Detection Methodologies for Pathogen and Toxins: A Review

Md Eshrat E Alahi, Subhas Chandra Mukhopadhyay, Md Eshrat E Alahi, Subhas Chandra Mukhopadhyay

Abstract

Pathogen and toxin-contaminated foods and beverages are a major source of illnesses, even death, and have a significant economic impact worldwide. Human health is always under a potential threat, including from biological warfare, due to these dangerous pathogens. The agricultural and food production chain consists of many steps such as harvesting, handling, processing, packaging, storage, distribution, preparation, and consumption. Each step is susceptible to threats of environmental contamination or failure to safeguard the processes. The production process can be controlled in the food and agricultural sector, where smart sensors can play a major role, ensuring greater food quality and safety by low cost, fast, reliable, and profitable methods of detection. Techniques for the detection of pathogens and toxins may vary in cost, size, and specificity, speed of response, sensitivity, and precision. Smart sensors can detect, analyse and quantify at molecular levels contents of different biological origin and ensure quality of foods against spiking with pesticides, fertilizers, dioxin, modified organisms, anti-nutrients, allergens, drugs and so on. This paper reviews different methodologies to detect pathogens and toxins in foods and beverages.

Keywords: bacterial infection; biosensors; chemical sensors; endotoxin; pathogen; smart sensors; toxin.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Steps of (a) PCR cycle and (b) DNA extraction.
Figure 2
Figure 2
Immunology-based technique using indirect ELISA, sandwich ELISA, and competitive ELISA through schematic diagrams.
Figure 3
Figure 3
Schematic of two different bioreceptors: (A) antigen and (B) nuclei acid [68].
Figure 4
Figure 4
Detection of a pathogen by the phage-based method [69].
Figure 5
Figure 5
(A) Capturing the pathogen on the sensing platform; and (B) varieties of bio-probe surface for pathogen detection [70].
Figure 6
Figure 6
(a) Stages of a biosensor; and (b) classification of biosensors for different transducers [20].
Figure 7
Figure 7
(a) Schematic diagram of a tapered optical biosensor; (b) Schematic diagram of a tapered tip optical biosensor [89].
Figure 8
Figure 8
Schematic diagram of an electrochemical biosensor. (a) Recognition molecules are immobilized on the electrode surface; (b) antigen bonds with the recognition element; and (c,d) electrical signal is generated due to the redox reaction in between the binding antigen and the recognition element [89].
Figure 9
Figure 9
Steps of nanomaterial-based biosensing of pathogen.

References

    1. Dwivedi H.P., Jaykus L.-A. Detection of pathogens in foods: The current state-of-the-art and future directions. Crit. Rev. Microbiol. 2011;37:40–63. doi: 10.3109/1040841X.2010.506430.
    1. Sayad A.A., Ibrahim F., Uddin S.M., Pei K.X., Mohktar M.S., Madou M., Thong K.L. A microfluidic lab-on-a-disc integrated loop mediated isothermal amplification for foodborne pathogen detection. Sens. Actuators B Chem. 2016;227:600–609. doi: 10.1016/j.snb.2015.10.116.
    1. Oliver S.P., Jayarao B.M., Almeida R.A. Foodborne pathogens in milk and the dairy farm environment: Food safety and public health implications. Foodbourne Pathog. Dis. 2005;2:115–129. doi: 10.1089/fpd.2005.2.115.
    1. Services U.S.D.O.H.H. Cdc: Estimates of Foodborne Illness in the United States. [(accessed on 14 August 2017)]; Available online: .
    1. On S., Lim E., Lopez L., Cressey P., Pirie R. Annual Report Concerning Foodborne Disease in New Zealand. Enviromental Science and Research Limited (ESR); Christchurch, New Zealand: 2011. p. 130.
    1. Organization W.H. Foodborne Diseases. [(accessed on 14 August 2017)]; Available online:
    1. Kirk M.D., Pires S.M., Black R.E., Caipo M., Crump J.A., Devleesschauwer B., Döpfer D., Fazil A., Fischer-Walker C.L., Hald T. World health organization estimates of the global and regional disease burden of 22 foodborne bacterial, protozoal, and viral diseases, 2010: A data synthesis. PLoS Med. 2015;12:e1001921. doi: 10.1371/journal.pmed.1001921.
    1. Scallan E., Hoekstra R.M., Angulo F.J., Tauxe R.V., Widdowson M.A., Roy S.L., Jones J.L., Griffin P.M. Foodborne illness acquired in the united states-major pathogens. Emerg. Infect. Dis. 2011;17:7–15. doi: 10.3201/eid1701.P11101.
    1. Butler A.J., Thomas M.K., Pintar K.D. Expert elicitation as a means to attribute 28 enteric pathogens to foodborne, waterborne, animal contact, and person-to-person transmission routes in canada. Foodborne Pathog. Dis. 2015;12:335–344. doi: 10.1089/fpd.2014.1856.
    1. Kirk M., Glass K., Ford L., Brown K., Hall G. Foodborne Illness in Australia: Annual Incidence Circa 2000. Australian Government Department of Health and Aging; Canberra, Australia: 2005. p. 57.
    1. Vally H., Glass K., Ford L., Hall G., Kirk M.D., Shadbolt C., Veitch M., Fullerton K.E., Musto J., Becker N. Proportion of illness acquired by foodborne transmission for nine enteric pathogens in australia: An expert elicitation. Foodborne Pathog. Dis. 2014;11:727–733. doi: 10.1089/fpd.2014.1746.
    1. Adak G.K., Long S.M., O’Brien S.J. Trends in indigenous foodborne disease and deaths, england and wales: 1992 to 2000. Gut. 2002;51:832–841. doi: 10.1136/gut.51.6.832.
    1. Havelaar A.H., Galindo A.V., Kurowicka D., Cooke R.M. Attribution of foodborne pathogens using structured expert elicitation. Foodborne Pathog. Dis. 2008;5:649–659. doi: 10.1089/fpd.2008.0115.
    1. Alocilja E., Radke S. Market analysis of biosensor for food safety. Biosens. Bioelectron. 2003;18:841–846. doi: 10.1016/S0956-5663(03)00009-5.
    1. Wagner A.B. Bacterial Food Poisoning. [(accessed on 14 August 2017)]; Available online:
    1. Seydel U., Schromm A.B., Blunck R., Brandenburg K. Chemical structure, molecular conformation, and bioactivity of endotoxins. Chem. Immunol. 2000;74:5–24.
    1. Lazcka O., Del Campo F.J., Munoz F.X. Pathogen detection: A perspective of traditional methods and biosensors. Biosens. Bioelectron. 2007;22:1205–1217. doi: 10.1016/j.bios.2006.06.036.
    1. Wolff B.J., Bramley A.M., Thurman K.A., Whitney C.G., Whitaker B., Self W.H., Arnold S.R., Trabue C., Wunderink R.G., McCullers J. Improved detection of respiratory pathogens by use of high-quality sputum with taqman array card technology. J. Clin. Microbiol. 2017;55:110–121. doi: 10.1128/JCM.01805-16.
    1. Chen C., Liu P., Zhao X., Du W., Feng X., Liu B.-F. A self-contained microfluidic in-gel loop-mediated isothermal amplification for multiplexed pathogen detection. Sens. Actuators B Chem. 2017;239:1–8. doi: 10.1016/j.snb.2016.07.164.
    1. Velusamy V., Arshak K., Korostynska O., Oliwa K., Adley C. An overview of foodborne pathogen detection: In the perspective of biosensors. Biotechnol. Adv. 2010;28:232–254. doi: 10.1016/j.biotechadv.2009.12.004.
    1. Leonard P., Hearty S., Brennan J., Dunne L., Quinn J., Chakraborty T., O’Kennedy R. Advances in biosensors for detection of pathogens in food and water. Enzyme Microb. Technol. 2003;32:3–13. doi: 10.1016/S0141-0229(02)00232-6.
    1. Lee K.-M., Runyon M., Herrman T.J., Phillips R., Hsieh J. Review of salmonella detection and identification methods: Aspects of rapid emergency response and food safety. Food Control. 2015;47:264–276. doi: 10.1016/j.foodcont.2014.07.011.
    1. Leoni E., Legnani P.P. Comparison of selective procedures for isolation and enumeration of legionella species from hot water systems. J. Appl. Microbiol. 2001;90:27–33. doi: 10.1046/j.1365-2672.2001.01178.x.
    1. Ratnam S., March S.B., Ahmed R., Bezanson G.S., Kasatiya S. Characterization of Escherichia coli serotype 0157:H7. J. Clin. Microbiol. 1988;26:2006–2012.
    1. Fratamico P.M. Comparison of culture, polymerase chain reaction (PCR), taqman salmonella, and transia card salmonella assays for detection of salmonella spp. in naturally-contaminated ground chicken, ground turkey, and ground beef. Mol. Cell. Probes. 2003;17:215–221. doi: 10.1016/S0890-8508(03)00056-2.
    1. Oh S.J., Park B.H., Jung J.H., Choi G., Lee D.C., Seo T.S. Centrifugal loop-mediated isothermal amplification microdevice for rapid, multiplex and colorimetric foodborne pathogen detection. Biosens. Bioelectron. 2016;75:293–300. doi: 10.1016/j.bios.2015.08.052.
    1. Jensen M.A., Webster J.A., Straus N. Rapid identification of bacteria on the basis of polymerase chain reaction-amplified ribosomal DNA spacer polymorphisms. Appl. Environ. Microbiol. 1993;59:945–952.
    1. Belgrader P., Benett W., Hadley D., Richards J., Stratton P., Mariella R., Milanovich F. Infectious disease—PCR detection of bacteria in seven minutes. Science. 1999;284:449–450. doi: 10.1126/science.284.5413.449.
    1. Naravaneni R., Jamil K. Rapid detection of food-borne pathogens by using molecular techniques. J. Med. Microbiol. 2005;54:51–54. doi: 10.1099/jmm.0.45687-0.
    1. Russell S., Frasca S., Sunila I., French R.A. Application of a multiplex PCR for the detection of protozoan pathogens of the eastern oyster crassostrea virginica in field samples. Dis. Aquat. Org. 2004;59:85–91. doi: 10.3354/dao059085.
    1. Lee S.H., Joung M., Yoon S., Choi K., Park W.Y., Yu J.R. Multiplex PCR detection of waterborne intestinal protozoa: Microsporidia, cyclospora, and cryptosporidium. Korean J. Parasitol. 2010;48:297–301. doi: 10.3347/kjp.2010.48.4.297.
    1. Traore O., Arnal C., Mignotte B., Maul A., Laveran H., Billaudel S., Schwartzbrod L. Reverse transcriptase PCR detection of astrovirus, hepatitis a virus, and poliovirus in experimentally contaminated mussels: Comparison of several extraction and concentration methods. Appl. Environ. Microbiol. 1998;64:3118–3122.
    1. Morales-Rayas R., Wolffs P.F.G., Griffiths M.W. Simultaneous separation and detection of hepatitis a virus and norovirus in produce. Int. J. Food Microbiol. 2010;139:48–55. doi: 10.1016/j.ijfoodmicro.2010.02.011.
    1. Yaron S., Matthews K.R. A reverse transcriptase-polymerase chain reaction assay for detection of viable Escherichia coli O157: H7: Investigation of specific target genes. J. Appl. Microbiol. 2002;92:633–640. doi: 10.1046/j.1365-2672.2002.01563.x.
    1. Choi S.H., Lee S.B. Development of reverse transcriptase-polymerase chain reaction of fima gene to detect viable salmonella in milk. J. Anim. Sci. Technol. 2004;46:841–848.
    1. Lambertz S.T., Nilsson C., Hallanvuo S., Lindblad M. Real-time PCR method for detection of pathogenic yersinia enterocolitica in food. Appl. Environ. Microbiol. 2008;74:6060–6067. doi: 10.1128/AEM.00405-08.
    1. Mukhopadhyay A., Mukhopadhyay U.K. Novel multiplex PCR approaches for the simultaneous detection of human pathogens: Escherichia coli O157: H7 and listeria monocytogenes. J. Microbiol. Methods. 2007;68:193–200. doi: 10.1016/j.mimet.2006.07.009.
    1. Iqbal S.S., Mayo M.W., Bruno J.G., Bronk B.V., Batt C.A., Chambers J.P. A review of molecular recognition technologies for detection of biological threat agents. Biosens. Bioelectron. 2000;15:549–578. doi: 10.1016/S0956-5663(00)00108-1.
    1. Gracias K.S., McKillip J.L. A review of conventional detection and enumeration methods for pathogenic bacteria in food. Can. J. Microbiol. 2004;50:883–890. doi: 10.1139/w04-080.
    1. Chen C.S., Durst R.A. Simultaneous detection of Escherichia coli O157: H7, salmonella spp. And listeria monocytogenes with an array-based immunosorbent assay using universal protein g-liposomal nanovesicles. Talanta. 2006;69:232–238. doi: 10.1016/j.talanta.2005.09.036.
    1. Magliulo M., Simoni P., Guardigli M., Michelini E., Luciani M., Lelli R., Roda A. A rapid multiplexed chemiluminescent immunoassay for the detection of Escherichia coli O157: H7, yersinia enterocolitica, salmonella typhimurium, and listeria monocytogenes pathogen bacteria. J. Agric. Food Chem. 2007;55:4933–4939. doi: 10.1021/jf063600b.
    1. Qadri A., Ghosh S., Prakash K., Kumar R., Moudgil K.D., Talwar G.P. Sandwich enzyme immunoassays for detection of salmonella-typhi. J. Immunoass. 1990;11:251–270. doi: 10.1080/01971529008053272.
    1. Chapman P.A., Malo A.T.C., Siddons C.A., Harkin M. Use of commercial enzyme immunoassays and immunomagnetic separation systems for detecting Escherichia coli O157 in bovine fecal samples. Appl. Environ. Microbiol. 1997;63:2549–2553.
    1. Rozand C., Feng P.C.H. Specificity analysis of a novel phage-derived ligand in an enzyme-linked fluorescent assay for the detection of Escherichia coli O157: H7. J. Food Protect. 2009;72:1078–1081. doi: 10.4315/0362-028X-72.5.1078.
    1. De Giusti M., Tufi D., Aurigemma C., Del Cimmuto A., Trinti F., Mannocci A., Boccia A. Detection of Escherichia coli O157 in raw and cooked meat: Comparison of conventional direct culture method and enzyme linked fluorescent assay (ELFA) Ital. J. Public Health. 2011;8:28.
    1. Vazquez F., Gonzalez E.A., Garabal J.I., Valderrama S., Blanco J., Baloda S.B. Development and evaluation of an ELISA to detect Escherichia coli K88 (F4) fimbrial antibody levels. J. Med. Microbiol. 1996;44:453–463. doi: 10.1099/00222615-44-6-453.
    1. Song C., Liu C., Wu S., Li H., Guo H., Yang B., Qiu S., Li J., Liu L., Zeng H. Development of a lateral flow colloidal gold immunoassay strip for the simultaneous detection of shigella boydii and Escherichia coli O157: H7 in bread, milk and jelly samples. Food Control. 2016;59:345–351. doi: 10.1016/j.foodcont.2015.06.012.
    1. Abdel-Hamid I., Ivnitski D., Atanasov P., Wilkins E. Highly sensitive flow-injection immunoassay system for rapid detection of bacteria. Anal. Chim. Acta. 1999;399:99–108. doi: 10.1016/S0003-2670(99)00580-2.
    1. Valdivieso-Garcia A., Desruisseau A., Riche E., Fukuda S., Tatsumi H. Evaluation of a 24-h bioluminescent enzyme immunoassay for the rapid detection of salmonella in chicken carcass rinses. J. Food Protect. 2003;66:1996–2004. doi: 10.4315/0362-028X-66.11.1996.
    1. Rasooly A., Rasooly R.S. Detection and analysis of staphylococcal enterotoxin a in food by western immunoblotting. Int. J. Food Microbiol. 1998;41:205–212. doi: 10.1016/S0168-1605(98)00050-6.
    1. Meng J.H., Doyle M.P. Introduction. Microbiological food safety. Microbes Infect. 2002;4:395–397. doi: 10.1016/S1286-4579(02)01552-6.
    1. Ding J.L., Ho B. Endotoxin Detection—From Limulus Amebocyte Lysate to Recombinant Factor C. Volume 53 Springer; Berlin, Germany: 2010.
    1. Thorne P.S., Perry S.S., Saito R., O’Shaughnessy P.T., Mehaffy J., Metwali N., Keefe T., Donham K.J., Reynolds S.J. Evaluation of the limulus amebocyte lysate and recombinant factor c assays for assessment of airborne endotoxin. Appl. Environ. Microbiol. 2010;76:4988–4995. doi: 10.1128/AEM.00527-10.
    1. Bang F.B., Frost J.L. The toxic effect of a marine bacterium on limulus and the formation of blood clots. Mar. Biol. Lab. 1953;105:361–362.
    1. Alhogail S., Suaifan G.A., Zourob M. Rapid colorimetric sensing platform for the detection of listeria monocytogenes foodborne pathogen. Biosens. Bioelectron. 2016;86:1061–1066. doi: 10.1016/j.bios.2016.07.043.
    1. Kotanen C.N., Moussy F.G., Carrara S., Guiseppi-Elie A. Implantable enzyme amperometric biosensors. Biosens. Bioelectron. 2012;35:14–26. doi: 10.1016/j.bios.2012.03.016.
    1. Chemburu S., Wilkins E., Abdel-Hamid I. Detection of pathogenic bacteria in food samples using highly-dispersed carbon particles. Biosens. Bioelectron. 2005;21:491–499. doi: 10.1016/j.bios.2004.11.025.
    1. Holford T.R.J., Davis F., Higson S.P.J. Recent trends in antibody based sensors. Biosens. Bioelectron. 2012;34:12–24. doi: 10.1016/j.bios.2011.10.023.
    1. Silbert L., Ben Shlush I., Israel E., Porgador A., Kolusheva S., Jelinek R. Rapid chromatic detection of bacteria by use of a new biomimetic polymer sensor. Appl. Environ. Microbiol. 2006;72:7339–7344. doi: 10.1128/AEM.01324-06.
    1. Banerjee P., Bhunia A.K. Cell-based biosensor for rapid screening of pathogens and toxins. Biosens. Bioelectron. 2010;26:99–106. doi: 10.1016/j.bios.2010.05.020.
    1. Chen S.H., Wu V.C.H., Chuang Y.C., Lin C.S. Using oligonucleotide-functionalized au nanoparticles to rapidly detect foodborne pathogens on a piezoelectric biosensor. J. Microbiol. Methods. 2008;73:7–17. doi: 10.1016/j.mimet.2008.01.004.
    1. Zhang D., Alocilja E.C. Characterization of nanoporous silicon-based DNA biosensor for the detection of salmonella enteritidis. IEEE Sens. J. 2008;8:775–780. doi: 10.1109/JSEN.2008.923037.
    1. Zink R., Loessner M.J. Classification of virulent and temperate bacteriophages of listeria spp. On the basis of morphology and protein analysis. Appl. Environ. Microbiol. 1992;58:296–302.
    1. Balasubramanian S., Sorokulova I.B., Vodyanoy V.J., Simonian A.L. Lytic phage as a specific and selective probe for detection of staphylococcus aureus—A surface plasmon resonance spectroscopic study. Biosens. Bioelectron. 2007;22:948–955. doi: 10.1016/j.bios.2006.04.003.
    1. Goodridge L., Chen J., Griffiths M. The use of a fluorescent bacteriophage assay for detection of Escherichia coli O157: H7 in inoculated ground beef and raw milk. Int. J. Food Microbiol. 1999;47:43–50. doi: 10.1016/S0168-1605(99)00010-0.
    1. Li S., Li Y., Chen H., Horikawa S., Shen W., Simonian A., Chin B.A. Direct detection of salmonella typhimurium on fresh produce using phage-based magnetoelastic biosensors. Biosens. Bioelectron. 2010;26:1313–1319. doi: 10.1016/j.bios.2010.07.029.
    1. Edgar R., McKinstry M., Hwang J., Oppenheim A.B., Fekete R.A., Giulian G., Merril C., Nagashima K., Adhya S. High-sensitivity bacterial detection using biotin-tagged phage and quantum-dot nanocomplexes. Proc. Natl. Acad. Sci. USA. 2006;103:4841–4845. doi: 10.1073/pnas.0601211103.
    1. Vo-Dinh T. Biomems and Biomedical Nanotechnology. Springer; Berlin, Germany: 2006. Biosensors and biochips; pp. 1–20.
    1. Singh A., Poshtiban S., Evoy S. Recent advances in bacteriophage based biosensors for food-borne pathogen detection. Sensors. 2013;13:1763–1786. doi: 10.3390/s130201763.
    1. Singh A., Arutyunov D., Szymanski C.M., Evoy S. Bacteriophage based probes for pathogen detection. Analyst. 2012;137:3405–3421. doi: 10.1039/c2an35371g.
    1. Narsaiah K., Jha S.N., Bhardwaj R., Sharma R., Kumar R. Optical biosensors for food quality and safety assurance—A review. J. Food Sci. Technol. 2012;49:383–406. doi: 10.1007/s13197-011-0437-6.
    1. Tripathi S.M., Bock W.J., Mikulic P., Chinnappan R., Ng A., Tolba M., Zourob M. Long period grating based biosensor for the detection of Escherichia coli bacteria. Biosens. Bioelectron. 2012;35:308–312. doi: 10.1016/j.bios.2012.03.006.
    1. Bharadwaj R., Sai V.V.R., Thakare K., Dhawangale A., Kundu T., Titus S., Verma P.K., Mukherji S. Evanescent wave absorbance based fiber optic biosensor for label-free detection of E. coli at 280 nm wavelength. Biosens. Bioelectron. 2011;26:3367–3370. doi: 10.1016/j.bios.2010.12.014.
    1. Valadez A.M., Lana C.A., Tu S.I., Morgan M.T., Bhunia A.K. Evanescent wave fiber optic biosensor for salmonella detection in food. Sensors. 2009;9:5810–5824. doi: 10.3390/s90705810.
    1. Ko S.H., Grant S.A. A novel fret-based optical fiber biosensor for rapid detection of salmonella typhimurium. Biosens. Bioelectron. 2006;21:1283–1290. doi: 10.1016/j.bios.2005.05.017.
    1. Geng T., Morgan M.T., Bhunia A.K. Detection of low levels of listeria monocytogenes cells by using a fiber-optic immunosensor. Appl. Environ. Microbiol. 2004;70:6138–6146. doi: 10.1128/AEM.70.10.6138-6146.2004.
    1. Ohk S.H., Koo O.K., Sen T., Yamamoto C.M., Bhunia A.K. Antibody-aptamer functionalized fibre-optic biosensor for specific detection of listeria monocytogenes from food. J. Appl. Microbiol. 2010;109:808–817. doi: 10.1111/j.1365-2672.2010.04709.x.
    1. Villalobos P., Chavez M.I., Olguin Y., Sanchez E., Valdes E., Galindo R., Young M.E. The application of polymerized lipid vesicles as colorimetric biosensors for real-time detection of pathogens in drinking water. Electron. J. Biotechnol. 2012;15:4. doi: 10.2225/vol15-issue1-fulltext-5.
    1. Gnanaprakasa T.J., Oyarzabal O.A., Olsen E.V., Pedrosa V.A., Simonian A.L. Tethered DNA scaffolds on optical sensor platforms for detection of hipO gene from Campylobacter jejuni. Sens. Actuators B Chem. 2011;156:304–311. doi: 10.1016/j.snb.2011.04.037.
    1. Su W., Lin M., Lee H., Cho M., Choe W.S., Lee Y. Determination of endotoxin through an aptamer-based impedance biosensor. Biosens. Bioelectron. 2012;32:32–36. doi: 10.1016/j.bios.2011.11.009.
    1. Marazuela M.D., Moreno-Bondi M.C. Fiber-optic biosensors—An overview. Anal. Bioanal. Chem. 2002;372:664–682. doi: 10.1007/s00216-002-1235-9.
    1. Länge K., Rapp B.E., Rapp M. Surface acoustic wave biosensors: A review. Anal. Bioanal. Chem. 2008;391:1509–1519. doi: 10.1007/s00216-008-1911-5.
    1. Wang Y.X., Ye Z.Z., Si C.Y., Ying Y.B. Subtractive inhibition assay for the detection of E. Coli O157: H7 using surface plasmon resonance. Sensors. 2011;11:2728–2739. doi: 10.3390/s110302728.
    1. Torun O., Boyaci I.H., Temur E., Tamer U. Comparison of sensing strategies in spr biosensor for rapid and sensitive enumeration of bacteria. Biosens. Bioelectron. 2012;37:53–60. doi: 10.1016/j.bios.2012.04.034.
    1. Zhang D.C., Yan Y.R., Li Q., Yu T.X., Cheng W., Wang L., Ju H.X., Ding S.J. Label-free and high-sensitive detection of salmonella using a surface plasmon resonance DNA-based biosensor. J. Biotechnol. 2012;160:123–128. doi: 10.1016/j.jbiotec.2012.03.024.
    1. Ramachandran A., Wang S., Clarke J., Ja S.J., Goad D., Wald L., Flood E.M., Knobbe E., Hryniewicz J.V., Chu S.T., et al. A universal biosensing platform based on optical micro-ring resonators. Biosens. Bioelectron. 2008;23:939–944. doi: 10.1016/j.bios.2007.09.007.
    1. Goeller L.J., Riley M.R. Discrimination of bacteria and bacteriophages by raman spectroscopy and surface-enhanced raman spectroscopy. Appl. Spectrosc. 2007;61:679–685. doi: 10.1366/000370207781393217.
    1. Li Y., Dick W.A., Tuovinen O.H. Fluorescence microscopy for visualization of soil microorganisms—A review. Biol. Fertil. Soils. 2004;39:301–311.
    1. Sharma H., Mutharasan R. Review of biosensors for foodborne pathogens and toxins. Sens. Actuators B Chem. 2013;183:535–549. doi: 10.1016/j.snb.2013.03.137.
    1. Wang D., Wang Z., Chen J., Kinchla A.J., Nugen S.R. Rapid detection of salmonella using a redox cycling-based electrochemical method. Food Control. 2016;62:81–88. doi: 10.1016/j.foodcont.2015.10.021.
    1. Arora P., Sindhu A., Dilbaghi N., Chaudhury A. Biosensors as innovative tools for the detection of food borne pathogens. Biosens. Bioelectron. 2011;28:1–12. doi: 10.1016/j.bios.2011.06.002.
    1. Nag A., Zia A.I., Li X., Mukhopadhyay S.C., Kosel J. Novel sensing approach for LPG leakage detection: Part II: Effects of particle size, composition, and coating layer thickness. IEEE Sens. J. 2016;16:1088–1094. doi: 10.1109/JSEN.2015.2496550.
    1. Nag A., Zia A.I., Li X., Mukhopadhyay S.C., Kosel J. Novel sensing approach for LPG leakage detection: Part I: Operating mechanism and preliminary results. IEEE Sens. J. 2016;16:996–1003. doi: 10.1109/JSEN.2015.2496400.
    1. Aizawa M. Principles and applications of electrochemical and optical biosensors. Anal. Chim. Acta. 1991;250:249–256. doi: 10.1016/0003-2670(91)85073-2.
    1. Gau J.J., Lan E.H., Dunn B., Ho C.M., Woo J.C.S. A mems based amperometric detector for E. coli bacteria using self-assembled monolayers. Biosens. Bioelectron. 2001;16:745–755. doi: 10.1016/S0956-5663(01)00216-0.
    1. Li Y., Cheng P., Gong J.H., Fang L.C., Deng J., Liang W.B., Zheng J.S. Amperometric immunosensor for the detection of Escherichia coli O157: H7 in food specimens. Anal. Biochem. 2012;421:227–233. doi: 10.1016/j.ab.2011.10.049.
    1. Jizhou S., Chao B., Lan Q., Shanhong X. A micro amperometric immunosensor immobilized with electropolymerized staphylococcal protein a for the detection of salmonella typhimurium; Proceedings of the 2009 4th Ieee International Conference on Nano/Micro Engineered and Molecular Systems; Shenzhen, China. 5–8 January 2009; pp. 295–298.
    1. Pohanka M., Skladai P. Electrochemical biosensors—Principles and applications. J. Appl. Biomed. 2008;6:57–64.
    1. Neufeld T., Schwartz-Mittelmann A., Biran D., Ron E., Rishpon J. Combined phage typing and amperometric detection of released enzymatic activity for the specific identification and quantification of bacteria. Anal. Chem. 2003;75:580–585. doi: 10.1021/ac026083e.
    1. Yang L., Bashir R. Electrical/electrochemical impedance for rapid detection of foodborne pathogenic bacteria. Biotechnol. Adv. 2008;26:135–150. doi: 10.1016/j.biotechadv.2007.10.003.
    1. Barsoukov E., Macdonald J.R. Impedance Spectroscopy Theory, Experiment and Applications. 2nd ed. John Wiley & Sons Ltd.; Hoboken, NJ, USA: 2005. p. 595.
    1. Radke S., Alocilja E. Design and fabrication of a microimpedance biosensor for bacterial detection. IEEE Sens. J. 2004;4:434–440. doi: 10.1109/JSEN.2004.830300.
    1. Yang L.J., Li Y.B., Griffis C.L., Johnson M.G. Interdigitated microelectrode (IME) impedance sensor for the detection of viable salmonella typhimurium. Biosens. Bioelectron. 2004;19:1139–1147. doi: 10.1016/j.bios.2003.10.009.
    1. Mannoor M.S., Zhang S.Y., Link A.J., McAlpine M.C. Electrical detection of pathogenic bacteria via immobilized antimicrobial peptides. Proc. Natl. Acad. Sci. USA. 2010;107:19207–19212. doi: 10.1073/pnas.1008768107.
    1. Primiceri E., Chiriacò M.S., de Feo F., Santovito E., Fusco V., Maruccio G. A multipurpose biochip for food pathogen detection. Anal. Methods. 2016;8:3055–3060. doi: 10.1039/C5AY03295D.
    1. Wang Y., Ye Z., Ying Y. New trends in impedimetric biosensors for the detection of foodborne pathogenic bacteria. Sensors. 2012;12:3449–3471. doi: 10.3390/s120303449.
    1. Alahi M.E.E., Xie L., Mukhopadhyay S., Burkitt L. A temperature compensated smart nitrate-sensor for agricultural industry. IEEE Trans. Ind. Electron. 2017;64:7333–7341. doi: 10.1109/TIE.2017.2696508.
    1. Zia A.I., Mukhopadhyay S.C., Yu P.-L., Al-Bahadly I.H., Gooneratne C.P., Kosel J. Rapid and molecular selective electrochemical sensing of phthalates in aqueous solution. Biosens. Bioelectron. 2015;67:342–349. doi: 10.1016/j.bios.2014.08.050.
    1. Wang X., Wang Y., Leung H., Mukhopadhyay S.C., Tian M., Zhou J. Mechanism and experiment of planar electrode sensors in water pollutant measurement. IEEE Trans. Instrum. Meas. 2015;64:516–523. doi: 10.1109/TIM.2014.2340641.
    1. Zia A.I., Rahman M.S.A., Mukhopadhyay S.C., Yu P.-L., Al-Bahadly I.H., Gooneratne C.P., Kosel J., Liao T.-S. Technique for rapid detection of phthalates in water and beverages. J. Food Eng. 2013;116:515–523. doi: 10.1016/j.jfoodeng.2012.12.024.
    1. Rahman M.S.A., Mukhopadhyay S.C., Yu P.-L., Goicoechea J., Matias I.R., Gooneratne C.P., Kosel J. Detection of bacterial endotoxin in food: New planar interdigital sensors based approach. J. Food Eng. 2013;114:346–360. doi: 10.1016/j.jfoodeng.2012.08.026.
    1. Syaifudin A.M., Mukhopadhyay S.C., Yu P.-L., Haji-Sheikh M.J., Chuang C.-H., Vanderford J.D., Huang Y.-W. Measurements and performance evaluation of novel interdigital sensors for different chemicals related to food poisoning. IEEE Sens. J. 2011;11:2957–2965. doi: 10.1109/JSEN.2011.2154327.
    1. Syaifudin A.M., Jayasundera K., Mukhopadhyay S. A low cost novel sensing system for detection of dangerous marine biotoxins in seafood. Sens. Actuators B Chem. 2009;137:67–75. doi: 10.1016/j.snb.2008.12.053.
    1. Ercole C., Del Gallo M., Mosiello L., Baccella S., Lepidi A. Escherichia coli detection in vegetable food by a potentiometric biosensor. Sens. Actuators B Chem. 2003;91:163–168. doi: 10.1016/S0925-4005(03)00083-2.
    1. Sandifer J.R., Voycheck J.J. A review of biosensor and industrial applications of ph-isfets and an evaluation of honeywell’s “durafet”. Mikrochim. Acta. 1999;131:91–98. doi: 10.1007/s006040050013.
    1. Gehring A.G., Patterson D.L., Tu S.I. Use of a light-addressable potentiometric sensor for the detection of Escherichia coli O157: H7. Anal. Biochem. 1998;258:293–298. doi: 10.1006/abio.1998.2597.
    1. Masdor N.A., Altintas Z., Tothill I.E. Sensitive detection of campylobacter jejuni using nanoparticles enhanced QCM sensor. Biosens. Bioelectron. 2016;78:328–336. doi: 10.1016/j.bios.2015.11.033.
    1. Mutlu S. Mass Sensitive Biosensors: Principles and Applications in Food. CRC Press; Boca Raton, FL, USA: 2010.
    1. Carmon K.S., Baltus R.E., Luck L.A. A piezoelectric quartz crystal biosensor: The use of two single cysteine mutants of the periplasmic Escherichia coli glucose/galactose receptor as target proteins for the detection of glucose. Biochemistry. 2004;43:14249–14256. doi: 10.1021/bi0484623.
    1. Shen Z.H., Huang M.C., Xiao C.D., Zhang Y., Zeng X.Q., Wang P.G. Nonlabeled quartz crystal microbalance biosensor for bacterial detection using carbohydrate and lectin recognitions. Anal. Chem. 2007;79:2312–2319. doi: 10.1021/ac061986j.
    1. White R.M., Voltmer F.W. Direct piezoelectric coupling to surface elastic waves. Appl. Phys. Lett. 1965;7:314–316. doi: 10.1063/1.1754276.
    1. Rocha-Gaso M.I., March-Iborra C., Montoya-Baides A., Arnau-Vives A. Surface generated acoustic wave biosensors for the detection of pathogens: A review. Sensors. 2009;9:5740–5769. doi: 10.3390/s90705740.
    1. Hammer M.U., Brauser A., Olak C., Brezesinski G., Goldmann T., Gutsmann T., Andra J. Lipopolysaccharide interaction is decisive for the activity of the antimicrobial peptide NK-2 against escherichia coil and proteus mirabilis. Biochem. J. 2010;427:477–488. doi: 10.1042/BJ20091607.
    1. Silk T.M., Donnelly C.W. Increased detection of acid-injured Escherichia coli O157: H7 in autoclaved apple cider by using nonselective repair on trypticase soy agar. J. Food Protect. 1997;60:1483–1486. doi: 10.4315/0362-028X-60.12.1483.
    1. Goodridge L., Chen J.R., Griffiths M. Development and characterization of a fluorescent-bacteriophage assay for detection of Escherichia coli O157: H7. Appl. Environ. Microbiol. 1999;65:1397–1404.
    1. Czajka J., Batt C.A. A solid phase fluorescent capillary immunoassay for the detection of Escherichia coli O157: H7 in ground beef and apple cider. J. Appl. Microbiol. 1996;81:601–607. doi: 10.1111/j.1365-2672.1996.tb01960.x.
    1. Yu L.S.L., Reed S.A., Golden M.H. Time-resolved fluorescence immunoassay (TRFIA) for the detection of Escherichia coli O157: H7 in apple cider. J. Microbiol. Methods. 2002;49:63–68. doi: 10.1016/S0167-7012(01)00352-9.
    1. Blais B.W., Leggate J., Bosley J., Martinez-Perez A. Comparison of fluorogenic and chromogenic assay systems in the detection of Escherichia coli O157 by a novel polymyxin-based elisa. Lett. Appl. Microbiol. 2004;39:516–522. doi: 10.1111/j.1472-765X.2004.01616.x.
    1. Daly P., Collier T., Doyle S. PCR-elisa detection of Escherichia coli in milk. Lett. Appl. Microbiol. 2002;34:222–226. doi: 10.1046/j.1472-765x.2002.01074.x.
    1. Fu Z., Rogelj S., Kieft T.L. Rapid detection of Escherichia coli O157: H7 by immunomagnetic separation and real-time PCR. Int. J. Food Microbiol. 2005;99:47–57. doi: 10.1016/j.ijfoodmicro.2004.07.013.
    1. Tims T.B., Lim D.V. Confirmation of viable E. coli O157: H7 by enrichment and PCR after rapid biosensor detection. J. Microbiol. Methods. 2003;55:141–147. doi: 10.1016/S0167-7012(03)00133-7.
    1. Homola J., Hegnerová K., Vala M. Surface plasmon resonance biosensors for detection of foodborne pathogens and toxins. Proc. SPIE. 2009;7167:716705.
    1. Brooks B.W., Devenish J., Lutze-Wallace C.L., Milnes D., Robertson R.H., Berlie-Surujballi G. Evaluation of a monoclonal antibody-based enzyme-linked immunosorbent assay for detection of Campylobacter fetus in bovine preputial washing and vaginal mucus samples. Vet. Microbiol. 2004;103:77–84. doi: 10.1016/j.vetmic.2004.07.008.
    1. Ivnitski D., Abdel-Hamid I., Atanasov P., Wilkins E. Biosensors for detection of pathogenic bacteria. Biosens. Bioelectron. 1999;14:599–624. doi: 10.1016/S0956-5663(99)00039-1.
    1. Mubammad-Tahir Z., Alocilja E.C. A conductometric biosensor for biosecurity. Biosens. Bioelectron. 2003;18:813–819. doi: 10.1016/S0956-5663(03)00020-4.
    1. Radke S.A., Alocilja E.C. A high density microelectrode array biosensor for detection of E. coli O157: H7. Biosens. Bioelectron. 2005;20:1662–1667. doi: 10.1016/j.bios.2004.07.021.
    1. Jiang T., Song Y., Wei T., Li H., Du D., Zhu M.-J., Lin Y. Sensitive detection of Escherichia coli O157: H7 using pt–au bimetal nanoparticles with peroxidase-like amplification. Biosens. Bioelectron. 2016;77:687–694. doi: 10.1016/j.bios.2015.10.017.
    1. Agrawal A., Tripp R.A., Anderson L.J., Nie S. Real-time detection of virus particles and viral protein expression with two-color nanoparticle probes. J. Virol. 2005;79:8625–8628. doi: 10.1128/JVI.79.13.8625-8628.2005.
    1. Bentzen E.L., House F., Utley T.J., Crowe J.E., Wright D.W. Progression of respiratory syncytial virus infection monitored by fluorescent quantum dot probes. Nano Lett. 2005;5:591–595. doi: 10.1021/nl048073u.
    1. Zhu L., Ang S., Liu W.-T. Quantum dots as a novel immunofluorescent detection system for cryptosporidium parvum and giardia lamblia. Appl. Environ. Microbiol. 2004;70:597–598. doi: 10.1128/AEM.70.1.597-598.2004.
    1. Yang G.-J., Huang J.-L., Meng W.-J., Shen M., Jiao X.-A. A reusable capacitive immunosensor for detection of salmonella spp. Based on grafted ethylene diamine and self-assembled gold nanoparticle monolayers. Anal. Chim. Acta. 2009;647:159–166. doi: 10.1016/j.aca.2009.06.008.
    1. Wan Y., Lin Z., Zhang D., Wang Y., Hou B. Impedimetric immunosensor doped with reduced graphene sheets fabricated by controllable electrodeposition for the non-labelled detection of bacteria. Biosens. Bioelectron. 2011;26:1959–1964. doi: 10.1016/j.bios.2010.08.008.
    1. Wang L., Liu Q., Hu Z., Zhang Y., Wu C., Yang M., Wang P. A novel electrochemical biosensor based on dynamic polymerase-extending hybridization for E. coli O157: H7 DNA detection. Talanta. 2009;78:647–652. doi: 10.1016/j.talanta.2008.12.001.
    1. Norman R.S., Stone J.W., Gole A., Murphy C.J., Sabo-Attwood T.L. Targeted photothermal lysis of the pathogenic bacteria, pseudomonas aeruginosa, with gold nanorods. Nano Lett. 2008;8:302–306. doi: 10.1021/nl0727056.
    1. Tok J.B.H., Chuang F., Kao M.C., Rose K.A., Pannu S.S., Sha M.Y., Chakarova G., Penn S.G., Dougherty G.M. Metallic striped nanowires as multiplexed immunoassay platforms for pathogen detection. Angew. Chem. Int. Ed. 2006;45:6900–6904. doi: 10.1002/anie.200601104.
    1. So H.M., Park D.W., Jeon E.K., Kim Y.H., Kim B.S., Lee C.K., Choi S.Y., Kim S.C., Chang H., Lee J.O. Detection and titer estimation of Escherichia coli using aptamer-functionalized single-walled carbon-nanotube field-effect transistors. Small. 2008;4:197–201. doi: 10.1002/smll.200700664.
    1. Yamada K., Choi W., Lee I., Cho B.-K., Jun S. Rapid detection of multiple foodborne pathogens using a nanoparticle-functionalized multi-junction biosensor. Biosens. Bioelectron. 2016;77:137–143. doi: 10.1016/j.bios.2015.09.030.
    1. Zhao Y., Wang H., Zhang P., Sun C., Wang X., Wang X., Yang R., Wang C., Zhou L. Rapid multiplex detection of 10 foodborne pathogens with an up-converting phosphor technology-based 10-channel lateral flow assay. Sci. Rep. 2016;6:21342. doi: 10.1038/srep21342.
    1. Mandal P., Biswas A., Choi K., Pal U. Methods for rapid detection of foodborne pathogens: An overview. Am. J. Food Technol. 2011;6:87–102. doi: 10.3923/ajft.2011.87.102.
    1. Zhang G. Foodborne pathogenic bacteria detection: An evaluation of current and developing methods. Meducator. 2013;1:24.
    1. Pérez-López B., Merkoçi A. Nanomaterials based biosensors for food analysis applications. Trends Food Sci. Technol. 2011;22:625–639. doi: 10.1016/j.tifs.2011.04.001.

Source: PubMed

3
Iratkozz fel