A Randomized, Double-Blind, Placebo Controlled Trial to Determine the Effectiveness a Polyphenolic Extract ( Hibiscus sabdariffa and Lippia citriodora) in the Reduction of Body Fat Mass in Healthy Subjects

Javier Marhuenda, Silvia Perez, Desirée Victoria-Montesinos, María Salud Abellán, Nuria Caturla, Jonathan Jones, Javier López-Román, Javier Marhuenda, Silvia Perez, Desirée Victoria-Montesinos, María Salud Abellán, Nuria Caturla, Jonathan Jones, Javier López-Román

Abstract

: The location and quantity of body fat determine the health risks, limiting people with obesity. Recently, polyphenols have attracted the attention of the scientific community because of their potential use for the reduction of obesity. A proprietary formula comprised of a blend of Lippia citriodora and Hibiscus sabdariffa has been recognized for its high content of polyphenols, powerful antioxidant molecules that may prevent weight gain and could be helpful for the treatment of obesity, as proven previously by in vivo models. The aim of the present study is to determine if the supplementation with Lippia citriodora and Hibiscus sabdariffa is useful for the treatment of obesity and/or weight control in subjects without a controlled diet. The intake of the extract for 84 days reduced body weight, the body mass index, and the fat mass measured with both bioimpedance and densitometry. This decrease in fat mass was observed to a greater extent, being significant, in the fat mass of the trunk (chest and torso).

Keywords: Hibiscus sabdariffa; Lippia citriodora; obesity; polyphenols.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Graphic representation of the study. HS-LC, Hibiscus sabdariffa and Lippia citriodora
Figure 2
Figure 2
Weight and BMI evolution along the study. * Means statistically significant differences.
Figure 3
Figure 3
Body composition evolution along the study, measured by bioimpedance. * Means statistically significant differences.
Figure 4
Figure 4
Body composition evolution along the study, measured by densitometry. * Means statistically significant differences.
Figure 5
Figure 5
Physical activity EVOLUTION along the study. MET, metabolic equivalent of task.

References

    1. Díaz M. Presente y futuro del tratamiento farmacológico de la obesidad. Present Future Pharmacol. Treat. Obes. 2005;73:137–144.
    1. Blancas-Flores G., Almanza-Pérez J.C., López-Roa R.I., Alarcón-Aguilar F.J., García-Macedo R., Cruz M. La obesidad como un proceso inflamatorio. Boletín médico del Hospital Infantil de México. 2010;67:88–97.
    1. Grundy S.M. Metabolic Syndrome. Springer; Cham, Switzerland: 2018.
    1. Alvídrez-Morales A., González-Martínez B.E., Jiménez-Salas Z. Tendencias en la producción de alimentos: Alimentos funcionales. [(accessed on 30 November 2019)]; Available online: .
    1. Anchia I.A. Alimentos y Nutrición en La Práctica Sanitaria. Ediciones Díaz de Santos; Madrid, Spain: 2003.
    1. Serban C., Sahebkar A., Ursoniu S., Andrica F., Banach M. Effect of sour tea (Hibiscus sabdariffa L.) on arterial hypertension: A systematic review and meta-analysis of randomized controlled trials. J. Hypertens. 2015;33:1119–1127. doi: 10.1097/HJH.0000000000000585.
    1. Marhuenda J., Medina S., Martínez-Hernández P., Arina S., Zafrilla P., Mulero J., Oger C., Galano J.-M., Durand T., Ferreres F., et al. Melatonin and hydroxytyrosol protect against oxidative stress related to the central nervous system after the ingestion of three types of wine by healthy volunteers. Food Funct. 2017;8:64–74. doi: 10.1039/C6FO01328G.
    1. Marhuenda J., Medina S., Martínez-Hernández P., Arina S., Zafrilla P., Mulero J., Oger C., Galano J.-M., Durand T., Solana A. Effect of the dietary intake of melatonin-and hydroxytyrosol-rich wines by healthy female volunteers on the systemic lipidomic-related oxylipins. Food Funct. 2017;8:3745–3757. doi: 10.1039/C7FO01081H.
    1. Zaki M.E., Hala T., El-Gammal M., Kamal S. Indicators of the metabolic syndrome in obese adolescents. Arch. Med. Sci. AMS. 2015;11:92. doi: 10.5114/aoms.2015.49214.
    1. Min S.Y., Yang H., Seo S.G., Shin S.H., Chung M.Y., Kim J., Lee S.J., Lee H.J., Lee K.W. Cocoa polyphenols suppress adipogenesis in vitro and obesity in vivo by targeting insulin receptor. Int. J. Obes. 2013;37:584. doi: 10.1038/ijo.2012.85.
    1. Shimoda H., Tanaka J., Kikuchi M., Fukuda T., Ito H., Hatano T., Yoshida T. Effect of polyphenol-rich extract from walnut on diet-induced hypertriglyceridemia in mice via enhancement of fatty acid oxidation in the liver. J. Agric. Food Chem. 2009;57:1786–1792. doi: 10.1021/jf803441c.
    1. Matsui N., Ito R., Nishimura E., Yoshikawa M., Kato M., Kamei M., Shibata H., Matsumoto I., Abe K., Hashizume S. Ingested cocoa can prevent high-fat diet-induced obesity by regulating the expression of genes for fatty acid metabolism. Nutrient. 2005;21:594–601. doi: 10.1016/j.nut.2004.10.008.
    1. Stohs S.J., Badmaev V. A review of natural stimulant and non-stimulant thermogenic agents. Phytother. Res. 2016;30:732–740. doi: 10.1002/ptr.5583.
    1. Gu Y., Hurst W.J., Stuart D.A., Lambert J.D. Inhibition of key digestive enzymes by cocoa extracts and procyanidins. J. Agric. Food Chem. 2011;59:5305–5311. doi: 10.1021/jf200180n.
    1. Boix-Castejón M., Herranz-López M., Gago A.P., Olivares-Vicente M., Caturla N., Roche E., Micol V. Hibiscus and lemon verbena polyphenols modulate appetite-related biomarkers in overweight subjects: A randomized controlled trial. Food Funct. 2018;9:3173–3184. doi: 10.1039/C8FO00367J.
    1. Lee Y.S., Yang W.K., Kim H., Min B., Caturla N., Jones J., Park Y.-C., Lee Y.-C., Kim S.H. Metabolaid® combination of lemon verbena and hibiscus flower extract prevents high-fat diet-induced obesity through AMP-activated protein kinase activation. Nutrient. 2018;10:1204. doi: 10.3390/nu10091204.
    1. Ahmad-Qasem M.H., Caánovas J., Barrajón-Catalán E., Carreres J.E., Micol V., García-Pérez J.V. Influence of olive leaf processing on the bioaccessibility of bioactive polyphenols. J. Agric. Food Chem. 2014;62:6190–6198. doi: 10.1021/jf501414h.
    1. Herranz-López M., Fernández-Arroyo S., Pérez-Sanchez A., Barrajón-Catalán E., Beltrán-Debón R., Menéndez J.A., Alonso-Villaverde C., Segura-Carretero A., Joven J., Micol V. Synergism of plant-derived polyphenols in adipogenesis: Perspectives and implications. Phytomed. 2012;19:253–261.
    1. Ainsworth B.E., Haskell W.L., Herrmann S.D., Meckes N., Bassett Jr D.R., Tudor-Locke C., Greer J.L., Vezina J., Whitt-Glover M.C., Leon A.S. Compendium of physical activities: A second update of codes and MET values. Med. Sci. Sports Exerc. 2011;43:1575–1581. doi: 10.1249/MSS.0b013e31821ece12.
    1. Beltrán-Debón R., Alonso-Villaverde C., Aragones G., Rodriguez-Medina I., Rull A., Micol V., Segura-Carretero A., Fernandez-Gutierrez A., Camps J., Joven J. The aqueous extract of Hibiscus sabdariffa calices modulates the production of monocyte chemoattractant protein-1 in humans. Phytomed. 2010;17:186–191. doi: 10.1016/j.phymed.2009.08.006.
    1. Joven J., March I., Espinel E., Fernández-Arroyo S., Rodríguez-Gallego E., Aragonès G., Beltran-Debon R., Alonso-Villaverde C., Rios L. Hibiscus sabdariffa extract lowers blood pressure and improves endothelial function. Mol. Nutr. Food Res. 2014;58:1374–1378. doi: 10.1002/mnfr.201300774.
    1. Joven J., Espinel E., Rull A., Aragonès G., Rodríguez-Gallego E., Camps J., Micol V., Herranz-Lopez M., Menendez J.A., Borras I., et al. Plant-derived polyphenols regulate expression of miRNA paralogs miR-103/107 and miR-122 and prevent diet-induced fatty liver disease in hyperlipidemic mice. Biochim. et Biophys. Acta (BBA)-Gen. Subj. 2012;1820:894–899. doi: 10.1016/j.bbagen.2012.03.020.
    1. Olivares-Vicente M., Barrajon-Catalan E., Herranz-Lopez M., Segura-Carretero A., Joven J., Encinar J.A., Micol V. Plant-derived polyphenols in human health: Biological activity, metabolites and putative molecular targets. Curr. Drug Metab. 2018;19:351–369. doi: 10.2174/1389200219666180220095236.
    1. Herranz-López M., Barrajón-Catalán E., Segura-Carretero A., Menéndez J.A., Joven J., Micol V. Lemon verbena (Lippia citriodora) polyphenols alleviate obesity-related disturbances in hypertrophic adipocytes through AMPK-dependent mechanisms. Phytomed. 2015;22:605–614.
    1. Shirwany N.A., Zou M.H. AMPK: A cellular metabolic and redox sensor: A mini review. Front. Biosci. 2014;19:447. doi: 10.2741/4218.
    1. Nuttall F.Q. Body mass index: Obesity, BMI, and health: A critical review. Nutr. Today. 2015;50:117. doi: 10.1097/NT.0000000000000092.
    1. Barbosa-Silva M.C.G., Barros A.J., Post C.L., Waitzberg D.L., Heymsfield S.B. Can bioelectrical impedance analysis identify malnutrition in preoperative nutrition assessment? Nutrient. 2003;19:422–426. doi: 10.1016/S0899-9007(02)00932-2.
    1. Ellis K.J., Bell S.J., Chertow G.M., Chumlea W.C., Knox T.A., Kotler D.P., Lukaski H.C., Schoeller D.A. Bioelectrical impedance methods in clinical research: A follow-up to the NIH Technology Assessment Conference. Nutrient. 1999;15:874–880. doi: 10.1016/S0899-9007(99)00147-1.
    1. Alvero-Cruz J.R., Gómez L.C., Ronconi M., Vázquez R.F., i Manzañido J.P. La bioimpedancia eléctrica como método de estimación de la composición corporal: Normas prácticas de utilización. Rev. Andal. Med. Deporte. 2011;4:167–174.
    1. Blake G.M., Fogelman I. The clinical role of dual energy X-ray absorptiometry. Mag. Andal. Med. Sport. 2009;71:406–414. doi: 10.1016/j.ejrad.2008.04.062.
    1. Meyer N.L., Sundgot-Borgen J., Lohman T.G., Ackland T.R., Stewart A.D., Maughan R.J., Smith S., Müller W. Body composition for health and performance: A survey of body composition assessment practice carried out by the Ad Hoc Research Working Group on Body Composition, Health and Performance under the auspices of the IOC Medical Commission. Br J Sports Med. 2013;47:1044–1053. doi: 10.1136/bjsports-2013-092561.
    1. Ackland T.R., Lohman T.G., Sundgot-Borgen J., Maughan R.J., Meyer N.L., Stewart A.D., & Müller W. Current status of body composition assessment in sport. Sports Med. 2012;42:227–249. doi: 10.2165/11597140-000000000-00000.
    1. Huang T.T.K., Johnson M.S., Figueroa-Colon R., Dwyer J.H., Goran M.I. Growth of visceral fat, subcutaneous abdominal fat, and total body fat in children. Obes. Res. 2001;9:283–289. doi: 10.1038/oby.2001.35.
    1. Gutiérrez S.A.G., Orozco G.E.M., Rodríguez E.M., Vázquez J.D.J.S., Camacho R.B. La grasa visceral y su importancia en obesidad. J. Endocrinol. Nutr. 2002;10:121–127.
    1. Ross T.T., Overton J.D., Houmard K.F., Kinsey S.T. β-GPA treatment leads to elevated basal metabolic rate and enhanced hypoxic exercise tolerance in mice. Physiol. Rep. 2017;5:e13192. doi: 10.14814/phy2.13192.
    1. Thomson D.M., Porter B.B., Tall J.H., Kim H.J., Barrow J.R., Winder W.W. Skeletal muscle and heart LKB1 deficiency causes decreased voluntary running and reduced muscle mitochondrial marker enzyme expression in mice. A. J. Physiol.-Endocrinol. Metab. 2007;292:E196–E202. doi: 10.1152/ajpendo.00366.2006.
    1. Chaube B., Malvi P., Singh S.V., Mohammad N., Viollet B., Bhat M.K. AMPK maintains energy homeostasis and survival in cancer cells via regulating p38/PGC-1α-mediated mitochondrial biogenesis. Cell Death Discov. 2015;1:15063. doi: 10.1038/cddiscovery.2015.63.
    1. Dal-Pan A., Blanc S., Aujard F. Resveratrol suppresses body mass gain in a seasonal non-human primate model of obesity. BMC Physiol. 2010;10:11. doi: 10.1186/1472-6793-10-11.
    1. Weltman A., Levine S., Seip R.L., Tran Z.V. Accurate assessment of body composition in obese females. Am. J. Clin. Nutr. 1988;48:1179–1183. doi: 10.1093/ajcn/48.5.1179.
    1. Sanz J.M.M., Otegui A.U., Mielgo-Ayuso J. Necesidades energéticas, hídricas y nutricionales en el deporte. Eur. J. Hum. Mov. 2013;30:37–52.

Source: PubMed

3
Iratkozz fel