Recent Analytical Approaches for the Study of Bioavailability and Metabolism of Bioactive Phenolic Compounds

Álvaro Fernández-Ochoa, María de la Luz Cádiz-Gurrea, Patricia Fernández-Moreno, Alejandro Rojas-García, David Arráez-Román, Antonio Segura-Carretero, Álvaro Fernández-Ochoa, María de la Luz Cádiz-Gurrea, Patricia Fernández-Moreno, Alejandro Rojas-García, David Arráez-Román, Antonio Segura-Carretero

Abstract

The study of the bioavailability of bioactive compounds is a fundamental step for the development of applications based on them, such as nutraceuticals, functional foods or cosmeceuticals. It is well-known that these compounds can undergo metabolic reactions before reaching therapeutic targets, which may also affect their bioactivity and possible applications. All recent studies that have focused on bioavailability and metabolism of phenolic and terpenoid compounds have been developed because of the advances in analytical chemistry and metabolomics approaches. The purpose of this review is to show the role of analytical chemistry and metabolomics in this field of knowledge. In this context, the different steps of the analytical chemistry workflow (design study, sample treatment, analytical techniques and data processing) applied in bioavailability and metabolism in vivo studies are detailed, as well as the most relevant results obtained from them.

Keywords: analytical chemistry; bioactive compounds; bioavailability; chromatography; mass spectrometry; metabolism; metabolomics; phenolic compounds; phytochemicals; untargeted.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Typical experimental design for the evaluation of bioavailability and metabolism in plasma, urine and stool samples.
Figure 2
Figure 2
Main families of phenolic compounds that have been studied through bioavailability and metabolism studies.
Figure 3
Figure 3
Main phase II metabolism reactions of phenolic compounds.

References

    1. Hosseinzadeh S., Jafarikukhdan A., Hosseini A., Armand R. The Application of Medicinal Plants in Traditional and Modern Medicine: A Review of Thymus vulgaris. Int. J. Clin. Med. 2015;06:635–642. doi: 10.4236/ijcm.2015.69084.
    1. Singh R. Medicinal Plants: A Review. J. Plant Sci. 2015;3:50–55. doi: 10.11648/j.jps.s.2015030101.18.
    1. Perez-Gregorio R., Simal-Gandara J. A Critical Review of Bioactive Food Components, and of their Functional Mechanisms, Biological Effects and Health Outcomes. Curr. Pharm. Des. 2017;23:2731–2741. doi: 10.2174/1381612823666170317122913.
    1. Cádiz-Gurrea M.d.l.L., Villegas-Aguilar M.d.C., Leyva-Jiménez F.J., Pimentel-Moral S., Fernández-Ochoa Á., Alañón M.E., Segura-Carretero A. Revalorization of bioactive compounds from tropical fruit by-products and industrial applications by means of sustainable approaches. Food Res. Int. 2020;138:109786. doi: 10.1016/j.foodres.2020.109786.
    1. Mitra S., Naskar N., Chaudhuri P. A review on potential bioactive phytochemicals for novel therapeutic applications with special emphasis on mangrove species. Phytomedicine Plus. 2021;1:100107. doi: 10.1016/j.phyplu.2021.100107.
    1. Gonzales G.B. In vitro bioavailability and cellular bioactivity studies of flavonoids and flavonoid-rich plant extracts: Questions, considerations and future perspectives. Proc. Nutr. Soc. 2017;76:175–181. doi: 10.1017/S0029665116002858.
    1. del Carmen Villegas-Aguilar M., Fernández-Ochoa Á., de la Luz Cádiz-Gurrea M., Pimentel-Moral S., Lozano-Sánchez J., Arráez-Román D., Segura-Carretero A. Pleiotropic biological effects of dietary phenolic compounds and their metabolites on energy metabolism, inflammation and aging. Molecules. 2020;25:596. doi: 10.3390/molecules25030596.
    1. Long F., Yang H., Xu Y., Hao H., Li P. A strategy for the identification of combinatorial bioactive compounds contributing to the holistic effect of herbal medicines. Sci. Rep. 2015;5:12361. doi: 10.1038/srep12361.
    1. Liu Z.H., Wang D.M., Fan S.F., Li D.W., Luo Z.W. Synergistic effects and related bioactive mechanism of Potentilla fruticosa L. leaves combined with Ginkgo biloba extracts studied with microbial test system (MTS) BMC Complement. Altern. Med. 2016;16 doi: 10.1186/s12906-016-1485-2.
    1. Lozoya-Agullo I., González-Álvarez I., González-Álvarez M., Merino-Sanjuán M., Bermejo M. In Situ Perfusion Model in Rat Colon for Drug Absorption Studies: Comparison with Small Intestine and Caco-2 Cell Model. J. Pharm. Sci. 2015;104:3136–3145. doi: 10.1002/jps.24447.
    1. Qusa M.H., Siddique A.B., Nazzal S., El Sayed K.A. Novel olive oil phenolic (−)-oleocanthal (+)-xylitol-based solid dispersion formulations with potent oral anti-breast cancer activities. Int. J. Pharm. 2019;569:118596. doi: 10.1016/j.ijpharm.2019.118596.
    1. Rodríguez-López P., Lozano-Sanchez J., Borrás-Linares I., Emanuelli T., Menéndez J.A., Segura-Carretero A. Structure–biological activity relationships of extra-virgin olive oil phenolic compounds: Health properties and bioavailability. Antioxidants. 2020;9:685. doi: 10.3390/antiox9080685.
    1. Ulaszewska M.M., Weinert C.H., Trimigno A., Portmann R., Andres Lacueva C., Badertscher R., Brennan L., Brunius C., Bub A., Capozzi F., et al. Nutrimetabolomics: An Integrative Action for Metabolomic Analyses in Human Nutritional Studies. Mol. Nutr. Food Res. 2019;63:1800384. doi: 10.1002/mnfr.201800384.
    1. Wang S., Moustaid-Moussa N., Chen L., Mo H., Shastri A., Su R., Bapat P., Kwun I., Shen C.-L. Novel insights of dietary polyphenols and obesity. J. Nutr. Biochem. 2014;25:1–18. doi: 10.1016/j.jnutbio.2013.09.001.
    1. Velderrain-Rodríguez G.R., Palafox-Carlos H., Wall-Medrano A., Ayala-Zavala J.F., Chen C.-Y.O., Robles-Sánchez M., Astiazaran-García H., Alvarez-Parrilla E., González-Aguilar G.A. Phenolic compounds: Their journey after intake. Food Funct. 2014;5:189–197. doi: 10.1039/C3FO60361J.
    1. Fernández-Ochoa Á., Leyva-Jiménez F.J., Cádiz-Gurrea M.d.l.L., Pimentel-Moral S., Segura-Carretero A. The role of high-resolution analytical techniques in the development of functional foods. Int. J. Mol. Sci. 2021;22:3220. doi: 10.3390/ijms22063220.
    1. Misra B.B. New software tools, databases, and resources in metabolomics: Updates from 2020. Metabolomics. 2021;17:49. doi: 10.1007/s11306-021-01796-1.
    1. Lea T. Caco-2 Cell Line. Impact Food Bioact. Heal. Vitr. Ex Vivo Model. 2015:103–111. doi: 10.1007/978-3-319-16104-4_10.
    1. Pérez-Sánchez A., Borrás-Linares I., Barrajón-Catalán E., Arráez-Román D., González-Álvarez I., Ibáñez E., Segura-Carretero A., Bermejo M., Micol V. Evaluation of the intestinal permeability of rosemary (Rosmarinus officinalis L.) extract polyphenols and terpenoids in Caco-2 cell monolayers. PLoS ONE. 2017;12:e0172063. doi: 10.1371/journal.pone.0172063.
    1. Wang X.X., Liu G.Y., Yang Y.F., Wu X.W., Xu W., Yang X.W. Intestinal Absorption of Triterpenoids and Flavonoids from Glycyrrhizae radix et rhizoma in the Human Caco-2 Monolayer Cell Model. Molecules. 2017;22:1627. doi: 10.3390/molecules22101627.
    1. Kamiloglu S., Capanoglu E., Grootaert C., van Camp J. Anthocyanin Absorption and Metabolism by Human Intestinal Caco-2 Cells—A Review. Int. J. Mol. Sci. 2015;16:21555–21574. doi: 10.3390/ijms160921555.
    1. Ou K., Percival S.S., Zou T., Khoo C., Gu L. Transport of cranberry A-type procyanidin dimers, trimers, and tetramers across monolayers of human intestinal epithelial Caco-2 cells. J. Agric. Food Chem. 2012;60:1390–1396. doi: 10.1021/jf2040912.
    1. Lee H.J., Cha K.H., Kim C.Y., Nho C.W., Pan C.H. Bioavailability of Hydroxycinnamic Acids from Crepidiastrum denticulatum Using Simulated Digestion and Caco-2 Intestinal Cells. J. Agric. Food Chem. 2014;62:5290–5295. doi: 10.1021/jf500319h.
    1. Ding X., Hu X., Chen Y., Xie J., Ying M., Wang Y., Yu Q. Differentiated Caco-2 cell models in food-intestine interaction study: Current applications and future trends. Trends Food Sci. Technol. 2021;107:455–465. doi: 10.1016/j.tifs.2020.11.015.
    1. Alminger M., Aura A.M., Bohn T., Dufour C., El S.N., Gomes A., Karakaya S., Martínez-Cuesta M.C., Mcdougall G.J., Requena T., et al. In Vitro Models for Studying Secondary Plant Metabolite Digestion and Bioaccessibility. Compr. Rev. Food Sci. Food Saf. 2014;13:413–436. doi: 10.1111/1541-4337.12081.
    1. Wojtunik-Kulesza K., Oniszczuk A., Oniszczuk T., Combrzyński M., Nowakowska D., Matwijczuk A. Influence of In Vitro Digestion on Composition, Bioaccessibility and Antioxidant Activity of Food Polyphenols—A Non-Systematic Review. Nutrients. 2020;12:1401. doi: 10.3390/nu12051401.
    1. World medical association declaration of helsinki: Ethical principles for medical research involving human subjects. J. Korean Med. Assoc. 2014 doi: 10.5124/jkma.2014.57.11.899.
    1. Schön C., Wacker R., Micka A., Steudle J., Lang S., Bonnländer B. Bioavailability study of maqui berry extract in healthy subjects. Nutrients. 2018;10:1720. doi: 10.3390/nu10111720.
    1. Feliciano R.P., Boeres A., Massacessi L., Istas G., Ventura M.R., Nunes Dos Santos C., Heiss C., Rodriguez-Mateos A. Identification and quantification of novel cranberry-derived plasma and urinary (poly)phenols. Arch. Biochem. Biophys. 2016;599:31–41. doi: 10.1016/j.abb.2016.01.014.
    1. Navarro-González I., Pérez-Sánchez H., Martín-Pozuelo G., García-Alonso J., Periago M.J. The inhibitory effects of bioactive compounds of Tomato juice binding to hepatic HMGCR: In vivostudy and molecular modelling. PLoS ONE. 2014;9:1–11. doi: 10.1371/journal.pone.0083968.
    1. Yuan B., Zhao D., Kshatriya D., Bello N.T., Simon J.E., Wu Q. UHPLC-QqQ-MS/MS method development and validation with statistical analysis: Determination of raspberry ketone metabolites in mice plasma and brain. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2020;1149:122146. doi: 10.1016/j.jchromb.2020.122146.
    1. Zhao D., Yuan B., Kshatriya D., Polyak A., Simon J.E., Bello N.T., Wu Q. Influence of Diet-Induced Obesity on the Bioavailability and Metabolism of Raspberry Ketone (4-(4-Hydroxyphenyl)-2-Butanone) in Mice. Mol. Nutr. Food Res. 2020;64:1–11. doi: 10.1002/mnfr.201900907.
    1. Fernández-Ochoa Á., Cázares-Camacho R., Borrás-Linares I., Domínguez-Avila J.A., Segura-Carretero A., González-Aguilar G.A. Evaluation of metabolic changes in liver and serum of streptozotocin-induced diabetic rats after Mango diet supplementation. J. Funct. Foods. 2020;64 doi: 10.1016/j.jff.2019.103695.
    1. Qin Z., Li S., Yao Z., Hong X., Xu J., Lin P., Zhao G., Gonzalez F.J., Yao X. Metabolic profiling of corylin in vivo and in vitro. J. Pharm. Biomed. Anal. 2018;155:157–168. doi: 10.1016/j.jpba.2018.03.047.
    1. López-Yerena A., Pérez M., Vallverdú-Queralt A., Miliarakis E., Lamuela-Raventós R.M., Escribano-Ferrer E. Oleacein intestinal permeation and metabolism in rats using an in situ perfusion technique. Pharmaceutics. 2021;13:719. doi: 10.3390/pharmaceutics13050719.
    1. López-yerena A., Vallverdú-queralt A., Mols R., Augustijns P., Lamuela-raventós R.M., Escribano-ferrer E. Absorption and Intestinal Metabolic Profile of Oleocanthal in Rats. Pharmaceutics. 2020;12:134. doi: 10.3390/pharmaceutics12020134. Erratum in Pharmaceutics 2020, 12, 1–2.
    1. Fernández-Ochoa Á., Borrás-Linares I., Pérez-Sánchez A., Barrajón-Catalán E., González-Álvarez I., Arráez-Román D., Micol V., Segura-Carretero A. Phenolic compounds in rosemary as potential source of bioactive compounds against colorectal cancer: In situ absorption and metabolism study. J. Funct. Foods. 2017;33 doi: 10.1016/j.jff.2017.03.046.
    1. Sun Y.H., He X., Yang X.L., Dong C.L., Zhang C.F., Song Z.J., Lu M.X., Yang Z.L., Li P. Absorption characteristics of the total alkaloids from Mahonia bealei in an in situ single-pass intestinal perfusion assay. Chin. J. Nat. Med. 2014;12:554–560. doi: 10.1016/S1875-5364(14)60085-6.
    1. Jesudoss V.A.S., Victor Antony Santiago S., Venkatachalam K., Subramanian P. Gastrointestinal Tissue: Oxidative Stress and Dietary Antioxidants. Academic Press; Cambridge, MA, USA: 2017. Zingerone (Ginger Extract): Antioxidant Potential for Efficacy in Gastrointestinal and Liver Disease; pp. 289–297.
    1. Musther H., Olivares-Morales A., Hatley O.J.D., Liu B., Rostami Hodjegan A. Animal versus human oral drug bioavailability: Do they correlate? Eur. J. Pharm. Sci. 2014;57:280–291. doi: 10.1016/j.ejps.2013.08.018.
    1. Correddu F., Lunesu M.F., Buffa G., Atzori A.S., Nudda A., Battacone G., Pulina G. Can agro-industrial by-products rich in polyphenols be advantageously used in the feeding and nutrition of dairy small ruminants? Animals. 2020;10:131. doi: 10.3390/ani10010131.
    1. Fernández-Ochoa Á., Leyva-Jiménez F.J., Pimentel-Moral S., del Carmen Villegas-Aguilar M., Alañón M.E., Segura-Carretero A., de la Luz Cádiz-Gurrea M. Revalorisation of Agro-Industrial Wastes into High Value-Added Products. Adv. Sci. Technol. Innov. 2021:229–245. doi: 10.1007/978-3-030-61837-7_14.
    1. Gómez-Juaristi M., Sarria B., Martínez-López S., Clemente L.B., Mateos R. Flavanol bioavailability in two cocoa products with different phenolic content. A comparative study in humans. Nutrients. 2019;11:1441. doi: 10.3390/nu11071441.
    1. Rodriguez-Mateos A., Feliciano R.P., Cifuentes-Gomez T., Spencer J.P.E. Bioavailability of wild blueberry (poly)phenols at different levels of intake. J. Berry Res. 2016;6:137–148. doi: 10.3233/JBR-160123.
    1. Mueller D., Jung K., Winter M., Rogoll D., Melcher R., Richling E. Human intervention study to investigate the intestinal accessibility and bioavailability of anthocyanins from bilberries. Food Chem. 2017;231:275–286. doi: 10.1016/j.foodchem.2017.03.130.
    1. Gómez-Juaristi M., Martínez-López S., Sarria B., Bravo L., Mateos R. Absorption and metabolism of yerba mate phenolic compounds in humans. Food Chem. 2018;240:1028–1038. doi: 10.1016/j.foodchem.2017.08.003.
    1. Motilva M.J., Macià A., Romero M.P., Rubió L., Mercader M., González-Ferrero C. Human bioavailability and metabolism of phenolic compounds from red wine enriched with free or nano-encapsulated phenolic extract. J. Funct. Foods. 2016;25:80–93. doi: 10.1016/j.jff.2016.05.013.
    1. Baron G., Altomare A., Regazzoni L., Fumagalli L., Artasensi A., Borghi E., Ottaviano E., Del Bo C., Riso P., Allegrini P., et al. Profiling Vaccinium macrocarpon components and metabolites in human urine and the urine ex-vivo effect on Candida albicans adhesion and biofilm-formation. Biochem. Pharmacol. 2020;173:113726. doi: 10.1016/j.bcp.2019.113726.
    1. Hakeem Said I., Truex J.D., Heidorn C., Retta M.B., Petrov D.D., Haka S., Kuhnert N. LC-MS/MS based molecular networking approach for the identification of cocoa phenolic metabolites in human urine. Food Res. Int. 2020;132:109119. doi: 10.1016/j.foodres.2020.109119.
    1. Sasot G., Martínez-Huélamo M., Vallverdú-Queralt A., Mercader-Martí M., Estruch R., Lamuela-Raventós R.M. Identification of phenolic metabolites in human urine after the intake of a functional food made from grape extract by a high resolution LTQ-Orbitrap-MS approach. Food Res. Int. 2017;100:435–444. doi: 10.1016/j.foodres.2017.01.020.
    1. Ramírez-Garza S.L., Laveriano-Santos E.P., Marhuenda-Muñoz M., Storniolo C.E., Tresserra-Rimbau A., Vallverdú-Queralt A., Lamuela-Raventós R.M. Health Effects of Resveratrol: Results from Human Intervention Trials. Nutrients. 2018;10:1892. doi: 10.3390/nu10121892.
    1. Turner A.L., Michaelson L.V., Shewry P.R., Lovegrove A., Spencer J.P.E. Increased bioavailability of: A randomized, controlled, single blind, crossover human intervention trial. Clin. Nutr. 2021;40:788–795. doi: 10.1016/j.clnu.2020.07.026.
    1. Tartaglia A., Romasco T., D’Ovidio C., Rosato E., Ulusoy H.I., Furton K.G., Kabir A., Locatelli M. Determination of phenolic compounds in human saliva after oral administration of red wine by high performance liquid chromatography. J. Pharm. Biomed. Anal. 2022;209:114486. doi: 10.1016/j.jpba.2021.114486.
    1. Bi H., Guo Z., Jia X., Liu H., Ma L., Xue L. The key points in the pre-analytical procedures of blood and urine samples in metabolomics studies. Metabolomics. 2020;16:1–15. doi: 10.1007/s11306-020-01666-2.
    1. Smith L., Villaret-Cazadamont J., Claus S.P., Canlet C., Guillou H., Cabaton N.J., Ellero-Simatos S. Important Considerations for Sample Collection in Metabolomics Studies with a Special Focus on Applications to Liver Functions. Metabolites. 2020;10:104. doi: 10.3390/metabo10030104.
    1. Pimpão R.C., Ventura M.R., Ferreira R.B., Williamson G., Santos C.N. Phenolic sulfates as new and highly abundant metabolites in human plasma after ingestion of a mixed berry fruit purée. Br. J. Nutr. 2015;113:454–463. doi: 10.1017/S0007114514003511.
    1. Gómez-Juaristi M., Martínez-López S., Sarria B., Bravo L., Mateos R. Bioavailability of hydroxycinnamates in an instant green/roasted coffee blend in humans. Identification of novel colonic metabolites. Food Funct. 2018;9:331–343. doi: 10.1039/C7FO01553D.
    1. Mecha E., Feliciano R.P., Rodriguez-Mateos A., Silva S.D., Figueira M.E., Vaz Patto M.C., Bronze M.R. Human bioavailability of phenolic compounds found in common beans: The use of high-resolution MS to evaluate inter-individual variability. Br. J. Nutr. 2020;123:273–292. doi: 10.1017/S0007114519002836.
    1. Ordóñez J.L., Pereira-Caro G., Ludwig I., Muñoz-Redondo J.M., Ruiz-Moreno M.J., Crozier A., Moreno-Rojas J.M. A critical evaluation of the use of gas chromatography- and high performance liquid chromatography-mass spectrometry techniques for the analysis of microbial metabolites in human urine after consumption of orange juice. J. Chromatogr. A. 2018;1575:100–112. doi: 10.1016/j.chroma.2018.09.016.
    1. Pereira-Caro G., Ordóñez J.L., Ludwig I., Gaillet S., Mena P., Del Rio D., Rouanet J.M., Bindon K.A., Moreno-Rojas J.M., Crozier A. Development and validation of an UHPLC-HRMS protocol for the analysis of flavan-3-ol metabolites and catabolites in urine, plasma and feces of rats fed a red wine proanthocyanidin extract. Food Chem. 2018;252:49–60. doi: 10.1016/j.foodchem.2018.01.083.
    1. Perez-Ternero C., Macià A., De Sotomayor M.A., Parrado J., Motilva M.J., Herrera M.D. Bioavailability of the ferulic acid-derived phenolic compounds of a rice bran enzymatic extract and their activity against superoxide production. Food Funct. 2017;8:2165–2174. doi: 10.1039/C7FO00243B.
    1. Gagnebin Y., Tonoli D., Lescuyer P., Ponte B., de Seigneux S., Martin P.-Y., Schappler J., Boccard J., Rudaz S. Metabolomic analysis of urine samples by UHPLC-QTOF-MS: Impact of normalization strategies. Anal. Chim. Acta. 2017;955:27–35. doi: 10.1016/j.aca.2016.12.029.
    1. Wiese S., Esatbeyoglu T., Winterhalter P., Kruse H.P., Winkler S., Bub A., Kulling S.E. Comparative biokinetics and metabolism of pure monomeric, dimeric, and polymeric flavan-3-ols: A randomized cross-over study in humans. Mol. Nutr. Food Res. 2015;59:610–621. doi: 10.1002/mnfr.201400422.
    1. Mosele J.I., Martín-Peláez S., Macià A., Farràs M., Valls R.M., Catalán Ú., Motilva M.J. Faecal microbial metabolism of olive oil phenolic compounds: In vitro and in vivo approaches. Mol. Nutr. Food Res. 2014;58:1809–1819. doi: 10.1002/mnfr.201400124.
    1. Ozdal T., Sela D.A., Xiao J., Boyacioglu D., Chen F., Capanoglu E. The Reciprocal Interactions between Polyphenols and Gut Microbiota and Effects on Bioaccessibility. Nutrients. 2016;8:78. doi: 10.3390/nu8020078.
    1. Danneskiold-Samsøe N.B., Dias de Freitas Queiroz Barros H., Santos R., Bicas J.L., Cazarin C.B.B., Madsen L., Kristiansen K., Pastore G.M., Brix S., Maróstica Júnior M.R. Interplay between food and gut microbiota in health and disease. Food Res. Int. 2019;115:23–31. doi: 10.1016/j.foodres.2018.07.043.
    1. Durack J., Lynch S.V. The gut microbiome: Relationships with disease and opportunities for therapy. J. Exp. Med. 2019;216:20. doi: 10.1084/jem.20180448.
    1. Kasprzak-Drozd K., Oniszczuk T., Stasiak M., Oniszczuk A. Beneficial Effects of Phenolic Compounds on Gut Microbiota and Metabolic Syndrome. Int. J. Mol. Sci. 2021;22:3715. doi: 10.3390/ijms22073715.
    1. Trakooncharoenvit A., Tanaka S., Mizuta E., Hira T., Hara H. Water-soluble dietary fibers enhance bioavailability of quercetin and a fiber derived from soybean is most effective after long-term feeding in rats. Eur. J. Nutr. 2020;59:1389–1398. doi: 10.1007/s00394-019-01992-9.
    1. McKay D.L., Chen C.Y.O., Zampariello C.A., Blumberg J.B. Flavonoids and phenolic acids from cranberry juice are bioavailable and bioactive in healthy older adults. Food Chem. 2015;168:233–240. doi: 10.1016/j.foodchem.2014.07.062.
    1. Emwas A.H.M. The strengths and weaknesses of NMR spectroscopy and mass spectrometry with particular focus on metabolomics research. Methods Mol. Biol. 2015;1277:161–193. doi: 10.1007/978-1-4939-2377-9_13.
    1. Gharari Z., Bagheri K., Derakhshani B., Sharafi A. HPLC-DAD-ESI/MSn analysis of phenolic components of Scutellaria araxensis, S. bornmuelleri and S. orientalis. Nat. Prod. Res. 2020:1–6. doi: 10.1080/14786419.2020.1837810.
    1. Lee H.J., Jeong H.Y., Jin M.R., Lee H.J., Cho J.Y., Moon J.H. Metabolism and antioxidant effect of malaxinic acid and its corresponding aglycone in rat blood plasma. Free Radic. Biol. Med. 2017;110:399–407. doi: 10.1016/j.freeradbiomed.2017.06.020.
    1. Bustamante L., Pastene E., Duran-Sandoval D., Vergara C., Von Baer D., Mardones C. Pharmacokinetics of low molecular weight phenolic compounds in gerbil plasma after the consumption of calafate berry (Berberis microphylla) extract. Food Chem. 2018;268:347–354. doi: 10.1016/j.foodchem.2018.06.048.
    1. Carry E., Zhao D., Mogno I., Faith J., Ho L., Villani T., Patel H., Pasinetti G.M., Simon J.E., Wu Q. Targeted analysis of microbial-generated phenolic acid metabolites derived from grape flavanols by gas chromatography-triple quadrupole mass spectrometry. J. Pharm. Biomed. Anal. 2018;159:374–383. doi: 10.1016/j.jpba.2018.06.034.
    1. Zhang X., Chen S., Duan F., Liu A., Li S., Zhong W., Sheng W., Chen J., Xu J., Xiao S. Prebiotics enhance the biotransformation and bioavailability of ginsenosides in rats by modulating gut microbiota. J. Ginseng Res. 2021;45:334–343. doi: 10.1016/j.jgr.2020.08.001.
    1. Rathod R.H., Chaudhari S.R., Patil A.S., Shirkhedkar A.A. Ultra-high performance liquid chromatography-MS/MS (UHPLC-MS/MS) in practice: Analysis of drugs and pharmaceutical formulations. Futur. J. Pharm. Sci. 2019;5 doi: 10.1186/s43094-019-0007-8.
    1. Kumar B.R. Application of HPLC and ESI-MS techniques in the analysis of phenolic acids and flavonoids from green leafy vegetables (GLVs) J. Pharm. Anal. 2017;7:349–364. doi: 10.1016/j.jpha.2017.06.005.
    1. Castello F., Fernández-Pachón M.S., Cerrillo I., Escudero-López B., Ortega Á., Rosi A., Bresciani L., Del Rio D., Mena P. Absorption, metabolism, and excretion of orange juice (poly)phenols in humans: The effect of a controlled alcoholic fermentation. Arch. Biochem. Biophys. 2020;695:108627. doi: 10.1016/j.abb.2020.108627.
    1. Iglesias-Carres L., Mas-Capdevila A., Bravo F.I., Aragonès G., Arola-Arnal A., Muguerza B. A comparative study on the bioavailability of phenolic compounds from organic and nonorganic red grapes. Food Chem. 2019;299:125092. doi: 10.1016/j.foodchem.2019.125092.
    1. Iglesias-Carres L., Mas-Capdevila A., Bravo F.I., Arola L., Muguerza B., Arola-Arnal A. Exposure of Fischer 344 rats to distinct photoperiods nfluences the bioavailability of red grape polyphenols. J. Photochem. Photobiol. B Biol. 2019;199:111623. doi: 10.1016/j.jphotobiol.2019.111623.
    1. Agulló V., García-Viguera C., Domínguez-Perles R. Beverages Based on Second Quality Citrus Fruits and Maqui Berry, a Source of Bioactive (Poly)phenols: Sorting Out Urine Metabolites upon a Longitudinal Study. Nutrients. 2021;13:312. doi: 10.3390/nu13020312.
    1. Domínguez-Perles R., Auñón D., Ferreres F., Gil-Izquierdo A. Gender differences in plasma and urine metabolites from Sprague–Dawley rats after oral administration of normal and high doses of hydroxytyrosol, hydroxytyrosol acetate, and DOPAC. Eur. J. Nutr. 2017;56:215–224. doi: 10.1007/s00394-015-1071-2.
    1. García-Villalba R., Tomás-Barberán F.A., Fança-Berthon P., Roller M., Zafrilla P., Issaly N., García-Conesa M.T., Combet E. Targeted and untargeted metabolomics to explore the bioavailability of the secoiridoids from a seed/fruit extract (fraxinus angustifolia vahl) in human healthy volunteers: A preliminary study. Molecules. 2015;20:22202–22219. doi: 10.3390/molecules201219845.
    1. Schrimpe-Rutledge A.C., Codreanu S.G., Sherrod S.D., McLean J.A. Untargeted Metabolomics Strategies—Challenges and Emerging Directions. J. Am. Soc. Mass Spectrom. 2016;27:1897–1905. doi: 10.1007/s13361-016-1469-y.
    1. Achour M., Bravo L., Sarriá B., Ben Fredj M., Nouira M., Mtiraoui A., Saguem S., Mateos R. Bioavailability and nutrikinetics of rosemary tea phenolic compounds in humans. Food Res. Int. 2021;139:109815. doi: 10.1016/j.foodres.2020.109815.
    1. Castello F., Costabile G., Bresciani L., Tassotti M., Naviglio D., Luongo D., Ciciola P., Vitale M., Vetrani C., Galaverna G., et al. Bioavailability and pharmacokinetic profile of grape pomace phenolic compounds in humans. Arch. Biochem. Biophys. 2018;646:1–9. doi: 10.1016/j.abb.2018.03.021.
    1. Zhang Y., Huo M., Zhou J., Xie S. PKSolver: An add-in program for pharmacokinetic and pharmacodynamic data analysis in Microsoft Excel. Comput. Methods Programs Biomed. 2010;99:306–314. doi: 10.1016/j.cmpb.2010.01.007.
    1. Brindani N., Mena P., Calani L., Benzie I., Choi S.W., Brighenti F., Zanardi F., Curti C., Del Rio D. Synthetic and analytical strategies for the quantification of phenyl-γ-valerolactone conjugated metabolites in human urine. Mol. Nutr. Food Res. 2017;61:6–10. doi: 10.1002/mnfr.201700077.
    1. Kundisová I., Juan M.E., Planas J.M. Simultaneous Determination of Phenolic Compounds in Plasma by LC-ESI-MS/MS and Their Bioavailability after the Ingestion of Table Olives. J. Agric. Food Chem. 2020;68:10213–10222. doi: 10.1021/acs.jafc.0c04036.
    1. Magnusson B., Örnemark U. Eurachem Guide: The Fitness for Purpose of Analytical Methods—A Laboratory Guide to Method Validation and Related Topics. 2nd ed. Eurachem; Teddington, UK: 2014.
    1. Kaza M., Karaźniewicz-Łada M., Kosicka K., Siemiątkowska A., Rudzki P.J. Bioanalytical method validation: New FDA guidance vs. EMA guideline. Better or worse? J. Pharm. Biomed. Anal. 2019;165:381–385. doi: 10.1016/j.jpba.2018.12.030.
    1. Pluskal T., Korf A., Smirnov A., Schmid R., Fallon T.R., Du X., Weng J.K. Processing Metabolomics and Proteomics Data with Open Software: A Practical Guide. Royal Society of Chemistry; London, UK: 2020. Metabolomics Data Analysis Using MZmine; pp. 232–254.
    1. Fernández-Ochoa Á., Quirantes-Piné R., Borrás-Linares I., Cádiz-Gurrea M.d.l.L., Alarcón Riquelme M.E., Brunius C., Segura-Carretero A. A Case Report of Switching from Specific Vendor-Based to R-Based Pipelines for Untargeted LC-MS Metabolomics. Metabolites. 2020;10:28. doi: 10.3390/metabo10010028.
    1. Aron A.T., Gentry E.C., McPhail K.L., Nothias L.F., Nothias-Esposito M., Bouslimani A., Petras D., Gauglitz J.M., Sikora N., Vargas F., et al. Reproducible molecular networking of untargeted mass spectrometry data using GNPS. Nat. Protoc. 2020;15:1954–1991. doi: 10.1038/s41596-020-0317-5.
    1. Hakeem Said I., Heidorn C., Petrov D.D., Retta M.B., Truex J.D., Haka S., Ullrich M.S., Kuhnert N. LC-MS based metabolomic approach for the efficient identification and relative quantification of bioavailable cocoa phenolics in human urine. Food Chem. 2021;364:130198. doi: 10.1016/j.foodchem.2021.130198.
    1. Bilal Hussain M., Hassan S., Waheed M., Javed A., Adil Farooq M., Tahir A. Plant Physiological Aspects of Phenolic Compounds. IntechOpen; London, UK: 2019. Bioavailability and Metabolic Pathway of Phenolic Compounds.
    1. Chacar S., Tarighi M., Fares N., Faivre J.F., Louka N., Maroun R.G. Identification of phenolic compounds-rich grape pomace extracts urine metabolites and correlation with gut microbiota modulation. Antioxidants. 2018;7:75. doi: 10.3390/antiox7060075.
    1. Baldrick F.R., McFadden K., Ibars M., Sung C., Moffatt T., Megarry K., Thomas K., Mitchell P., Wallace J.M.W., Pourshahidi L.K., et al. Impact of a (poly)phenol-rich extract from the brown algae Ascophyllum nodosum on DNA damage and antioxidant activity in an overweight or obese population: A randomized controlled trial. Am. J. Clin. Nutr. 2018;108:688–700. doi: 10.1093/ajcn/nqy147.
    1. Rein M.J., Renouf M., Cruz-Hernandez C., Actis-Goretta L., Thakkar S.K., da Silva Pinto M. Bioavailability of bioactive food compounds: A challenging journey to bioefficacy. Br. J. Clin. Pharmacol. 2013;75:588–602. doi: 10.1111/j.1365-2125.2012.04425.x.
    1. McClements D.J. Recent developments in encapsulation and release of functional food ingredients: Delivery by design. Curr. Opin. Food Sci. 2018;23:80–84. doi: 10.1016/j.cofs.2018.06.008.
    1. Grgić J., Šelo G., Planinić M., Tišma M., Bucić-Kojić A. Role of the encapsulation in bioavailability of phenolic compounds. Antioxidants. 2020;9:923. doi: 10.3390/antiox9100923.
    1. Cryan J.F., O’riordan K.J., Cowan C.S.M., Sandhu K.V., Bastiaanssen T.F.S., Boehme M., Codagnone M.G., Cussotto S., Fulling C., Golubeva A.V., et al. The Microbiota-Gut-Brain Axis. Physiol. Rev. 2019;99:1877–2013. doi: 10.1152/physrev.00018.2018.
    1. Carabotti M., Scirocco A., Maselli M.A., Severi C. The gut-brain axis: Interactions between enteric microbiota, central and enteric nervous systems. Ann. Gastroenterol. Q. Publ. Hell. Soc. Gastroenterol. 2015;28:203.
    1. Zhang X., Quinn K., Cruickshank-Quinn C., Reisdorph R., Reisdorph N. The application of ion mobility mass spectrometry to metabolomics. Curr. Opin. Chem. Biol. 2018;42:60–66. doi: 10.1016/j.cbpa.2017.11.001.
    1. Levy A.J., Oranzi N.R., Ahmadireskety A., Kemperman R.H.J., Wei M.S., Yost R.A. Recent progress in metabolomics using ion mobility-mass spectrometry. TrAC Trends Anal. Chem. 2019;116:274–281. doi: 10.1016/j.trac.2019.05.001.
    1. Song X.C., Canellas E., Dreolin N., Nerin C., Goshawk J. Discovery and Characterization of Phenolic Compounds in Bearberry (Arctostaphylos uva-ursi) Leaves Using Liquid Chromatography-Ion Mobility-High-Resolution Mass Spectrometry. J. Agric. Food Chem. 2021;69:10856–10868. doi: 10.1021/acs.jafc.1c02845.
    1. Montero L., Schmitz O.J., Meckelmann S.W. Chemical characterization of eight herbal liqueurs by means of liquid chromatography coupled with ion mobility quadrupole time-of-flight mass spectrometry. J. Chromatogr. A. 2020;1631 doi: 10.1016/j.chroma.2020.461560.
    1. Masike K., De Villiers A., Hoffman E.W., Brand D.J., Causon T., Stander M.A. Detailed Phenolic Characterization of Protea Pure and Hybrid Cultivars by Liquid Chromatography-Ion Mobility-High Resolution Mass Spectrometry (LC-IM-HR-MS) J. Agric. Food Chem. 2020;68:485–502. doi: 10.1021/acs.jafc.9b06361.
    1. Delgado-Povedano M.D.M., de Villiers A., Hann S., Causon T. Identity confirmation of anthocyanins in berries by LC–DAD–IM-QTOFMS. Electrophoresis. 2021;42:473–481. doi: 10.1002/elps.202000274.

Source: PubMed

3
Iratkozz fel