The Emerging Threat of (Micro)Thrombosis in COVID-19 and Its Therapeutic Implications

James D McFadyen, Hannah Stevens, Karlheinz Peter, James D McFadyen, Hannah Stevens, Karlheinz Peter

Abstract

The recent emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the ensuing global pandemic has presented a health emergency of unprecedented magnitude. Recent clinical data has highlighted that coronavirus disease 2019 (COVID-19) is associated with a significant risk of thrombotic complications ranging from microvascular thrombosis, venous thromboembolic disease, and stroke. Importantly, thrombotic complications are markers of severe COVID-19 and are associated with multiorgan failure and increased mortality. The evidence to date supports the concept that the thrombotic manifestations of severe COVID-19 are due to the ability of SARS-CoV-2 to invade endothelial cells via ACE-2 (angiotensin-converting enzyme 2), which is expressed on the endothelial cell surface. However, in patients with COVID-19 the subsequent endothelial inflammation, complement activation, thrombin generation, platelet, and leukocyte recruitment, and the initiation of innate and adaptive immune responses culminate in immunothrombosis, ultimately causing (micro)thrombotic complications, such as deep vein thrombosis, pulmonary embolism, and stroke. Accordingly, the activation of coagulation (eg, as measured with plasma D-dimer) and thrombocytopenia have emerged as prognostic markers in COVID-19. Given thrombotic complications are central determinants of the high mortality rate in COVID-19, strategies to prevent thrombosis are of critical importance. Several antithrombotic drugs have been proposed as potential therapies to prevent COVID-19-associated thrombosis, including heparin, FXII inhibitors, fibrinolytic drugs, nafamostat, and dipyridamole, many of which also possess pleiotropic anti-inflammatory or antiviral effects. The growing awareness and mechanistic understanding of the prothrombotic state of COVID-19 patients are driving efforts to more stringent diagnostic screening for thrombotic complications and to the early institution of antithrombotic drugs, for both the prevention and therapy of thrombotic complications. The shifting paradigm of diagnostic and treatment strategies holds significant promise to reduce the burden of thrombotic complications and ultimately improve the prognosis for patients with COVID-19.

Keywords: coronavirus; mortality; stroke; thrombosis; viruses.

Figures

Figure 1.
Figure 1.
Proposed mechanisms of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission, and coronavirus disease 2019 (COVID-19)-associated thrombosis. SARS-CoV-2 gains entry to host lung epithelial cells by the binding of the transmembrane spike (S) glycoprotein to ACE-2 (angiotensin-converting enzyme 2). The S1 subunit of the S protein binds to ACE-2 and mediates viral attachment. Proteolytic cleavage of the S protein at the S1/2 junction by the proteases, furin, and TMPRSS-2 (transmembrane protease serine 2), facilitates viral entry. SARS-CoV-2 can also directly invade endothelial expressed ACE-2. Infected cells undergo pyroptosis leading to the release of danger-associated molecular patterns (DAMPs) and triggering the release of proinflammatory cytokines and chemokines. The activated endothelium upregulates the expression of VWF (von Willebrand factor) and adhesion molecules including ICAM (intercellular adhesion molecule)-1, αvβ3, P-selectin and E-selectin leading to recruitment of platelets and leukocytes and complement activation. Neutrophils release neutrophil extracellular traps (NETS), causing direct activation of the contact pathway. Complement activation potentiates these mechanisms by increasing endothelial and monocyte tissue factor (TF), further platelet activation and amplifies endothelial inflammation, which increases production of proinflammatory cytokines from the endothelium including IL (interleukin)-1, IL-8, RANTES (regulated on activation, normal T-cell expressed and secreted), IL-6, and MCP (monocyte chemoattractant protein)-1. The hypoxic environment can induce HIFs (hypoxia-inducible factors) which upregulates endothelial TF expression. These mechanisms ultimately lead to the unchecked generation of thrombin, resulting in thrombus formation. The fibrin degradation product, D-dimer, which is a marker of coagulation activation, appears to be a strong prognostic marker associated with high mortality in patients with COVID-19.
Figure 2.
Figure 2.
Mechanisms regulating immunothrombosis. In vascular homeostasis, the endothelium possesses anti-inflammatory and antithrombotic properties due to the expression of CD39, nitric oxide (NO), and prostacyclin in addition to the natural anticoagulants, TFPI (tissue factor pathway inhibitor), activated protein C, and thrombomodulin. In the setting of infection or inflammation, endothelial cells upregulate the expression of VWF (von Willebrand factor) and adhesion molecules such as ICAM (intercellular adhesion molecule)-1, αvβ3, P-selectin and E-selectin, promoting the adhesion of leukocytes and platelets. Activated platelets release chemokines CXCL1, PF (platelet factor)-4, CXCL5, CXCL7, CCL3, RANTES (regulated on activation, normal T-cell expressed and secreted), and CCL7 to enhance leukocyte recruitment. Leukocytes interact with platelets via several receptor/ligand pairs. These include platelet P-selectin binding to its cognate receptor PSGL (P-selectin glycoprotein)-1 on leukocytes, GP-Ib on platelets interacting with Mac-1 on monocytes and neutrophils, and GPIIb/IIIa binding to SLC44A2/CTL-2 on neutrophils. Activated platelets release polyphosphate (polyP), which activates the contact pathway, and HMGB (high mobility group box)-1, which enhances monocyte recruitment and monocyte tissue factor (TF) expression, thereby amplifying thrombin generation by way of the TF pathway of coagulation. Neutrophils release neutrophil extracellular traps (NETs) which promote thrombosis via activation of the contact pathway and the binding and activation of platelets. Finally, complement activation leads to the recruitment of leukocytes and upregulates TF expression, amplifies platelet activation and upregulates endothelial expression of proinflammatory cytokines, including IL (interleukin)-1, IL-6, IL-8, and MCP (monocyte chemoattractant protein)-1. These mechanisms result in excess thrombin generation, which potentiates the activation of platelets, leukocytes, and endothelium via PARs (protease-activated receptors) and culminates in a fibrin clot.
Figure 3.
Figure 3.
Proposed role of thrombin in coronavirus disease 2019 (COVID-19)-associated immunothrombosis. Infection of endothelial cells by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and liberation of viral danger-associated molecular pattern (DAMPs) results in endothelial activation with the upregulation of tissue factor (TF) and adhesion molecule expression in addition to endothelial cytokine production. This leads to the recruitment and activation of leukocytes and platelets. Activated leukocytes release neutrophil extracellular traps (NETs) and monocyte-derived, TF-bearing microvesicles (MV). Activated platelets release polyP from dense granules. This initiates intravascular thrombin generation via the TF and contact pathways of coagulation. Thrombin exerts its thrombotic effect by activating platelets through the platelet PAR (protease-activated receptor)-1/4 in addition to mediating the cleavage of fibrinogen to fibrin. Furthermore, thrombin possesses proinflammatory functions due to its ability to activate endothelial cells and leukocytes. Thrombin activates endothelial cells via the endothelial PAR-1 receptor, leading to upregulation of IL-6, IL-8, PAF (platelet-activating factor), and MCP (monocyte chemoattractant protein)-1 in addition to the adhesion molecules P-selectin, E-selectin and ICAM (intercellular adhesion molecule)-1, all of which serve to increase leukocyte recruitment and activation. Similarly, monocyte and T-cell functions are enhanced by thrombin activation of monocyte and T-cell expressed PAR-1 and PAR-3. The resultant endothelial cell, platelet, and leukocyte interactions establish a positive feedback loop, which further promulgates ongoing thrombin generation leading to immunothrombosis. This thrombotic phenotype likely results in the clinical manifestations seen in COVID-19, including pulmonary embolism (PE), microvascular thrombosis, ischemic stroke, and deep vein thrombosis (DVT).
Figure 4.
Figure 4.
Treatments for targeting coronavirus disease 2019 (COVID-19)-associated thrombosis. Heparins, including unfractionated heparin (UFH) and low molecular weight heparin (LMWH), bind antithrombin (AT), and potentiate the inhibitory effect of AT on coagulation factors Xa and thrombin. Furthermore, UFH may have antiviral effects by having the ability to bind the receptor-binding domain of the S protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in addition to potentially acting as a decoy for naturally expressed heparan sulfate thus reducing the ability of the virus to bind to and invade cells. The putative anti-inflammatory effects of UFH is related to its ability to bind danger-associated molecular pattern (DAMPs). Inhibitors of FXII block the contact factor pathway of coagulation, initiated by NETs, and also appear to have pleiotropic anti-inflammatory effects. Antiplatelet agents, such as dipyridamole, nafamostat, and aspirin inhibit platelet activation, which can inhibit NETosis and the release of platelet-derived DAMPs such as HMGB (high mobility group box)-1. Nafamostat may inhibit the TMPRSS-2 (transmembrane protease serine 2) and therefore impede viral entry. Fibrinolytics, such as tPA (tissue-type plasminogen activator), degrade cross-linked fibrin.

References

    1. Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 2020181281–292.e6doi: 10.1016/j.cell.2020.02.058
    1. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B, Huang CL, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020579270–273doi: 10.1038/s41586-020-2012-7
    1. Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. The proximal origin of SARS-CoV-2. Nat Med 202026450–452doi: 10.1038/s41591-020-0820-9
    1. Lam TT, Jia N, Zhang YW, Shum MH, Jiang JF, Zhu HC, Tong YG, Shi YX, Ni XB, Liao YS, et al. Identifying SARS-CoV-2-related coronaviruses in Malayan pangolins. Nature. 2020 doi: 10.1038/s41586-020-2169-0.
    1. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020181271–280.e8doi: 10.1016/j.cell.2020.02.052
    1. Jose RJ, Manuel A. COVID-19 cytokine storm: the interplay between inflammation and coagulation. Lancet Respir Med 20208e46–e47doi: 10.1016/S2213-2600(20)30216-2
    1. Liu F, Li L, Xu M, Wu J, Luo D, Zhu Y, Li B, Song X, Zhou X. Prognostic value of interleukin-6, C-reactive protein, and procalcitonin in patients with COVID-19. J Clin Virol. 2020;127:104370. doi: 10.1016/j.jcv.2020.104370.
    1. Maier CL, Truong AD, Auld SC, Polly DM, Tanksley CL, Duncan A. COVID-19-associated hyperviscosity: a link between inflammation and thrombophilia? Lancet 20203951758–1759doi: 10.1016/S0140-6736(20)31209-5
    1. Giamarellos-Bourboulis EJ, Netea MG, Rovina N, Akinosoglou K, Antoniadou A, Antonakos N, Damoraki G, Gkavogianni T, Adami ME, Katsaounou P, et al. Complex immune dysregulation in COVID-19 patients with severe respiratory failure. Cell Host Microbe 202027992–1000.e3doi: 10.1016/j.chom.2020.04.009
    1. Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost 202018844–847doi: 10.1111/jth.14768
    1. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020395497–506doi: 10.1016/S0140-6736(20)30183-5
    1. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, Wang B, Xiang H, Cheng Z, Xiong Y, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA 20203231061–1069doi: 10.1001/jama.2020.1585
    1. Zhang JJ, Dong X, Cao YY, Yuan YD, Yang YB, Yan YQ, Akdis CA, Gao YD. Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. Allergy. 2020 doi: 10.1111/all.14238.
    1. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, Liu L, Shan H, Lei CL, Hui DSC, et al. ; China Medical Treatment Expert Group for Covid-19 Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 20203821708–1720doi: 10.1056/NEJMoa2002032
    1. Lippi G, Favaloro EJ. D-dimer is associated with severity of coronavirus disease 2019: a pooled analysis. Thromb Haemost 2020120876–878doi: 10.1055/s-0040-1709650
    1. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, Xiang J, Wang Y, Song B, Gu X, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 20203951054–1062doi: 10.1016/S0140-6736(20)30566-3
    1. Zhang L, Yan X, Fan Q, Liu H, Liu X, Liu Z, Zhang Z. D-dimer levels on admission to predict in-hospital mortality in patients with Covid-19. J Thromb Haemost 2020181324–1329doi: 10.1111/jth.14859
    1. Liao S, Woulfe T, Hyder S, Merriman E, Simpson D, Chunilal S. Incidence of venous thromboembolism in different ethnic groups: a regional direct comparison study. J Thromb Haemost 201412214–219doi: 10.1111/jth.12464
    1. White RH, Keenan CR. Effects of race and ethnicity on the incidence of venous thromboembolism. Thromb Res 2009123 Suppl 4S11–S17doi: 10.1016/S0049-3848(09)70136-7
    1. Zakai NA, McClure LA. Racial differences in venous thromboembolism. J Thromb Haemost 201191877–1882doi: 10.1111/j.1538-7836.2011.04443.x
    1. Edelstein LC, Simon LM, Montoya RT, Holinstat M, Chen ES, Bergeron A, Kong X, Nagalla S, Mohandas N, Cohen DE, et al. Racial differences in human platelet PAR4 reactivity reflect expression of PCTP and miR-376c. Nat Med 2013191609–1616doi: 10.1038/nm.3385
    1. Fogarty H, Townsend L, Ni Cheallaigh C, Bergin C, Martin-Loeches I, Browne P, Bacon CL, Gaule R, Gillett A, Byrne M, et al. COVID19 coagulopathy in Caucasian patients. Br J Haematol 20201891044–1049doi: 10.1111/bjh.16749
    1. Cui S, Chen S, Li X, Liu S, Wang F. Prevalence of venous thromboembolism in patients with severe novel coronavirus pneumonia. J Thromb Haemost 2020181421–1424doi: 10.1111/jth.14830
    1. Klok FA, Kruip MJHA, van der Meer NJM, Arbous MS, Gommers DAMPJ, Kant KM, Kaptein FHJ, van Paassen J, Stals MAM, Huisman MV, et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb Res 2020191145–147doi: 10.1016/j.thromres.2020.04.013
    1. Klok FA, Kruip MJHA, van der Meer NJM, Arbous MS, Gommers D, Kant KM, Kaptein FHJ, van Paassen J, Stals MAM, Huisman MV, et al. Confirmation of the high cumulative incidence of thrombotic complications in critically ill ICU patients with COVID-19: an updated analysis. Thromb Res 2020191148–150doi: 10.1016/j.thromres.2020.04.041
    1. Middeldorp S, Coppens M, van Haaps TF, Foppen M, Vlaar AP, Muller MCA, Bouman CCS, Beenen LFM, Kootte RS, Heijmans J, et al. Incidence of venous thromboembolism in hospitalized patients with covid-19. J Thromb Haemost. 2020 doi: 10.1111/jth.14888.
    1. Helms J, Tacquard C, Severac F, Leonard-Lorant I, Ohana M, Delabranche X, Merdji H, Clere-Jehl R, Schenck M, Fagot Gandet F, et al. ; CRICS TRIGGERSEP Group (Clinical Research in Intensive Care and Sepsis Trial Group for Global Evaluation and Research in Sepsis) High risk of thrombosis in patients with severe SARS-CoV-2 infection: a multicenter prospective cohort study. Intensive Care Med 2020461089–1098doi: 10.1007/s00134-020-06062-x
    1. Lax SF, Skok K, Zechner P, Kessler H, Kaufmann N, Koelblinger C, Vander K, Bargfrieder U, Trauner M. Pulmonary arterial thrombosis in COVID-19 with fatal outcome: results from a prospective, single-center, clinicopathologic case series. Ann Intern Med. 2020:M20-2566. doi: 10.7326/M20-2566.
    1. Wichmann D, Sperhake JP, Lutgehetmann M, Steurer S, Edler C, Heinemann A, Heinrich F, Mushumba H, Kniep I, Schroder AS, et al. Autopsy findings and venous thromboembolism in patients with COVID-19: a prospective cohort study. Ann Intern Med. 2020:M20-2003. doi: 10.7326/M20-2003.
    1. Mao L, Jin H, Wang M, Hu Y, Chen S, He Q, Chang J, Hong C, Zhou Y, Wang D, Miao X, et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurology 2020771–9doi: 10.1001/jamaneurol.2020.1127
    1. Oxley TJ, Mocco J, Majidi S, Kellner CP, Shoirah H, Singh IP, De Leacy RA, Shigematsu T, Ladner TR, Yaeger KA, et al. Large-vessel stroke as a presenting feature of COVID-19 in the young. N Engl J Med. 2020;382:e60. doi: 10.1056/NEJMc2009787.
    1. Shi S, Qin M, Shen B, Cai Y, Liu T, Yang F, Gong W, Liu X, Liang J, Zhao Q, et al. Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA Cardiol. 2020:e200950. doi: 10.1001/jamacardio.2020.0950.
    1. Zheng YY, Ma YT, Zhang JY, Xie X. COVID-19 and the cardiovascular system. Nat Rev Cardiol 202017259–260doi: 10.1038/s41569-020-0360-5
    1. Yang J, Zheng Y, Gou X, Pu K, Chen Z, Guo Q, Ji R, Wang H, Wang Y, Zhou Y. Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: a systematic review and meta-analysis. Int J Infect Dis 20209491–95doi: 10.1016/j.ijid.2020.03.017
    1. Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: Summary of a report of 72314 cases from the Chinese center for disease control and prevention. JAMA. 2020 doi: 10.1001/jama.2020.2648.
    1. Lang ZW, Zhang LJ, Zhang SJ, Meng X, Li JQ, Song CZ, Sun L, Zhou YS, Dwyer DE. A clinicopathological study of three cases of severe acute respiratory syndrome (SARS). Pathology 200335526–531doi: 10.1080/00313020310001619118
    1. Ding Y, Wang H, Shen H, Li Z, Geng J, Han H, Cai J, Li X, Kang W, Weng D, et al. The clinical pathology of severe acute respiratory syndrome (SARS): a report from China. J Pathol 2003200282–289doi: 10.1002/path.1440
    1. Hwang DM, Chamberlain DW, Poutanen SM, Low DE, Asa SL, Butany J. Pulmonary pathology of severe acute respiratory syndrome in Toronto. Mod Pathol 2005181–10doi: 10.1038/modpathol.3800247
    1. Franks TJ, Chong PY, Chui P, Galvin JR, Lourens RM, Reid AH, Selbs E, McEvoy CP, Hayden CD, Fukuoka J, et al. Lung pathology of severe acute respiratory syndrome (SARS): a study of 8 autopsy cases from Singapore. Hum Pathol 200334743–748doi: 10.1016/s0046-8177(03)00367-8
    1. Li K, Wohlford-Lenane C, Perlman S, Zhao J, Jewell AK, Reznikov LR, Gibson-Corley KN, Meyerholz DK, McCray PB., Jr. Middle east respiratory syndrome coronavirus causes multiple organ damage and lethal disease in mice transgenic for human dipeptidyl peptidase 4. J Infect Dis 2016213712–722doi: 10.1093/infdis/jiv499
    1. Tomashefski JF, Jr, Davies P, Boggis C, Greene R, Zapol WM, Reid LM. The pulmonary vascular lesions of the adult respiratory distress syndrome. Am J Pathol 1983112112–126
    1. Ackermann M, Verleden SE, Kuehnel M, Haverich A, Welte T, Laenger F, Vanstapel A, Werlein C, Stark H, Tzankov A, et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in covid-19. N Engl J Med. 2020 doi: 10.1056/NEJMoa2015432.
    1. Fox SE, Akmatbekov A, Harbert JL, Li G, Quincy Brown J, Vander Heide RS. Pulmonary and cardiac pathology in African American patients with COVID-19: an autopsy series from New Orleans. Lancet Respir Med. 2020:S2213-2600(20)30243-5. doi: 10.1016/S2213-2600(20)30243-5.
    1. Carsana L, Sonzogni A, Nasr A, Rossi RS, Pellegrinelli A, Zerbi P, Rech R, Colombo R, Antinori S, Corbellino M, et al. Pulmonary post-mortem findings in a series of COVID-19 cases from northern Italy: a two-centre descriptive study. Lancet Infect Dis. 2020:S1473-3099(20)30434-5. doi: 10.1016/S1473-3099(20)30434-5.
    1. Dolhnikoff M, Duarte-Neto AN, de Almeida Monteiro RA, da Silva LFF, de Oliveira EP, Saldiva PHN, Mauad T, Negri EM. Pathological evidence of pulmonary thrombotic phenomena in severe COVID-19. J Thromb Haemost 2020181517–1519doi: 10.1111/jth.14844
    1. Tay MZ, Poh CM, Rénia L, MacAry PA, Ng LFP. The trinity of COVID-19: immunity, inflammation and intervention. Nat Rev Immunol 202020363–374doi: 10.1038/s41577-020-0311-8
    1. Moreno-Eutimio MA, López-Macías C, Pastelin-Palacios R. Bioinformatic analysis and identification of single-stranded RNA sequences recognized by TLR7/8 in the SARS-CoV-2, SARS-CoV, and MERS-CoV genomes. Microbes Infect 202022226–229doi: 10.1016/j.micinf.2020.04.009
    1. Varga Z, Flammer AJ, Steiger P, Haberecker M, Andermatt R, Zinkernagel AS, Mehra MR, Schuepbach RA, Ruschitzka F, Moch H. Endothelial cell infection and endotheliitis in COVID-19. Lancet 20203951417–1418doi: 10.1016/S0140-6736(20)30937-5
    1. Crackower MA, Sarao R, Oudit GY, Yagil C, Kozieradzki I, Scanga SE, Oliveira-dos-Santos AJ, da Costa J, Zhang L, Pei Y, et al. Angiotensin-converting enzyme 2 is an essential regulator of heart function. Nature 2002417822–828doi: 10.1038/nature00786
    1. Danilczyk U, Penninger JM. Angiotensin-converting enzyme II in the heart and the kidney. Circ Res 200698463–471doi: 10.1161/01.RES.0000205761.22353.5f
    1. Chen Y, Chen L, Deng Q, Zhang G, Wu K, Ni L, Yang Y, Liu B, Wang W, Wei C, et al. The presence of SARS-CoV-2 RNA in the feces of COVID-19 patients. J Med Virol 202092833–840doi: 10.1002/jmv.25825
    1. Peng L, Liu J, Xu W, Luo Q, Chen D, Lei Z, Huang Z, Li X, Deng K, Lin B, et al. Sars-cov-2 can be detected in urine, blood, anal swabs, and oropharyngeal swabs specimens. J Med Virol. 2020 doi: 10.1002/jmv.25936.
    1. Monteil V, Kwon H, Prado P, Hagelkrüys A, Wimmer RA, Stahl M, Leopoldi A, Garreta E, Hurtado Del Pozo C, Prosper F, et al. Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2. Cell 2020181905–913.e7doi: 10.1016/j.cell.2020.04.004
    1. Zhang H, Penninger JM, Li Y, Zhong N, Slutsky AS. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med 202046586–590doi: 10.1007/s00134-020-05985-9
    1. Verdecchia P, Cavallini C, Spanevello A, Angeli F. The pivotal link between ACE2 deficiency and SARS-CoV-2 infection. Eur J Intern Med 20207614–20doi: 10.1016/j.ejim.2020.04.037
    1. Kayal S, Jaïs JP, Aguini N, Chaudière J, Labrousse J. Elevated circulating E-selectin, intercellular adhesion molecule 1, and von Willebrand factor in patients with severe infection. Am J Respir Crit Care Med 1998157776–784doi: 10.1164/ajrccm.157.3.9705034
    1. Aird WC. The role of the endothelium in severe sepsis and multiple organ dysfunction syndrome. Blood 20031013765–3777doi: 10.1182/blood-2002-06-1887
    1. Massberg S, Enders G, Leiderer R, Eisenmenger S, Vestweber D, Krombach F, Messmer K. Platelet-endothelial cell interactions during ischemia/reperfusion: the role of P-selectin. Blood 199892507–515
    1. Springer TA. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 199476301–314doi: 10.1016/0092-8674(94)90337-9
    1. Gupta N, Zhao YY, Evans CE. The stimulation of thrombosis by hypoxia. Thromb Res 201918177–83doi: 10.1016/j.thromres.2019.07.013
    1. Semple JW, Italiano JE, Jr, Freedman J. Platelets and the immune continuum. Nat Rev Immunol 201111264–274doi: 10.1038/nri2956
    1. McFadyen JD, Kaplan ZS. Platelets are not just for clots. Transfus Med Rev 201529110–119doi: 10.1016/j.tmrv.2014.11.006
    1. Engelmann B, Massberg S. Thrombosis as an intravascular effector of innate immunity. Nat Rev Immunol 20131334–45doi: 10.1038/nri3345
    1. Lindemann S, Tolley ND, Dixon DA, McIntyre TM, Prescott SM, Zimmerman GA, Weyrich AS. Activated platelets mediate inflammatory signaling by regulated interleukin 1beta synthesis. J Cell Biol 2001154485–490doi: 10.1083/jcb.200105058
    1. Palabrica T, Lobb R, Furie BC, Aronovitz M, Benjamin C, Hsu YM, Sajer SA, Furie B. Leukocyte accumulation promoting fibrin deposition is mediated in vivo by P-selectin on adherent platelets. Nature 1992359848–851doi: 10.1038/359848a0
    1. Simon DI, Chen Z, Xu H, Li CQ, Dong Jf, McIntire LV, Ballantyne CM, Zhang L, Furman MI, Berndt MC, et al. Platelet glycoprotein ibalpha is a counterreceptor for the leukocyte integrin Mac-1 (CD11b/CD18). J Exp Med 2000192193–204doi: 10.1084/jem.192.2.193
    1. Gaertner F, Ahmad Z, Rosenberger G, Fan S, Nicolai L, Busch B, Yavuz G, Luckner M, Ishikawa-Ankerhold H, Hennel R, et al. Migrating platelets are mechano-scavengers that collect and bundle bacteria. Cell 20171711368–1382.e23doi: 10.1016/j.cell.2017.11.001
    1. Etulain J, Martinod K, Wong SL, Cifuni SM, Schattner M, Wagner DD. P-selectin promotes neutrophil extracellular trap formation in mice. Blood 2015126242–246doi: 10.1182/blood-2015-01-624023
    1. Constantinescu-Bercu A, Grassi L, Frontini M, Salles C, II, Woollard K, Crawley JT. Activated alphaiibbeta3 on platelets mediates flow-dependent netosis via slc44a2. Elife. 2020;9:e53353. doi: 10.7554/eLife.53353.
    1. Müller F, Mutch NJ, Schenk WA, Smith SA, Esterl L, Spronk HM, Schmidbauer S, Gahl WA, Morrissey JH, Renné T. Platelet polyphosphates are proinflammatory and procoagulant mediators in vivo. Cell 20091391143–1156doi: 10.1016/j.cell.2009.11.001
    1. Zaldivia MTK, McFadyen JD, Lim B, Wang X, Peter K. Platelet-derived microvesicles in cardiovascular diseases. Front Cardiovasc Med. 2017;4:74. doi: 10.3389/fcvm.2017.00074.
    1. Braig D, Nero TL, Koch HG, Kaiser B, Wang X, Thiele JR, Morton CJ, Zeller J, Kiefer J, Potempa LA, et al. Transitional changes in the CRP structure lead to the exposure of proinflammatory binding sites. Nat Commun. 2017;8:14188. doi: 10.1038/ncomms14188.
    1. Lippi G, Plebani M, Henry BM. Thrombocytopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: a meta-analysis. Clin Chim Acta 2020506145–148doi: 10.1016/j.cca.2020.03.022
    1. Yang X, Yang Q, Wang Y, Wu Y, Xu J, Yu Y, Shang Y. Thrombocytopenia and its association with mortality in patients with COVID-19. J Thromb Haemost 2020181469–1472doi: 10.1111/jth.14848
    1. Koupenova M, Clancy L, Corkrey HA, Freedman JE. Circulating platelets as mediators of immunity, inflammation, and thrombosis. Circ Res 2018122337–351doi: 10.1161/CIRCRESAHA.117.310795
    1. Assinger A. Platelets and infection - an emerging role of platelets in viral infection. Front Immunol. 2014;5:649. doi: 10.3389/fimmu.2014.00649.
    1. Koupenova M, Corkrey HA, Vitseva O, Manni G, Pang CJ, Clancy L, Yao C, Rade J, Levy D, Wang JP, et al. The role of platelets in mediating a response to human influenza infection. Nat Commun. 2019;10:1780. doi: 10.1038/s41467-019-09607-x.
    1. Koupenova M, Vitseva O, MacKay CR, Beaulieu LM, Benjamin EJ, Mick E, Kurt-Jones EA, Ravid K, Freedman JE. Platelet-TLR7 mediates host survival and platelet count during viral infection in the absence of platelet-dependent thrombosis. Blood 2014124791–802doi: 10.1182/blood-2013-11-536003
    1. Boilard E, Paré G, Rousseau M, Cloutier N, Dubuc I, Lévesque T, Borgeat P, Flamand L. Influenza virus H1N1 activates platelets through FcγRIIA signaling and thrombin generation. Blood 20141232854–2863doi: 10.1182/blood-2013-07-515536
    1. Cloutier N, Allaeys I, Marcoux G, Machlus KR, Mailhot B, Zufferey A, Levesque T, Becker Y, Tessandier N, Melki I, et al. Platelets release pathogenic serotonin and return to circulation after immune complex-mediated sequestration. Proc Natl Acad Sci U S A 2018115E1550–E1559doi: 10.1073/pnas.1720553115
    1. Lê VB, Schneider JG, Boergeling Y, Berri F, Ducatez M, Guerin JL, Adrian I, Errazuriz-Cerda E, Frasquilho S, Antunes L, et al. Platelet activation and aggregation promote lung inflammation and influenza virus pathogenesis. Am J Respir Crit Care Med 2015191804–819doi: 10.1164/rccm.201406-1031OC
    1. Berlin DA, Gulick RM, Martinez FJ. Severe covid-19. N Engl J Med. 2020
    1. Hu H, Zhu L, Huang Z, Ji Q, Chatterjee M, Zhang W, Li N. Platelets enhance lymphocyte adhesion and infiltration into arterial thrombus. Thromb Haemost 20101041184–1192doi: 10.1160/TH10-05-0308
    1. Chapman LM, Aggrey AA, Field DJ, Srivastava K, Ture S, Yui K, Topham DJ, Baldwin WM, 3rd, Morrell CN. Platelets present antigen in the context of MHC class I. J Immunol 2012189916–923doi: 10.4049/jimmunol.1200580
    1. Shi G, Field DJ, Ko KA, Ture S, Srivastava K, Levy S, Kowalska MA, Poncz M, Fowell DJ, Morrell CN. Platelet factor 4 limits Th17 differentiation and cardiac allograft rejection. J Clin Invest 2014124543–552doi: 10.1172/JCI71858
    1. León-Ponte M, Ahern GP, O’Connell PJ. Serotonin provides an accessory signal to enhance T-cell activation by signaling through the 5-HT7 receptor. Blood 20071093139–3146doi: 10.1182/blood-2006-10-052787
    1. Iannacone M, Sitia G, Isogawa M, Marchese P, Castro MG, Lowenstein PR, Chisari FV, Ruggeri ZM, Guidotti LG. Platelets mediate cytotoxic T lymphocyte-induced liver damage. Nat Med 2005111167–1169doi: 10.1038/nm1317
    1. Li N, Ji Q, Hjemdahl P. Platelet-lymphocyte conjugation differs between lymphocyte subpopulations. J Thromb Haemost 20064874–881doi: 10.1111/j.1538-7836.2006.01817.x
    1. Luther N, Shahneh F, Brähler M, Krebs F, Jäckel S, Subramaniam S, Stanger C, Schönfelder T, Kleis-Fischer B, Reinhardt C, et al. Innate effector-memory T-cell activation regulates post-thrombotic vein wall inflammation and thrombus resolution. Circ Res 20161191286–1295doi: 10.1161/CIRCRESAHA.116.309301
    1. Cognasse F, Hamzeh-Cognasse H, Lafarge S, Chavarin P, Cogné M, Richard Y, Garraud O. Human platelets can activate peripheral blood B cells and increase production of immunoglobulins. Exp Hematol 2007351376–1387doi: 10.1016/j.exphem.2007.05.021
    1. Zhang Y, Xiao M, Zhang S, Xia P, Cao W, Jiang W, Chen H, Ding X, Zhao H, Zhang H, et al. Coagulopathy and antiphospholipid antibodies in patients with covid-19. N Engl J Med. 2020;382:e38. doi: 10.1056/NEJMc2007575.
    1. Swystun LL, Liaw PC. The role of leukocytes in thrombosis. Blood 2016128753–762doi: 10.1182/blood-2016-05-718114
    1. Clark SR, Ma AC, Tavener SA, McDonald B, Goodarzi Z, Kelly MM, Patel KD, Chakrabarti S, McAvoy E, Sinclair GD, et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat Med 200713463–469doi: 10.1038/nm1565
    1. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, Weinrauch Y, Zychlinsky A. Neutrophil extracellular traps kill bacteria. Science 20043031532–1535doi: 10.1126/science.1092385
    1. Narasaraju T, Yang E, Samy RP, Ng HH, Poh WP, Liew AA, Phoon MC, van Rooijen N, Chow VT. Excessive neutrophils and neutrophil extracellular traps contribute to acute lung injury of influenza pneumonitis. Am J Pathol 2011179199–210doi: 10.1016/j.ajpath.2011.03.013
    1. Massberg S, Grahl L, von Bruehl ML, Manukyan D, Pfeiler S, Goosmann C, Brinkmann V, Lorenz M, Bidzhekov K, Khandagale AB, et al. Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nat Med 201016887–896doi: 10.1038/nm.2184
    1. Martinod K, Wagner DD. Thrombosis: tangled up in NETs. Blood 20141232768–2776doi: 10.1182/blood-2013-10-463646
    1. Fuchs TA, Brill A, Duerschmied D, Schatzberg D, Monestier M, Myers DD, Jr, Wrobleski SK, Wakefield TW, Hartwig JH, Wagner DD. Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci U S A 201010715880–15885doi: 10.1073/pnas.1005743107
    1. Semeraro F, Ammollo CT, Morrissey JH, Dale GL, Friese P, Esmon NL, Esmon CT. Extracellular histones promote thrombin generation through platelet-dependent mechanisms: involvement of platelet TLR2 and TLR4. Blood 20111181952–1961doi: 10.1182/blood-2011-03-343061
    1. Maas C, Renné T. Coagulation factor XII in thrombosis and inflammation. Blood 20181311903–1909doi: 10.1182/blood-2017-04-569111
    1. Müller I, Klocke A, Alex M, Kotzsch M, Luther T, Morgenstern E, Zieseniss S, Zahler S, Preissner K, Engelmann B. Intravascular tissue factor initiates coagulation via circulating microvesicles and platelets. FASEB J 200317476–478doi: 10.1096/fj.02-0574fje
    1. Giesen PL, Rauch U, Bohrmann B, Kling D, Roqué M, Fallon JT, Badimon JJ, Himber J, Riederer MA, Nemerson Y. Blood-borne tissue factor: another view of thrombosis. Proc Natl Acad Sci U S A 1999962311–2315doi: 10.1073/pnas.96.5.2311
    1. Owens AP, 3rd, Mackman N. Microparticles in hemostasis and thrombosis. Circ Res 20111081284–1297doi: 10.1161/CIRCRESAHA.110.233056
    1. Merad M, Martin JC. Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages. Nat Rev Immunol 202020355–362doi: 10.1038/s41577-020-0331-4
    1. Stark K, Philippi V, Stockhausen S, Busse J, Antonelli A, Miller M, Schubert I, Hoseinpour P, Chandraratne S, von Brühl ML, et al. Disulfide HMGB1 derived from platelets coordinates venous thrombosis in mice. Blood 20161282435–2449doi: 10.1182/blood-2016-04-710632
    1. Yang X, Cheng X, Tang Y, Qiu X, Wang Z, Fu G, Wu J, Kang H, Wang J, Wang H, et al. The role of type 1 interferons in coagulation induced by gram-negative bacteria. Blood 20201351087–1100doi: 10.1182/blood.2019002282
    1. Perlman S, Dandekar AA. Immunopathogenesis of coronavirus infections: implications for SARS. Nat Rev Immunol 20055917–927doi: 10.1038/nri1732
    1. Blondonnet R, Constantin JM, Sapin V, Jabaudon M. A pathophysiologic approach to biomarkers in acute respiratory distress syndrome. Dis Markers. 2016;2016:3501373. doi: 10.1155/2016/3501373.
    1. Zuo Y, Yalavarthi S, Shi H, Gockman K, Zuo M, Madison JA, Blair C, Weber A, Barnes BJ, Egeblad M, et al. Neutrophil extracellular traps in covid-19. JCI Insight. 2020;5:e138999. doi: 10.1172/jci.insight.138999.
    1. Freedman JE, Loscalzo J. Platelet-monocyte aggregates: bridging thrombosis and inflammation. Circulation 20021052130–2132doi: 10.1161/01.cir.0000017140.26466.f5
    1. Bozza FA, Shah AM, Weyrich AS, Zimmerman GA. Amicus or adversary: platelets in lung biology, acute injury, and inflammation. Am J Respir Cell Mol Biol 200940123–134doi: 10.1165/rcmb.2008-0241TR
    1. Dale DC, Boxer L, Liles WC. The phagocytes: neutrophils and monocytes. Blood 2008112935–945doi: 10.1182/blood-2007-12-077917
    1. Celi A, Pellegrini G, Lorenzet R, De Blasi A, Ready N, Furie BC, Furie B. P-selectin induces the expression of tissue factor on monocytes. Proc Natl Acad Sci U S A 1994918767–8771doi: 10.1073/pnas.91.19.8767
    1. Neumann FJ, Zohlnhöfer D, Fakhoury L, Ott I, Gawaz M, Schömig A. Effect of glycoprotein IIb/IIIa receptor blockade on platelet-leukocyte interaction and surface expression of the leukocyte integrin Mac-1 in acute myocardial infarction. J Am Coll Cardiol 1999341420–1426doi: 10.1016/s0735-1097(99)00350-2
    1. Chatterjee M, von Ungern-Sternberg SN, Seizer P, Schlegel F, Büttcher M, Sindhu NA, Müller S, Mack A, Gawaz M. Platelet-derived CXCL12 regulates monocyte function, survival, differentiation into macrophages and foam cells through differential involvement of CXCR4-CXCR7. Cell Death Dis. 2015;6:e1989. doi: 10.1038/cddis.2015.233.
    1. Scheuerer B, Ernst M, Dürrbaum-Landmann I, Fleischer J, Grage-Griebenow E, Brandt E, Flad HD, Petersen F. The CXC-chemokine platelet factor 4 promotes monocyte survival and induces monocyte differentiation into macrophages. Blood 2000951158–1166
    1. Ali RA, Wuescher LM, Dona KR, Worth RG. Platelets mediate host defense against staphylococcus aureus through direct bactericidal activity and by enhancing macrophage activities. J Immunol 2017198344–351doi: 10.4049/jimmunol.1601178
    1. Tsimikas S, Brilakis ES, Miller ER, McConnell JP, Lennon RJ, Kornman KS, Witztum JL, Berger PB. Oxidized phospholipids, Lp(a) lipoprotein, and coronary artery disease. N Engl J Med 200535346–57doi: 10.1056/NEJMoa043175
    1. Imai Y, Kuba K, Neely GG, Yaghubian-Malhami R, Perkmann T, van Loo G, Ermolaeva M, Veldhuizen R, Leung YH, Wang H, et al. Identification of oxidative stress and Toll-like receptor 4 signaling as a key pathway of acute lung injury. Cell 2008133235–249doi: 10.1016/j.cell.2008.02.043
    1. Foley JH, Conway EM. Cross talk pathways between coagulation and inflammation. Circ Res 20161181392–1408doi: 10.1161/CIRCRESAHA.116.306853
    1. Magro C, Mulvey JJ, Berlin D, Nuovo G, Salvatore S, Harp J, Baxter-Stoltzfus A, Laurence J. Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: a report of five cases. Transl Res 20202201–13doi: 10.1016/j.trsl.2020.04.007
    1. Gao T, Hu M, Zhang X, Li H, Zhu L, Liu H, Dong Q, Zhang Z, Wang Z, Hu Y, et al. Highly pathogenic coronavirus n protein aggravates lung injury by masp-2-mediated complement over-activation. medRxiv. 2020 2020.2003.2029.20041962.
    1. Foreman KE, Vaporciyan AA, Bonish BK, Jones ML, Johnson KJ, Glovsky MM, Eddy SM, Ward PA. C5a-induced expression of P-selectin in endothelial cells. J Clin Invest 1994941147–1155doi: 10.1172/JCI117430
    1. Ritis K, Doumas M, Mastellos D, Micheli A, Giaglis S, Magotti P, Rafail S, Kartalis G, Sideras P, Lambris JD. A novel C5a receptor-tissue factor cross-talk in neutrophils links innate immunity to coagulation pathways. J Immunol 20061774794–4802doi: 10.4049/jimmunol.177.7.4794
    1. Wiedmer T, Esmon CT, Sims PJ. Complement proteins C5b-9 stimulate procoagulant activity through platelet prothrombinase. Blood 198668875–880
    1. Campbell CM, Kahwash R. Will complement inhibition be the new target in treating COVID-19-related systemic thrombosis? Circulation 20201411739–1741doi: 10.1161/CIRCULATIONAHA.120.047419
    1. Antoniak S, Mackman N. Multiple roles of the coagulation protease cascade during virus infection. Blood 20141232605–2613doi: 10.1182/blood-2013-09-526277
    1. Key NS, Vercellotti GM, Winkelmann JC, Moldow CF, Goodman JL, Esmon NL, Esmon CT, Jacob HS. Infection of vascular endothelial cells with herpes simplex virus enhances tissue factor activity and reduces thrombomodulin expression. Proc Natl Acad Sci U S A 1990877095–7099doi: 10.1073/pnas.87.18.7095
    1. Shibamiya A, Hersemeyer K, Schmidt Wöll T, Sedding D, Daniel JM, Bauer S, Koyama T, Preissner KT, Kanse SM. A key role for Toll-like receptor-3 in disrupting the hemostasis balance on endothelial cells. Blood 2009113714–722doi: 10.1182/blood-2008-02-137901
    1. Coughlin SR. Thrombin signalling and protease-activated receptors. Nature 2000407258–264doi: 10.1038/35025229
    1. Camerer E, Huang W, Coughlin SR. Tissue factor- and factor X-dependent activation of protease-activated receptor 2 by factor VIIa. Proc Natl Acad Sci U S A 2000975255–5260doi: 10.1073/pnas.97.10.5255
    1. Coughlin SR, Camerer E. PARticipation in inflammation. J Clin Invest 200311125–27doi: 10.1172/JCI17564
    1. Chen D, Carpenter A, Abrahams J, Chambers RC, Lechler RI, McVey JH, Dorling A. Protease-activated receptor 1 activation is necessary for monocyte chemoattractant protein 1-dependent leukocyte recruitment in vivo. J Exp Med 20082051739–1746doi: 10.1084/jem.20071427
    1. Sugama Y, Tiruppathi C, offakidevi K, Andersen TT, Fenton JW, 2nd, Malik AB. Thrombin-induced expression of endothelial P-selectin and intercellular adhesion molecule-1: a mechanism for stabilizing neutrophil adhesion. J Cell Biol 1992119935–944doi: 10.1083/jcb.119.4.935
    1. Kaplanski G, Marin V, Fabrigoule M, Boulay V, Benoliel AM, Bongrand P, Kaplanski S, Farnarier C. Thrombin-activated human endothelial cells support monocyte adhesion in vitro following expression of intercellular adhesion molecule-1 (ICAM-1; CD54) and vascular cell adhesion molecule-1 (VCAM-1; CD106). Blood 1998921259–1267
    1. Geisbert TW, Hensley LE, Jahrling PB, Larsen T, Geisbert JB, Paragas J, Young HA, Fredeking TM, Rote WE, Vlasuk GP. Treatment of Ebola virus infection with a recombinant inhibitor of factor VIIa/tissue factor: a study in rhesus monkeys. Lancet 20033621953–1958doi: 10.1016/S0140-6736(03)15012-X
    1. Bikdeli B, Madhavan MV, Jimenez D, Chuich T, Dreyfus I, Driggin E, Nigoghossian C, Ageno W, Madjid M, Guo Y, et al. ; Global COVID-19 Thrombosis Collaborative Group, Endorsed by the ISTH, NATF, ESVM, and the IUA, Supported by the ESC Working Group on Pulmonary Circulation and Right Ventricular Function COVID-19 and thrombotic or thromboembolic disease: implications for prevention, antithrombotic therapy, and follow-up: JACC State-of-the-art review. J Am Coll Cardiol 2020752950–2973doi: 10.1016/j.jacc.2020.04.031
    1. Connors JM, Levy JH. COVID-19 and its implications for thrombosis and anticoagulation. Blood 20201352033–2040doi: 10.1182/blood.2020006000
    1. Tang N, Bai H, Chen X, Gong J, Li D, Sun Z. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J Thromb Haemost 2020181094–1099doi: 10.1111/jth.14817
    1. Arnold K, Xu Y, Sparkenbaugh EM, Li M, Han X, Zhang X, Xia K, Piegore M, Zhang F, Zhang X, et al. Design of anti-inflammatory heparan sulfate to protect against acetaminophen-induced acute liver failure. Sci Transl Med. 2020;12:eaav8075. doi: 10.1126/scitranslmed.aav8075.
    1. Poterucha TJ, Libby P, Goldhaber SZ. More than an anticoagulant: Do heparins have direct anti-inflammatory effects? Thromb Haemost 2017117437–444doi: 10.1160/TH16-08-0620
    1. Liu J, Thorp SC. Cell surface heparan sulfate and its roles in assisting viral infections. Med Res Rev 2002221–25doi: 10.1002/med.1026
    1. Shukla D, Spear PG. Herpesviruses and heparan sulfate: an intimate relationship in aid of viral entry. J Clin Invest 2001108503–510doi: 10.1172/JCI13799
    1. Lang J, Yang N, Deng J, Liu K, Yang P, Zhang G, Jiang C. Inhibition of SARS pseudovirus cell entry by lactoferrin binding to heparan sulfate proteoglycans. PLoS One. 2011;6:e23710. doi: 10.1371/journal.pone.0023710.
    1. Milewska A, Zarebski M, Nowak P, Stozek K, Potempa J, Pyrc K. Human coronavirus NL63 utilizes heparan sulfate proteoglycans for attachment to target cells. J Virol 20148813221–13230doi: 10.1128/JVI.02078-14
    1. Mycroft-West C, Su D, Elli S, Guimond S, Miller G, Turnbull J, Yates E, Guerrini M, Fernig D, Lima M, Skidmore M. The 2019 coronavirus (SARS-cov-2) surface protein (spike) s1 receptor binding domain undergoes conformational change upon heparin binding. bioRxiv. 2020
    1. Belouzard S, Chu VC, Whittaker GR. Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites. Proc Natl Acad Sci U S A 20091065871–5876doi: 10.1073/pnas.0809524106
    1. Riker RR, May TL, Fraser GL, Gagnon DJ, Bandara M, Zemrak W, Seder DB. Heparin-induced thrombocytopenia with thrombosis in covid-19 adult respiratory distress syndrome. Research and Practice in Thrombosis and Haemostasis. n/a.
    1. Renné T, Stavrou EX. Roles of factor XII in innate immunity. Front Immunol. 2019;10:2011. doi: 10.3389/fimmu.2019.02011.
    1. Larsson M, Rayzman V, Nolte MW, Nickel KF, Björkqvist J, Jämsä A, Hardy MP, Fries M, Schmidbauer S, Hedenqvist P, et al. A factor XIIa inhibitory antibody provides thromboprotection in extracorporeal circulation without increasing bleeding risk. Sci Transl Med. 2014;6:222ra17. doi: 10.1126/scitranslmed.3006804.
    1. Pixley RA, De La Cadena R, Page JD, Kaufman N, Wyshock EG, Chang A, Taylor FB, Jr, Colman RW. The contact system contributes to hypotension but not disseminated intravascular coagulation in lethal bacteremia. In vivo use of a monoclonal anti-factor XII antibody to block contact activation in baboons. J Clin Invest 19939161–68doi: 10.1172/JCI116201
    1. Shatzel JJ, DeLoughery EP, Lorentz CU, Tucker EI, Aslan JE, Hinds MT, Gailani D, Weitz JI, McCarty OJT, Gruber A. The contact activation system as a potential therapeutic target in patients with COVID-19. Res Pract Thromb Haemost 20204500–505doi: 10.1002/rth2.12349
    1. Jansen PM, Pixley RA, Brouwer M, de Jong IW, Chang AC, Hack CE, Taylor FB, Jr, Colman RW. Inhibition of factor XII in septic baboons attenuates the activation of complement and fibrinolytic systems and reduces the release of interleukin-6 and neutrophil elastase. Blood 1996872337–2344
    1. Renné T, Schmaier AH, Nickel KF, Blombäck M, Maas C. In vivo roles of factor XII. Blood 20121204296–4303doi: 10.1182/blood-2012-07-292094
    1. Whyte CS, Morrow GB, Mitchell JL, Chowdary P, Mutch NJ. Fibrinolytic abnormalities in acute respiratory distress syndrome (ARDS) and versatility of thrombolytic drugs to treat covid-19. J Thromb Haemost 2020181548–1555doi: 10.1111/jth.14872
    1. Wang J, Hajizadeh N, Moore EE, McIntyre RC, Moore PK, Veress LA, Yaffe MB, Moore HB, Barrett CD. Tissue plasminogen activator (tpa) treatment for covid-19 associated acute respiratory distress syndrome (ARDS): a case series. J Thromb Haemost 2020181752–1755doi: 10.1111/jth.14828
    1. Liu C, Ma Y, Su Z, Zhao R, Zhao X, Nie HG, Xu P, Zhu L, Zhang M, Li X, et al. Meta-analysis of preclinical studies of fibrinolytic therapy for acute lung injury. Front Immunol. 2018;9:1898. doi: 10.3389/fimmu.2018.01898.
    1. Hardaway RM, Harke H, Tyroch AH, Williams CH, Vazquez Y, Krause GF. Treatment of severe acute respiratory distress syndrome: a final report on a phase I study. Am Surg 200167377–382
    1. Meyer G, Vicaut E, Danays T, Agnelli G, Becattini C, Beyer-Westendorf J, Bluhmki E, Bouvaist H, Brenner B, Couturaud F, et al. ; PEITHO Investigators Fibrinolysis for patients with intermediate-risk pulmonary embolism. N Engl J Med 20143701402–1411doi: 10.1056/NEJMoa1302097
    1. Wang L, Li H, Gu X, Wang Z, Liu S, Chen L. Effect of antiplatelet therapy on acute respiratory distress syndrome and mortality in critically ill patients: a meta-analysis. PLoS One. 2016;11:e0154754. doi: 10.1371/journal.pone.0154754.
    1. Ouyang Y, Wang Y, Liu B, Ma X, Ding R. Effects of antiplatelet therapy on the mortality rate of patients with sepsis: A meta-analysis. J Crit Care 201950162–168doi: 10.1016/j.jcrc.2018.12.004
    1. Carestia A, Davis RP, Grosjean H, Lau MW, Jenne CN. Acetylsalicylic acid inhibits intravascular coagulation during Staphylococcus aureus-induced sepsis in mice. Blood 20201351281–1286doi: 10.1182/blood.2019002783
    1. Liu X, Li Z, Liu S, Sun J, Chen Z, Jiang M, Zhang Q, Wei Y, Wang X, Huang YY, et al. Potential therapeutic effects of dipyridamole in the severely ill patients with covid-19. Acta Pharm Sin B. 2020 doi: 10.1016/j.apsb.2020.04.008.
    1. Asakura H, Ogawa H. Potential of heparin and nafamostat combination therapy for COVID-19. J Thromb Haemost 2020181521–1522doi: 10.1111/jth.14858
    1. Yamamoto M, Matsuyama S, Li X, Takeda M, Kawaguchi Y, Inoue JI, Matsuda Z. Identification of nafamostat as a potent inhibitor of middle east respiratory syndrome coronavirus S protein-mediated membrane fusion using the split-protein-based cell-cell fusion assay. Antimicrob Agents Chemother 2016606532–6539doi: 10.1128/AAC.01043-16

Source: PubMed

3
Iratkozz fel