Developmental Dysplasia of the Hip: A Review of Etiopathogenesis, Risk Factors, and Genetic Aspects

Stefan Harsanyi, Radoslav Zamborsky, Lubica Krajciova, Milan Kokavec, Lubos Danisovic, Stefan Harsanyi, Radoslav Zamborsky, Lubica Krajciova, Milan Kokavec, Lubos Danisovic

Abstract

As one of the most frequent skeletal anomalies, developmental dysplasia of the hip (DDH) is characterized by a considerable range of pathology, from minor laxity of ligaments in the hip joint to complete luxation. Multifactorial etiology, of which the candidate genes have been studied the most, poses a challenge in understanding this disorder. Candidate gene association studies (CGASs) along with genome-wide association studies (GWASs) and genome-wide linkage analyses (GWLAs) have found numerous genes and loci with susceptible DDH association. Studies put major importance on candidate genes associated with the formation of connective tissue (COL1A1), osteogenesis (PAPPA2, GDF5), chondrogenesis (UQCC1, ASPN) and cell growth, proliferation and differentiation (TGFB1). Recent studies show that epigenetic factors, such as DNA methylation affect gene expression and therefore could play an important role in DDH pathogenesis. This paper reviews all existing risk factors affecting DDH incidence, along with candidate genes associated with genetic or epigenetic etiology of DDH in various studies.

Keywords: DDH; developmental dysplasia of the hip; epigenetics; genetics; risk factor.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
(A) Dysplastic acetabulum with a subluxated femoral head; (B) Acetabulum in physiological position.
Figure 2
Figure 2
Genes associated with DDH and their suspected effects.

References

    1. Kotlarsky P., Haber R., Bialik V., Eidelman M. Developmental dysplasia of the hip: What has changed in the last 20 years? World J. Orthop. 2015;6:886–901. doi: 10.5312/wjo.v6.i11.886.
    1. Guille J.T., Pizzutillo P.D., MacEwen G.D. Development dysplasia of the hip from birth to six months. J. Am. Acad. Orthop. Surg. 2000;8:232–242. doi: 10.5435/00124635-200007000-00004.
    1. American Academy of Pediatrics Clinical practice guideline: Early detection of developmental dysplasia of the hip. Committee on Quality Improvement, Subcommittee on Developmental Dysplasia of the Hip. Pediatrics. 2000;105:896–905. doi: 10.1542/peds.105.4.896.
    1. Trizno A.A., Jones A.S., Carry P.M., Georgopoulos G. The Prevalence and Treatment of Hip Dysplasia in Prader-Willi Syndrome (PWS) J. Pediatr. Orthop. 2018;38:e151–e156. doi: 10.1097/BPO.0000000000001118.
    1. Vargas Lebrón C., Ruiz Montesino M.D., Moreira Navarrete V., Aróstegui Gorospe J.I. Síndrome tricorinofalángico. Reumatol. Clín. 2018 doi: 10.1016/j.reuma.2018.08.015. in press.
    1. Langereis E.J., den Os M.M., Breen C., Jones S.A., Knaven O.C., Mercer J., Miller W.P., Kelly P.M., Kennedy J., Ketterl T.G., et al. Progression of Hip Dysplasia in Mucopolysaccharidosis Type I Hurler After Successful Hematopoietic Stem Cell Transplantation. J. Bone Joint Surg. Am. 2016;98:386–395. doi: 10.2106/JBJS.O.00601.
    1. Sankar W.N. Complete redirectional acetabular osteotomies for neurogenic and syndromic hip dysplasia. J. Pediatr. Orthop. 2013;33(Suppl. S1):S39–S44. doi: 10.1097/BPO.0b013e3182770a71.
    1. Auth P.C., Kerstein M.D. Physician Assistant Review. Lippincott Williams & Wilkins; Philadelphia, PA, USA: 2012.
    1. Schwend R.M., Shaw B.A., Segal L.S. Evaluation and treatment of developmental hip dysplasia in the newborn and infant. Pediatr. Clin. N. Am. 2014;61:1095–1107. doi: 10.1016/j.pcl.2014.08.008.
    1. Thomas S.R.Y.W. A review of long-term outcomes for late presenting developmental hip dysplasia. Bone Joint J. 2015;97:729–733. doi: 10.1302/0301-620X.97B6.35395.
    1. Wang T.-M., Wu K.-W., Shih S.-F., Huang S.-C., Kuo K.N. Outcomes of open reduction for developmental dysplasia of the hip: Does bilateral dysplasia have a poorer outcome? J. Bone Joint Surg. Am. 2013;95:1081–1086. doi: 10.2106/JBJS.K.01324.
    1. Zídka M., Džupa V. National Register of Joint Replacement Reflecting the Treatment of Developmental Dysplasia of the Hip in Newborns. Acta Chir. Orthop. Traumatol. Cech. 2019;86:324–329.
    1. Bache C.E., Clegg J., Herron M. Risk factors for developmental dysplasia of the hip: Ultrasonographic findings in the neonatal period. J. Pediatr. Orthop. B. 2002;11:212–218.
    1. Broadhurst C., Rhodes A.M.L., Harper P., Perry D.C., Clarke N.M.P., Aarvold A. What is the incidence of late detection of developmental dysplasia of the hip in England? A 26-year national study of children diagnosed after the age of one. Bone Joint J. 2019;101:281–287. doi: 10.1302/0301-620X.101B3.BJJ-2018-1331.R1.
    1. Marks D.S., Clegg J., Al-Chalabi A.N. Routine ultrasound screening for neonatal hip instability. Can it abolish late-presenting congenital dislocation of the hip? J. Bone Joint Surg. Br. 1994;76:534–538. doi: 10.1302/0301-620X.76B4.8027134.
    1. Furnes O., Lie S.A., Espehaug B., Vollset S.E., Engesaeter L.B., Havelin L.I. Hip disease and the prognosis of total hip replacements: A review of 53 698 primary total hip replacements reported to the norwegian arthroplasty register 1987–99. J. Bone Joint Surg. Br. Vol. 2001;83:579. doi: 10.1302/0301-620X.83B4.0830579.
    1. Weinstein S.L., Mubarak S.J., Wenger D.R. Developmental hip dysplasia and dislocation: Part II. Instr. Course Lect. 2004;53:531–542. doi: 10.2106/00004623-200310000-00025.
    1. Woodacre T., Ball T., Cox P. Epidemiology of developmental dysplasia of the hip within the UK: Refining the risk factors. J. Child. Orthop. 2016;10:633–642. doi: 10.1007/s11832-016-0798-5.
    1. Pollet V., Percy V., Prior H.J. Relative Risk and Incidence for Developmental Dysplasia of the Hip. J. Pediatr. 2017;181:202–207. doi: 10.1016/j.jpeds.2016.10.017.
    1. Loder R.T., Shafer C. The demographics of developmental hip dysplasia in the Midwestern United States (Indiana) J. Child. Orthop. 2015;9:93–98. doi: 10.1007/s11832-015-0636-1.
    1. Wenger D., Düppe H., Nilsson J.-Å., Tiderius C.J. Incidence of Late-Diagnosed Hip Dislocation After Universal Clinical Screening in Sweden. JAMA Netw. Open. 2019;2:e1914779. doi: 10.1001/jamanetworkopen.2019.14779.
    1. Ömeroğlu H., Akceylan A., Köse N. Associations between risk factors and developmental dysplasia of the hip and ultrasonographic hip type: A retrospective case control study. J. Child. Orthop. 2019;13:161–166. doi: 10.1302/1863-2548.13.180174.
    1. Gyurkovits Z., Sohár G., Baricsa A., Németh G., Orvos H., Dubs B. Early detection of developmental dysplasia of hip by ultrasound. HIP Int. 2019 doi: 10.1177/1120700019879687.
    1. Aronsson D.D., Goldberg M.J., Kling T.F., Roy D.R. Developmental dysplasia of the hip. Pediatrics. 1994;94:201–208.
    1. Stein-Zamir C., Volovik I., Rishpon S., Sabi R. Developmental dysplasia of the hip: Risk markers, clinical screening and outcome. Pediatr. Int. 2008;50:341–345. doi: 10.1111/j.1442-200X.2008.02575.x.
    1. De Goiano E.O., Akkari M., Pupin J.P., Santili C. The epidemiology of developmental dysplasia of the hip in males. Acta Ortop. Bras. 2020;28:26–30. doi: 10.1590/1413-785220202801215936.
    1. Lambeek A.F., De Hundt M., Vlemmix F., Akerboom B.M.C., Bais J.M.J., Papatsonis D.N.M., Mol B.W.J., Kok M. Risk of developmental dysplasia of the hip in breech presentation: The effect of successful external cephalic version. BJOG An Int. J. Obstet. Gynaecol. 2013;120:607–612. doi: 10.1111/1471-0528.12013.
    1. Sarkissian E.J., Sankar W.N., Baldwin K., Flynn J.M. Is there a predilection for breech infants to demonstrate spontaneous stabilization of DDH instability? J. Pediatr. Orthop. 2014;34:509–513. doi: 10.1097/BPO.0000000000000134.
    1. Panagiotopoulou N., Bitar K., Hart W.J. The association between mode of delivery and developmental dysplasia of the hip in breech infants: A systematic review of 9 cohort studies. Acta Orthop. Belg. 2012;78:697–702.
    1. Verbruggen S.W., Kainz B., Shelmerdine S.C., Arthurs O.J., Hajnal J.V., Rutherford M.A., Phillips A.T.M., Nowlan N.C. Altered biomechanical stimulation of the developing hip joint in presence of hip dysplasia risk factors. J. Biomech. 2018;78:1. doi: 10.1016/j.jbiomech.2018.07.016.
    1. Yamamuro T., Ishida K. Recent advances in the prevention, early diagnosis, and treatment of congenital dislocation of the hip in Japan. Clin. Orthop. Relat. Res. 1984;184:34–40. doi: 10.1097/00003086-198404000-00005.
    1. Rabin D.L., Barnett C.R., Arnold W.D., Freiberger R.H., Brooks G. Untreated congenital hip disease: A study of the epidemiology, natural history, and social aspects of the disease in a navajo population. Am. J. Public Health Nations Health. 1965;55:i3-44. doi: 10.2105/AJPH.55.Suppl_2.i3.
    1. Stevenson D.A., Mineau G., Kerber R.A., Viskochil D.H., Schaefer C., Roach J.W. Familial Predisposition to Developmental Dysplasia of the Hip. J. Pediatr. Orthop. 2009;29:463–466. doi: 10.1097/BPO.0b013e3181aa586b.
    1. Ortiz-Neira C.L., Paolucci E.O., Donnon T. A meta-analysis of common risk factors associated with the diagnosis of developmental dysplasia of the hip in newborns. Eur. J. Radiol. 2012;81:e344–e351. doi: 10.1016/j.ejrad.2011.11.003.
    1. Van Gijzen A.F.M., Rouers E.D.M., van Douveren F.Q.M.P., Dieleman J., Hendriks J.G.E., Halbertsma F.J.J., Bok L.A. Developmental dysplasia of the hip in children with Down syndrome: Comparison of clinical and radiological examinations in a local cohort. Eur. J. Pediatr. 2019;178:559–564. doi: 10.1007/s00431-019-03322-x.
    1. Perry D.C., Tawfiq S.M., Roche A., Shariff R., Garg N.K., James L.A., Sampath J., Bruce C.E. The association between clubfoot and developmental dysplasia of the hip. J. Bone Joint Surg. Br. 2010;92:1586–1588. doi: 10.1302/0301-620X.92B11.24719.
    1. Jang S.-A., Cho Y.-H., Byun Y.-S., Jeong D.-G., Han I.-H., Kim M.-G. Unusual Cause of Hip Pain: Intrusion of the Acetabular Labrum. Hip Pelvis. 2015;27:49–52. doi: 10.5371/hp.2015.27.1.49.
    1. Moličnik A., Janša J., Kocjančič B., Kralj-Iglič V., Dolinar D. Secondary hip dysplasia increases risk for early coxarthritis after Legg-Calve-Perthes disease. A study of 255 hips. Comput. Methods Biomech. Biomed. Eng. 2019;22:1107–1115. doi: 10.1080/10255842.2019.1634193.
    1. Zhao D., Hu W., Zhao B., Zhao X., Li Y., Zhang J., Chen H., Wu Z. Arthroscopic treatment of irreducible hip posterior dislocation caused by acetabular labrum bony Bankart lesions. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2019;33:676–680.
    1. Lee S.H., Jang W.Y., Choi G.W., Lee Y.K., Jung H.W. Is the Transverse Acetabular Ligament Hypertrophied and Hindering Reduction in Developmental Dysplasia of Hip? Arthroscopy. 2018;34:1219–1226. doi: 10.1016/j.arthro.2017.10.024.
    1. Zhao L., Ma Q., Feng X., Fan L., Jiao Q., Wang S., Ying H., Yang X. Screening for Developmental Dysplasia of the Hip in Infants in Tibet Identifies Increased Prevalence Associated with Altitude. Med. Sci. Monit. 2019;25:5771–5775. doi: 10.12659/MSM.916456.
    1. Feldman G.J., Parvizi J., Levenstien M., Scott K., Erickson J.A., Fortina P., Devoto M., Peters C.L. Developmental Dysplasia of the Hip: Linkage Mapping and Whole Exome Sequencing Identify a Shared Variant in CX 3 CR 1 in All Affected Members of a Large Multigeneration Family. J. Bone Miner. Res. 2013;28:2540–2549. doi: 10.1002/jbmr.1999.
    1. Feldman G., Dalsey C., Fertala K., Azimi D., Fortina P., Devoto M., Pacifici M., Parvizi J. The Otto Aufranc Award: Identification of a 4 Mb Region on Chromosome 17q21 Linked to Developmental Dysplasia of the Hip in One 18-member, Multigeneration Family. Clin. Orthop. Relat. Res. 2010;468:337–344. doi: 10.1007/s11999-009-1073-6.
    1. Wynne-Davies R. Acetabular dysplasia and familial joint laxity: Two etiological factors in congenital dislocation of the hip. A review of 589 patients and their families. J. Bone Joint Surg. Br. 1970;52:704–716. doi: 10.1302/0301-620X.52B4.704.
    1. Zhu L., Su G., Dai J., Zhang W., Yin C., Zhang F., Zhu Z., Guo Z., Fang J., Zou C., et al. Whole genome sequencing of pairwise human subjects reveals DNA mutations specific to developmental dysplasia of the hip. Genomics. 2019;111:320–326. doi: 10.1016/j.ygeno.2018.02.006.
    1. Feldman G., Kappes D., Mookerjee-Basu J., Freeman T., Fertala A., Parvizi J. Novel mutation in Teneurin 3 found to co-segregate in all affecteds in a multi-generation family with developmental dysplasia of the hip. J. Orthop. Res. 2019;37:171–180. doi: 10.1002/jor.24148.
    1. Shi D., Dai J., Zhu P., Qin J., Zhu L., Zhu H., Zhao B., Qiu X., Xu Z., Chen D., et al. Association of the D repeat polymorphism in the ASPN gene with developmental dysplasia of the hip: A case-control study in Han Chinese. Arthritis Res. Ther. 2011;13:R27. doi: 10.1186/ar3252.
    1. Zhang J., Yan M., Zhang Y., Yang H., Sun Y. Association analysis on polymorphisms in WISP3 gene and developmental dysplasia of the hip in Han Chinese population: A case-control study. Gene. 2018;664:192–195. doi: 10.1016/j.gene.2018.04.020.
    1. Hatzikotoulas K., Roposch A., Shah K.M., Clark M.J., Bratherton S., Limbani V., Steinberg J., Zengini E., Warsame K., Ratnayake M., et al. Genome-wide association study of developmental dysplasia of the hip identifies an association with GDF5. Commun. Biol. 2018;1:56. doi: 10.1038/s42003-018-0052-4.
    1. Duncan L.E., Ostacher M., Ballon J. How genome-wide association studies (GWAS) made traditional candidate gene studies obsolete. Neuropsychopharmacology. 2019;44:1518–1523. doi: 10.1038/s41386-019-0389-5.
    1. Feldman G.J., Peters C.L., Erickson J.A., Hozack B.A., Jaraha R., Parvizi J. Variable Expression and Incomplete Penetrance of Developmental Dysplasia of the Hip. J. Arthroplast. 2012;27:527–532. doi: 10.1016/j.arth.2011.10.016.
    1. Kolundžić R., Trkulja V., Mikolaučić M., Jovanić Kolundžić M., Pavelić S.K., Pavelić K. Association of interleukin-6 and transforming growth factor-β1 gene polymorphisms with developmental hip dysplasia and severe adult hip osteoarthritis: A preliminary study. Cytokine. 2011;54:125–128. doi: 10.1016/j.cyto.2011.02.004.
    1. Jia J., Li L., Zhao Q., Zhang L., Ru J., Liu X., Li Q., Shi L. Association of a single nucleotide polymorphism in pregnancy-associated plasma protein-A2 with developmental dysplasia of the hip: A case–control study. Osteoarthr. Cartil. 2012;20:60–63. doi: 10.1016/j.joca.2011.10.004.
    1. Zhao L., Tian W., Pan H., Zhu X., Wang J., Cheng Z., Cheng L., Ma X., Wang B. Variations of the COL1A1 Gene Promoter and the Relation to Developmental Dysplasia of the Hip. Genet. Test. Mol. Biomark. 2013;17:840–843. doi: 10.1089/gtmb.2013.0179.
    1. Basit S., Alharby E., Albalawi A.M., Khoshhal K.I. Whole genome SNP genotyping in a family segregating developmental dysplasia of the hip detected runs of homozygosity on chromosomes 15q13.3 and 19p13.2: SNP genotyping in a family with DDH. Congenit. Anom. 2018;58:56–61. doi: 10.1111/cga.12235.
    1. Liu S., Tian W., Wang J., Cheng L., Jia J., Ma X. Two Single-Nucleotide Polymorphisms in the DKK1 Gene Are Associated with Developmental Dysplasia of the Hip in the Chinese Han Female Population. Genet. Test. Mol. Biomark. 2014;18:557–561. doi: 10.1089/gtmb.2014.0044.
    1. Evangelou E., Chapman K., Meulenbelt I., Karassa F.B., Loughlin J., Carr A., Doherty M., Doherty S., Gómez-Reino J.J., Gonzalez A., et al. Large-scale analysis of association between GDF5 and FRZB variants and osteoarthritis of the hip, knee, and hand. Arthritis Rheum. 2009;60:1710–1721. doi: 10.1002/art.24524.
    1. Dai J., Shi D., Zhu P., Qin J., Ni H., Xu Y., Yao C., Zhu L., Zhu H., Zhao B., et al. Association of a single nucleotide polymorphism in growth differentiate factor 5 with congenital dysplasia of the hip: A case-control study. Arthritis Res. Ther. 2008;10:R126. doi: 10.1186/ar2540.
    1. Hao Z., Dai J., Shi D., Xu Z., Chen D., Zhao B., Teng H., Jiang Q. Association of a single nucleotide polymorphism in HOXB9 with developmental dysplasia of the hip: A case-control study. J. Orthop. Res. 2014;32:179–182. doi: 10.1002/jor.22507.
    1. Tian W., Zhao L., Wang J., Suo P., Wang J., Cheng L., Cheng Z., Jia J., Kan S., Wang B., et al. Association analysis between HOXD9 genes and the development of developmental dysplasia of the hip in Chinese female Han population. BMC Musculoskelet. Disord. 2012;13:59. doi: 10.1186/1471-2474-13-59.
    1. Wang K., Shi D., Zhu P., Dai J., Zhu L., Zhu H., Lv Y., Zhao B., Jiang Q. Association of a single nucleotide polymorphism in Tbx4 with developmental dysplasia of the hip: A case-control study. Osteoarthr. Cartil. 2010;18:1592–1595. doi: 10.1016/j.joca.2010.09.008.
    1. Sun Y., Wang C., Hao Z., Dai J., Chen D., Xu Z., Shi D., Mao P., Teng H., Gao X., et al. A Common Variant Of Ubiquinol-Cytochrome c Reductase Complex Is Associated with DDH. PLoS ONE. 2015;10:e0120212. doi: 10.1371/journal.pone.0120212.
    1. Eftekhari H., Hosseini S.R., Pourreza Baboli H., Mafi Golchin M., Heidari L., Abedian Z., Pourbagher R., Amjadi-Moheb F., Mousavi Kani S.N., Nooreddini H., et al. Association of interleukin-6 (rs1800796) but not transforming growth factor beta 1 (rs1800469) with serum calcium levels in osteoporotic patients. Gene. 2018;671:21–27. doi: 10.1016/j.gene.2018.05.118.
    1. Fernandes M.T.P., Fernandes K.B.P., Marquez A.S., Cólus I.M.S., Souza M.F., Santos J.P.M., Poli-Frederico R.C. Association of interleukin-6 gene polymorphism (rs1800796) with severity and functional status of osteoarthritis in elderly individuals. Cytokine. 2015;75:316–320. doi: 10.1016/j.cyto.2015.07.020.
    1. Kämäräinen O.-P., Solovieva S., Vehmas T., Luoma K., Riihimäki H., Ala-Kokko L., Männikkö M., Leino-Arjas P. Common interleukin-6 promoter variants associate with the more severe forms of distal interphalangeal osteoarthritis. Arthritis Res. Ther. 2008;10:R21. doi: 10.1186/ar2374.
    1. Silverio-Ruiz K.G., Martinez A.E.T., Garlet G.P., Barbosa C.F., Silva J.S., Cicarelli R.M.B., Valentini S.R., Abi-Rached R.S.G., Junior C.R. Opposite effects of bFGF and TGF-β on collagen metabolism by human periodontal ligament fibroblasts. Cytokine. 2007;39:130–137. doi: 10.1016/j.cyto.2007.06.009.
    1. Roelen B.A.J., Dijke P. ten Controlling mesenchymal stem cell differentiation by TGFβ family members. J. Orthop. Sci. 2003;8:740–748. doi: 10.1007/s00776-003-0702-2.
    1. Vaughn S.P., Broussard S., Hall C.R., Scott A., Blanton S.H., Milunsky J.M., Hecht J.T. Confirmation of the Mapping of the Camurati–Englemann Locus to 19q13.2 and Refinement to a 3.2-cM Region. Genomics. 2000;66:119–121. doi: 10.1006/geno.2000.6192.
    1. Buxton P., Edwards C., Archer C.W., Francis-West P. Growth/differentiation factor-5 (GDF-5) and skeletal development. J. Bone Joint Surg. Am. 2001;83(Suppl. S1):S23–S30. doi: 10.2106/00004623-200100001-00004.
    1. Nishitoh H., Ichijo H., Kimura M., Matsumoto T., Makishima F., Yamaguchi A., Yamashita H., Enomoto S., Miyazono K. Identification of Type I and Type II Serine/Threonine Kinase Receptors for Growth/Differentiation Factor-5. J. Biol. Chem. 1996;271:21345–21352. doi: 10.1074/jbc.271.35.21345.
    1. Harada M., Takahara M., Zhe P., Otsuji M., Iuchi Y., Takagi M., Ogino T. Developmental failure of the intra-articular ligaments in mice with absence of growth differentiation factor 5. Osteoarthr. Cartil. 2007;15:468–474. doi: 10.1016/j.joca.2006.09.003.
    1. Egli R.J., Southam L., Wilkins J.M., Lorenzen I., Pombo-Suarez M., Gonzalez A., Carr A., Chapman K., Loughlin J. Functional analysis of the osteoarthritis susceptibility-associated GDF5 regulatory polymorphism. Arthritis Rheum. 2009;60:2055–2064. doi: 10.1002/art.24616.
    1. Dai J., Ikegawa S. Recent advances in association studies of osteoarthritis susceptibility genes. J. Hum. Genet. 2010;55:77–80. doi: 10.1038/jhg.2009.137.
    1. Liu J., Cai W., Zhang H., He C., Deng L. Rs143383 in the Growth Differentiation Factor 5 ( GDF5 ) Gene Significantly Associated with Osteoarthritis (OA)-A Comprehensive Meta-analysis. Int. J. Med. Sci. 2013;10:312–319. doi: 10.7150/ijms.5455.
    1. Rouault K., Scotet V., Autret S., Gaucher F., Dubrana F., Tanguy D., El Rassi C.Y., Fenoll B., Férec C. Evidence of association between GDF5 polymorphisms and congenital dislocation of the hip in a Caucasian population. Osteoarthr. Cartil. 2010;18:1144–1149. doi: 10.1016/j.joca.2010.05.018.
    1. Kiepe D., Ciarmatori S., Haarmann A., Tönshoff B. Differential expression of IGF system components in proliferating vs. differentiating growth plate chondrocytes: The functional role of IGFBP-5. Am. J. Physiol. Endocrinol. Metab. 2006;290:E363–E371. doi: 10.1152/ajpendo.00363.2005.
    1. Overgaard M.T., Boldt H.B., Laursen L.S., Sottrup-Jensen L., Conover C.A., Oxvig C. Pregnancy-associated Plasma Protein-A2 (PAPP-A2), a Novel Insulin-like Growth Factor-binding Protein-5 Proteinase. J. Biol. Chem. 2001;276:21849–21853. doi: 10.1074/jbc.M102191200.
    1. Yan X., Baxter R.C., Firth S.M. Involvement of Pregnancy-Associated Plasma Protein-A2 in Insulin-Like Growth Factor (IGF) Binding Protein-5 Proteolysis during Pregnancy: A Potential Mechanism for Increasing IGF Bioavailability. J. Clin. Endocrinol. Metab. 2010;95:1412–1420. doi: 10.1210/jc.2009-2277.
    1. Chen Y., Li L., Wang E., Zhang L., Zhao Q. Abnormal expression of Pappa2 gene may indirectly affect mouse hip development through the IGF signaling pathway. Endocrine. 2019;65:440–450. doi: 10.1007/s12020-019-01975-0.
    1. Allis C.D., Jenuwein T. The molecular hallmarks of epigenetic control. Nat. Rev. Genet. 2016;17:487–500. doi: 10.1038/nrg.2016.59.
    1. Jones B. Dissecting the roles of Pol V. Nat. Rev. Genet. 2012;13:673. doi: 10.1038/nrg3328.
    1. Greer J., McCombe P.A. The role of epigenetic mechanisms and processes in autoimmune disorders. Biol. Targets Ther. 2012;6:307. doi: 10.2147/BTT.S24067.
    1. Baghdadi T., Nejadhosseinian M., Shirkoohi R., Mostafavi Tabatabaee R., Tamehri S.S., Saffari M., Mortazavi S.M.J. DNA hypermethylation of GDF5 in developmental dysplasia of the hip (DDH) Mol. Genet. Genom. Med. 2019;7:e887.
    1. Da Silva M.A., Yamada N., Clarke N.M.P., Roach H.I. Cellular and epigenetic features of a young healthy and a young osteoarthritic cartilage compared with aged control and OA cartilage. J. Orthop. Res. 2009;27:593–601. doi: 10.1002/jor.20799.
    1. Ning B., Jin R., Wang D., Sun J. The H19/let-7 feedback loop contributes to developmental dysplasia and dislocation of the hip. Physiol. Res. 2019:275–284. doi: 10.33549/physiolres.933920.
    1. Kim K.-I., Park Y.-S., Im G.-I. Changes in the epigenetic status of the SOX-9 promoter in human osteoarthritic cartilage. J. Bone Miner. Res. 2013;28:1050–1060. doi: 10.1002/jbmr.1843.
    1. Martinez-Sanchez A., Dudek K.A., Murphy C.L. Regulation of human chondrocyte function through direct inhibition of cartilage master regulator SOX9 by microRNA-145 (miRNA-145) J. Biol. Chem. 2012;287:916–924. doi: 10.1074/jbc.M111.302430.

Source: PubMed

3
Iratkozz fel