Accumulation of Innate Amyloid Beta Peptide in Glioblastoma Tumors

Lilia Y Kucheryavykh, Jescelica Ortiz-Rivera, Yuriy V Kucheryavykh, Astrid Zayas-Santiago, Amanda Diaz-Garcia, Mikhail Y Inyushin, Lilia Y Kucheryavykh, Jescelica Ortiz-Rivera, Yuriy V Kucheryavykh, Astrid Zayas-Santiago, Amanda Diaz-Garcia, Mikhail Y Inyushin

Abstract

Immunostaining with specific antibodies has shown that innate amyloid beta (Aβ) is accumulated naturally in glioma tumors and nearby blood vessels in a mouse model of glioma. In immunofluorescence images, Aβ peptide coincides with glioma cells, and enzyme-linked immunosorbent assay (ELISA) have shown that Aβ peptide is enriched in the membrane protein fraction of tumor cells. ELISAs have also confirmed that the Aβ(1-40) peptide is enriched in glioma tumor areas relative to healthy brain areas. Thioflavin staining revealed that at least some amyloid is present in glioma tumors in aggregated forms. We may suggest that the presence of aggregated amyloid in glioma tumors together with the presence of Aβ immunofluorescence coinciding with glioma cells and the nearby vasculature imply that the source of Aβ peptides in glioma can be systemic Aβ from blood vessels, but this question remains unresolved and needs additional studies.

Keywords: Aβ peptide; amyloid; glioma; platelets.

Conflict of interest statement

The authors declare that they have no conflicts of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

Figures

Figure 1
Figure 1
Aβ peptide immunoreactivity (green) in glioma cells and in nearby blood vessels. (A) A small glioma tumor near a broken blood vessel. Aβ peptide immunoreactivity (green) visible in glioma cells (white arrow) and in blood vessels. Erythrocytes released from the broken vessel are also marked with Aβ-related immunofluorescence (yellow arrow). (B) A larger glioma tumor in which a broken blood vessel passes through the tumor (more clearly visible in the 3D image of this tumor shown in Figure S1B), and white arrows indicate glioma cells marked by green immunofluorescence representing Aβ peptide. For A and B, astrocytes are indicated by immunoreactivity to GFAP (red) and cell nuclei by DAPI staining (blue). Scale bar, 20 µm. (See also supplemental confocal 3D images of the same tumors in Figure S1A,B, respectively).
Figure 2
Figure 2
(A) The relative amount of Aβ40 in the glioma tissue is elevated. (B) Aβ40 in glioma tumor tissue is concentrated in the cell membrane fraction.
Figure 3
Figure 3
Aggregated amyloid visualized by staining with thioflavin T (green) and thioflavin S (red) inside the glioma tumor body. The white arrow shows the glioma tumor body visible in the brain slice.

References

    1. Guerreiro R., Bras J. The age factor in Alzheimer’s disease. Genome Med. 2015;7:106. doi: 10.1186/s13073-015-0232-5.
    1. Young J.S., Chmura S.J., Wainwright D.A., Yamini B., Peters K.B., Lukas R.V. Management of glioblastoma in elderly patients. J. Neurol. Sci. 2017;380:250–255. doi: 10.1016/j.jns.2017.07.048.
    1. Ou S.M., Lee Y.J., Hu Y.W., Liu C.J., Chen T.J., Fuh J.L., Wang S.J. Does Alzheimer’s disease protect against cancers? A nationwide population-based study. Neuroepidemiology. 2013;40:42–49. doi: 10.1159/000341411.
    1. Musicco M., Adorni F., Di Santo S., Prinelli F., Pettenati C., Caltagirone C., Palmer K., Russo A. Inverse occurrence of cancer and Alzheimer disease: A population-based incidence study. Neurology. 2013;81:322–328. doi: 10.1212/WNL.0b013e31829c5ec1.
    1. Yarchoan M., James B.D., Shah R.C., Arvanitakis Z., Wilson R.S., Schneider J., Bennett D.A., Arnold S.E. Association of Cancer History with Alzheimer’s Disease Dementia and Neuropathology. J. Alzheimers Dis. 2017;56:699–706. doi: 10.3233/JAD-160977.
    1. Driver J.A., Beiser A., Au R., Kreger B.E., Splansky G.L., Kurth T., Kiel D.P., Lu K.P., Seshadri S., Wolf P.A. Inverse association between cancer and Alzheimer’s disease: Results from the Framingham Heart Study. BMJ. 2012;344:e1442. doi: 10.1136/bmj.e1442.
    1. Lehrer S. Glioblastoma and dementia may share a common cause. Med. Hypotheses. 2010;75:67–68. doi: 10.1016/j.mehy.2010.01.031.
    1. Lehrer S. Glioma and Alzheimer’s Disease. J. Alzheimers Dis. Rep. 2018;2:213–218. doi: 10.3233/ADR-180084.
    1. Behrens M.I., Lendon C., Roe C.M. A common biological mechanism in cancer and Alzheimer’s disease? Curr. Alzheimer Res. 2009;6:196–204. doi: 10.2174/156720509788486608.
    1. Sánchez-Valle J., Tejero H., Ibáñez K., Portero J.L., Krallinger M., Al-Shahrour F., Tabarés-Seisdedos R., Baudot A., Valencia A. A molecular hypothesis to explain direct and inverse co-morbidities between Alzheimer’s Disease, Glioblastoma and Lung cancer. Sci. Rep. 2017;7:4474. doi: 10.1038/s41598-017-04400-6.
    1. Hansel D.E., Rahman A., Wehner S., Herzog V., Yeo C.J., Maitra A. Increased expression and processing of the Alzheimer amyloid precursor protein in pancreatic cancer may influence cellular proliferation. Cancer Res. 2003;63:7032–7037.
    1. Tsang J.Y.S., Lee M.A., Ni Y.B., Chan S.K., Cheung S.Y., Chan W.W., Lau K.F., Tse G.M.K. Amyloid Precursor Protein Is Associated with Aggressive Behavior in Nonluminal Breast Cancers. Oncologist. 2018;23:1273–1281. doi: 10.1634/theoncologist.2018-0012.
    1. Tsang J.Y.S., Lee M.A., Chan T.H., Li J., Ni Y.B., Shao Y., Chan S.K., Cheungc S.Y., Lau K.F., Tse G.M.K. Proteolytic cleavage of amyloid precursor protein by ADAM10 mediates proliferation and migration in breast cancer. EBioMedicine. 2018;38:89–99. doi: 10.1016/j.ebiom.2018.11.012.
    1. Jin W.S., Bu X.L., Liu Y.H., Shen L.L., Zhuang Z.Q., Jiao S.S., Zhu C., Wang Q.H., Zhou H.D., Zhang T., et al. Plasma Amyloid-Beta Levels in Patients with Different Types of Cancer. Neurotox. Res. 2017;31:283–288. doi: 10.1007/s12640-016-9682-9.
    1. Morato E., Mayor F., Jr. Production of the Alzheimer’s beta-amyloid peptide by C6 glioma cells. FEBS Lett. 1993;336:275–278. doi: 10.1016/0014-5793(93)80819-G.
    1. Murphy S.F., Banasiak M., Yee G.-T., Wotoczek-Obadia M., Tran Y., Prak A., Albright R., Mullan M., Paris D., Brem S. A synthetic fragment of beta-amyloid peptide suppresses glioma proliferation, angiogenesis, and invasiveness in vivo and in vitro. Neuro-Oncol. 2010;12:iv5. doi: 10.1093/neuonc/noq116.
    1. Paris D. Modulation of Angiogenesis by a-Beta Peptide Fragments. Patent US20080031954A1. 2005 Feb 7;
    1. Paris D., Gan ey N., Banasiak M., Laporte V., Patel N., Mullan M., Murphy S.F., Yee G.T., Bachmeier C., Ganey C., et al. Impaired orthotopic glioma growth and vascularization in transgenic mouse models of Alzheimer’s disease. J. Neurosci. 2010;30:11251–11258. doi: 10.1523/JNEUROSCI.2586-10.2010.
    1. Inyushin M.Y., Sanabria P., Rojas L., Kucheryavykh Y., Kucheryavykh L. Aβ Peptide Originated from Platelets Promises New Strategy in Anti-Alzheimer’s Drug Development. Biomed. Res. Int. 2017;2017:3948360. doi: 10.1155/2017/3948360.
    1. Inyushin M., Zayas-Santiago A., Rojas L., Kucheryavykh Y., Kucheryavykh L. Platelet-generated amyloid beta peptides in Alzheimer’s disease and glaucoma. Histol. Histopathol. 2019:18111. doi: 10.14670/HH-18-111.
    1. Kucheryavykh L.Y., Dávila-Rodríguez J., Rivera-Aponte D.E., Zueva L.V., Washington A.V., Sanabria P., Inyushin M.Y. Platelets are responsible for the accumulation of β-amyloid in blood clots inside and around blood vessels in mouse brain after thrombosis. Brain Res. Bull. 2017;128:98–105. doi: 10.1016/j.brainresbull.2016.11.008.
    1. Kucheryavykh L.Y., Kucheryavykh Y.V., Washington A.V., Inyushin M.Y. Amyloid Beta Peptide Is Released during Thrombosis in the Skin. Int. J. Mol. Sci. 2018;19:1705. doi: 10.3390/ijms19061705.
    1. Jurasz P., Alonso-Escolano D., Radomski M.W. Platelet–cancer interactions: Mechanisms and pharmacology of tumour cell-induced platelet aggregation. Br. J. Pharm. 2004;143:819–826. doi: 10.1038/sj.bjp.0706013.
    1. Goubran H.A., Burnouf T., Radosevic M., El-Ekiaby M. The platelet-cancer loop. Eur. J. Intern. Med. 2013;24:393–400. doi: 10.1016/j.ejim.2013.01.017.
    1. Hermanson M., Funa K., Hartman M., Claesson-Welsh L., Heldin C.H., Westermark B., Nistér M. Platelet-derived growth factor and its receptors in human glioma tissue: Expression of messenger RNA and protein suggests the presence of autocrine and paracrine loops. Cancer Res. 1992;52:3213–3219.
    1. Kucheryavykh L.Y., Kucheryavykh Y.V., Rolón-Reyes K., Skatchkov S.N., Eaton M.J., Cubano L.A., Inyushin M.Y. Visualization of implanted GL261 glioma cells in living mouse brain slices using fluorescent 4-(4-(dimethylamino)-styryl)-N-methylpyridinium iodide (ASP+) Biotechniques. 2012 doi: 10.2144/000113940.
    1. Rolón-Reyes K., Kucheryavykh Y.V., Cubano L.A., Inyushin M., Skatchkov S.N., Eaton M.J., Harrison J.K., Kucheryavykh L.Y. Microglia Activate Migration of Glioma Cells through a Pyk2 Intracellular Pathway. PLoS ONE. 2015;10:e0131059. doi: 10.1371/journal.pone.0131059.
    1. Dubois L.G., Campanati L., Righy C., D’Andrea-Meira I., Spohr T.C., Porto-Carreiro I., Pereira C.M., Balça-Silva J., Kahn S.A., DosSantos M.F., et al. Gliomas and the vascular fragility of the blood brain barrier. Front. Cell Neurosci. 2014;8:418. doi: 10.3389/fncel.2014.00418.
    1. Lan J., Liu J., Zhao Z., Xue R., Zhang N., Zhang P., Zhao P., Zheng F., Sun X. The peripheral blood of Aβ binding RBC as a biomarker for diagnosis of Alzheimer’s disease. Age Ageing. 2015;44:458–464. doi: 10.1093/ageing/afv009.
    1. Mohanty J.G., Eckley D.M., Williamson J.D., Launer L.J., Rifkind J.M. Do red blood cell-β-amyloid interactions alter oxygen delivery in Alzheimer’s disease? Adv. Exp. Med. Biol. 2008;614:29–35.
    1. Kelényi G. Thioflavin S fluorescent and Congo red anisotropic stainings in the histologic demonstration of amyloid. Acta Neuropathol. 1967;7:336–348. doi: 10.1007/BF00688089.
    1. Biancalana M., Koide S. Molecular mechanism of Thioflavin-T binding to amyloid fibrils. Biochim. Biophys. Acta. 2010;1804:1405–1412. doi: 10.1016/j.bbapap.2010.04.001.
    1. Wu Y., Du S., Johnson J.L., Tung H.Y., Landers C.T., Liu Y., Seman B.G., Wheeler R.T., Costa-Mattioli M., Kheradmand F., et al. Microglia and amyloid precursor protein coordinate control of transient Candida cerebritis with memory deficits. Nat. Commun. 2019;10:58. doi: 10.1038/s41467-018-07991-4.
    1. Brody A.H., Strittmatter S.M. Synaptotoxic Signaling by Amyloid Beta Oligomers in Alzheimer’s Disease Through Prion Protein and mGluR5. Adv. Pharm. 2018;82:293–323. doi: 10.1016/bs.apha.2017.09.007.
    1. Salazar S.V., Cox T.O., Lee S., Brody A.H., Chyung A.S., Haas L.T., Strittmatter S.M. Alzheimer’s Disease Risk Factor Pyk2 Mediates Amyloid-β-Induced Synaptic Dysfunction and Loss. J. Neurosci. 2019;39:758–772. doi: 10.1523/JNEUROSCI.1873-18.2018.
    1. Lipinski C.A., Tran N.L., Menashi E., Rohl C., Kloss J., Bay R.C., Berens M.E., Loftus J.C. The tyrosine kinase pyk2 promotes migration and invasion of glioma cells. Neoplasia. 2005;7:435–445. doi: 10.1593/neo.04712.
    1. Fan Q.W., Weiss W.A. Targeting the RTK-PI3K-mTOR axis in malignant glioma: Overcoming resistance. Curr. Top. Microbiol. Immunol. 2010;347:279–296. doi: 10.1007/82_2010_67.
    1. Zhao H.F., Wang J., Shao W., Wu C.P., Chen Z.P., To S.T., Li W.P. Recent advances in the use of PI3K inhibitors for glioblastoma multiforme: Current preclinical and clinical development. Mol. Cancer. 2017;16:100. doi: 10.1186/s12943-017-0670-3.
    1. Klippel A., Reinhard C., Kavanaugh W.M., Apell G., Escobedo M.A., Williams L.T. Membrane localization of phosphatidylinositol 3-kinase is sufficient to activate multiple signal-transducing kinase pathways. Mol. Cell. Biol. 1996;16:4117–4127. doi: 10.1128/MCB.16.8.4117.
    1. Gao X., Lowry P.R., Zhou X., Depry C., Wei Z., Wong G.W., Zhang J. PI3K/Akt signaling requires spatial compartmentalization in plasma membrane microdomains. Proc. Natl. Acad. Sci. USA. 2011;108:14509–14514. doi: 10.1073/pnas.1019386108.
    1. Chen T.J., Wang D.C., Chen S.S. Amyloid-beta interrupts the PI3K-Akt-mTOR signaling pathway that could be involved in brain-derived neurotrophic factor-induced Arc expression in rat cortical neurons. J. Neurosci. Res. 2009;87:2297–2307. doi: 10.1002/jnr.22057.
    1. Mruthinti S., Hill W.D., Swamy-Mruthinti S., Buccafusco J.J. Relationship between the induction of RAGE cell-surface antigen and the expression of amyloid binding sites. J. Mol. Neurosci. 2003;20:223–232. doi: 10.1385/JMN:20:3:223.
    1. Deane R., Du Yan S., Submamaryan R.K., LaRue B., Jovanovic S., Hogg E., Welch D., Manness L., Lin C., Yu J., et al. RAGE mediates amyloid-beta peptide transport across the blood-brain barrier and accumulation in brain. Nat. Med. 2003;9:907–913. doi: 10.1038/nm890.
    1. Logsdon C.D., Fuentes M.K., Huang E.H., Arumugam T. RAGE and RAGE ligands in cancer. Curr. Mol. Med. 2007;7:777–789. doi: 10.2174/156652407783220697.
    1. Verkhratsky A., Olabarria M., Noristani H.N., Yeh C.-Y., Rodriguez J.J. Astrocytes in Alzheimer’s Disease. Neurotherapeutics. 2010;7:399–412. doi: 10.1016/j.nurt.2010.05.017.
    1. Veeraraghavalu K., Zhang C., Zhang X., Tanzi R.E., Sisodia S.S. Age-dependent non-cell-autonomous deposition of amyloid from synthesis of β-amyloid by cells other than excitatory neurons. J. Neurosci. 2014;34:3668–3673. doi: 10.1523/JNEUROSCI.5079-13.2014.
    1. Frost G.R., Li Y.M. The role of astrocytes in amyloid production and Alzheimer’s disease. Open Biol. 2017;7:170228. doi: 10.1098/rsob.170228.
    1. Teich A.F., Patel M., Arancio O. A reliable way to detect endogenous murine β-amyloid. PLoS ONE. 2013;8:e55647. doi: 10.1371/journal.pone.0055647.
    1. Okereke O.I., Xia W., Irizarry M.C., Sun X., Qiu W.Q., Fagan A.M., Mehta P.D., Hyman B.T., Selkoe D.J., Grodstein F. Performance characteristics of plasma amyloid-beta 40 and 42 assays. J. Alzheimers Dis. 2009;16:277–285. doi: 10.3233/JAD-2009-0948.
    1. Aluise C.D., Sowell R.A., Butterfield D.A. Peptides and proteins in plasma and cerebrospinal fluid as biomarkers for the prediction, diagnosis, and monitoring of therapeutic efficacy of Alzheimer’s disease. Biochim. Biophys. Acta. 2008;1782:549–558. doi: 10.1016/j.bbadis.2008.07.008.
    1. Stewart K.L., Radford S.E. Amyloid plaques beyond Aβ: A survey of the diverse modulators of amyloid aggregation. Biophys. Rev. 2017;9:405–419. doi: 10.1007/s12551-017-0271-9.
    1. Ganesan A., Debulpaep M., Wilkinson H., Van Durme J., De Baets G., Jonckheere W., Ramakers M., Ivarsson Y., Zimmermann P., Van Eldere J., et al. Selectivity of aggregation-determining interactions. J. Mol. Biol. 2015;427:236–247. doi: 10.1016/j.jmb.2014.09.027.
    1. Bolognesi B., Tartaglia G.G. Physicochemical principles of protein aggregation. Prog. Mol. Biol. Transl. Sci. 2013;117:53–72. doi: 10.1016/B978-0-12-386931-9.00003-9.
    1. Valenta L.J., Michel-Bechet M., Mattson J.C., Singer F.R. Microfollicular thyroid carcinoma with amyloid rich stroma, resembling the medullary carcinoma of the thyroid (MCT) Cancer. 1977;39:1573–1586. doi: 10.1002/1097-0142(197704)39:4<1573::AID-CNCR2820390433>;2-A.
    1. Khan I.S., Loh K.S., Petersson F. Amyloid and hyaline globules in undifferentiated nasopharyngeal carcinoma. Ann. Diagn. Pathol. 2019;40:1–6. doi: 10.1016/j.anndiagpath.2019.02.016.
    1. Franklin C.D., Martin M.V., Clark A., Smith C.J., Hindle M.O. An investigation into the origin and nature of ‘amyloid’ in a calcifying epithelial odontogenic tumour. J. Oral Pathol. 1981;10:417–429. doi: 10.1111/j.1600-0714.1981.tb01293.x.
    1. Delaney M.A., Singh K., Murphy C.L., Solomon A., Nel S., Boy S.C. Immunohistochemical and biochemical evidence of ameloblastic origin of amyloid-producing odontogenic tumors in cats. Vet. Pathol. 2013;50:238–242. doi: 10.1177/0300985812452583.
    1. Hirayama K., Endoh C., Kagawa Y., Ohmachi T., Yamagami T., Nomura K., Matsuda K., Okamoto M., Taniyama H. Amyloid-Producing Odontogenic Tumors of the Facial Skin in Three Cats. Vet. Pathol. 2017;54:218–221. doi: 10.1177/0300985816660746.
    1. Silverman J.F., Dabbs D.J., Norris H.T., Pories W.J., Legier J., Kay S. Localized primary (AL) amyloid tumor of the breast. Cytologic, histologic, immunocytochemical and ultrastructural observations. Am. J. Surg. Pathol. 1986;10:539–545. doi: 10.1097/00000478-198608000-00003.
    1. Mori M., Kotani H., Sawaki M., Hattori M., Yoshimura A., Gondo N., Adachi Y., Kataoka A., Sugino K., Horisawa N., et al. Amyloid tumor of the breast. Surg. Case Rep. 2019;5:31. doi: 10.1186/s40792-019-0591-z.
    1. Rosenzweig M., Landau H. Light chain (AL) amyloidosis: Update on diagnosis and management. J. Hematol. Oncol. 2011;4:47. doi: 10.1186/1756-8722-4-47.
    1. Zayas-Santiago A., Ríos D.S., Zueva L.V., Inyushin M.Y. Localization of αA-Crystallin in Rat Retinal Müller Glial Cells and Photoreceptors. Microsc. Microanal. 2018;24:545–552. doi: 10.1017/S1431927618015118.

Source: PubMed

3
Iratkozz fel