnr.A3406.
    1. Tarui T, Khwaja OS, Estroff JA, Robinson JN, Gregas MC, Grant PE. Altered fetal cerebral and cerebellar development in twin-twin transfusion syndrome. AJNR Am J Neuroradiol. 2012;33(6):1121–6. doi: 10.3174/ajnr.A2922.

Source: PubMed

3
Iratkozz fel