Probiotics and Gut Microbiota in Obesity: Myths and Realities of a New Health Revolution

Xavier Eugenio León Aguilera, Alexander Manzano, Daniela Pirela, Valmore Bermúdez, Xavier Eugenio León Aguilera, Alexander Manzano, Daniela Pirela, Valmore Bermúdez

Abstract

Obesity and its comorbidities are humans' most prevalent cardio-metabolic diseases worldwide. Recent evidence has shown that chronic low-grade inflammation is a common feature in all highly prevalent chronic degenerative diseases. In this sense, the gut microbiota is a complete ecosystem involved in different processes like vitamin synthesis, metabolism regulation, and both appetite and immune system control. Thus, dysbiosis has been recognised as one of the many factors associated with obesity due to a predominance of Firmicutes, a decrease in Bifidobacterium in the gut, and a consequent short-chain fatty acids (SCFA) synthesis reduction leading to a reduction in incretins action and intestinal permeability increase. In this context, bacteria, bacterial endotoxins, and toxic bacterial by-products are translocated to the bloodstream, leading to systemic inflammation. This review focuses on gut microbiota composition and its role in obesity, as well as probiotics and prebiotics benefits in obesity.

Keywords: gut microbiota; obesity; prebiotics; probiotics; short chain fatty acids.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Gut microbiota composition: Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacteria are the four “standard” Phyla in our gut intestinal microbiota. Each phylum comprises bacteria with diverse structures, metabolism, and functions.
Figure 2
Figure 2
Main effects of short-chain fatty acids (SCFA) on microbiota and epithelium barrier. SCFA protect the intestinal barrier by lowering the levels of TNFα and interleukin (IL)-6, activating the G-protein coupled receptors (GPCR) to participate in PParα expression increase and the intestinal-mediated inflammatory and immune response by suppressing histone deacetylase (HDAC) and downregulating the expression of pro-inflammatory cytokines. Additionally, SCFA upregulates the gene expression of mucin family genes (MUC1–4) in the intestine, and the protons generated by SCFA dissociation produce an osmotic pressure imbalance in the bacteria. Furthermore, SCFA inhibits bacterial multiplication by interfering with DNA and protein synthesis.
Figure 3
Figure 3
Dietary fibre and its effects on human metabolism and gut microbiota.

References

    1. CarrGómez J.C., Ena J., Lorido J.A., Ripoll J.S., Carrasco-Sánchez F.J., Gómez-Huelgas R., Soto M.P., Lista J.D., Martínez P.P. Obesity Is a Chronic Disease. Positioning Statement of the Diabetes, Obesity and Nutrition Workgroup of the Spanish Society of internal Medicine (SEMI) for An Approach Centred on individuals with Obesity. Rev. Clín. Esp. 2021;221:509–516.
    1. Hales C.M., Carroll M.D., Fryar C.D., Ogden C.L. Prevalence of Obesity and Severe Obesity Among Adults: United States, 2017–2018. NCHS Data Brief. 2020;360:1–8.
    1. Safaei M., Sundararajan E.A., Driss M., Boulila W., Shapi’I A. A Systematic Literature Review on Obesity: Understanding the Causes & Consequences of Obesity and Reviewing Various Machine Learning Approaches Used to Predict obesity. Comput. Biol. Med. 2021;136:104754.
    1. Zhang X., Zhang M., Zhao Z., Huang Z., Deng Q., Li Y. Obesogenic Environmental Factors of Adult Obesity in China: A Nationally Representative Cross-Sectional Study. Environ. Res. Lett. 2020;15:4. doi: 10.1088/1748-9326/ab6614.
    1. Prakash K., Munyanyi M.E. Energy Poverty and Obesity. Energy Econ. 2021;101:105428. doi: 10.1016/j.eneco.2021.105428.
    1. Pérez-Rodrigo C., Hervás Bárbara G., Gianzo Citores M., Aranceta-Bartrina J. Prevalence of Obesity and Associated Cardiovascular Risk Factors in the Spanish Population: The ENPE Study. Rev. Esp. Cardiol. Engl. 2021;3:232–241. doi: 10.1016/j.rec.2020.12.020.
    1. Corazzini R., Morgado F., Gascón T.M., Affonso Fonseca F.L. Evaluation of Obesity Associated with Health Risk Factors in Brazilian Public School. Obes. Med. 2020;19:100223. doi: 10.1016/j.obmed.2020.100223.
    1. Cornejo-Pareja I., Muñoz-Garach A., Clemente-Postigo M., Tinahones F.J. Importance of Gut Microbiota in Obesity. Eur. J. Clin. Nutr. 2019;72:26–37. doi: 10.1038/s41430-018-0306-8.
    1. Wu H., Tremaroli V., Schmidt C., Lundqvist A., Olsson L.M., Krämer M. The Gut Microbiota in Prediabetes and Diabetes: A Population-Based Cross-Sectional Study. Cell Metab. 2020;32:379–390. doi: 10.1016/j.cmet.2020.06.011.
    1. Pittayanon R., Lau J.T., Yuan Y., Leontiadis G.I., Tse F., Surette M. Gut Microbiota in Patients with Irritable Bowel Syndrome—A Systematic Review. Gastroenterology. 2019;157:97–108. doi: 10.1053/j.gastro.2019.03.049.
    1. Nielsen S.D., Pearson N.M., Seidler K. The Link between the Gut Microbiota and Parkinson’s Disease: A Systematic Mechanism Review with Focus on α-Synuclein Transport. Brain Res. 2021;1769:147609. doi: 10.1016/j.brainres.2021.147609.
    1. Lukacs N.W., Huang Y.J. Microbiota–Immune interactions in Asthma Pathogenesis and Phenotype. Curr. Opin. Immunol. 2020;66:22–26. doi: 10.1016/j.coi.2020.03.012.
    1. Guo L., Yang K., Zhou P., Yong W. Gut Microbiota in Obesity and Nonalcoholic Fatty Liver. Disease. Surg. Pract. Sci. 2021;5:100030. doi: 10.1016/j.sipas.2021.100030.
    1. Mills S., Stanton C., Lane J., Smith G., Ross R. Precision Nutrition and the Microbiome, Part I: Current State of the Science. Nutrients. 2019;11:923. doi: 10.3390/nu11040923.
    1. Gomaa E.Z. Human Gut Microbiota/Microbiome in Health and Diseases: A Review. Antonie Van Leeuwenhoek. 2020;113:2019–2040. doi: 10.1007/s10482-020-01474-7.
    1. Crovesy L., Masterson D., Rosado E.L. Profile of the Gut Microbiota of Adults with Obesity: A Systematic Review. Eur. J. Clin. Nutr. 2020;74:1251–1262. doi: 10.1038/s41430-020-0607-6.
    1. Lilly D.M., Stillwell R.H. Probiotics: Growth-Promoting Factors Produced by Microorganisms. Science. 1965;147:747–748. doi: 10.1126/science.147.3659.747.
    1. Afrc R.F. Probiotics in Man and Animals. J. Appl. Bacteriol. 1989;66:365–378. doi: 10.1111/j.1365-2672.1989.tb05105.x.
    1. Gilliland S.E. Health and Nutritional Benefits from Lactic Acid Bacteria. FEMS Microbiol. Lett. 1990;87:175–1788. doi: 10.1111/j.1574-6968.1990.tb04887.x.
    1. Goldin B.R., Gorbach S.L. The Effect of Milk and Lactobacillus Feeding on Human intestinal Bacterial Enzyme Activity. Am. J. Clin. Nutr. 1984;39:756–761. doi: 10.1093/ajcn/39.5.756.
    1. Perdigón G., Fuller R., Raya R. Lactic Acid Bacteria and their Effect-on the Immune System. Curr. Issues Intest. Microbiol. 2001;2:27–42.
    1. Vedamuthu E.R. RC Chandan Manufacturing Yogurt and Fermented Milks. Blackwell Publishing; Ames, IA, USA: 2006. Starter Cultures for Yogurt and Fer-mented Milks; pp. 88–115.
    1. Siciliano R.A., Mazzeo M.F. Molecular Mechanisms of Probiotic Action: A Perspective. Curr. Opin. Microbiol. 2012;15:390–396. doi: 10.1016/j.mib.2012.03.006.
    1. Abdoli M., Mohammadi G., Mansouri K., Khaledian S., Taran M., Martinez F. A Review on Anticancer, Antibacterial and Photo Catalytic Activity of Various Nanoparticles Synthesised by Probiotics. J. Biotechnol. 2022;354:63–71. doi: 10.1016/j.jbiotec.2022.06.005.
    1. Tian P., Zou R., Wang L., Chen Y., Qian X., Zhao J. Multi-Probiotics Ameliorate Major Depressive Disorder and Accompanying Gastrointestinal Syndromes via Serotonergic System Regulation. J. Adv. Res. :2022. doi: 10.1016/j.jare.2022.05.003. in press .
    1. Wang C., Li S., Xue P., Yu L., Tian F., Zhao J. The Effect of Probiotic Supplementation on Lipid Profiles in Adults with Overweight or Obesity: A Meta-Analysis of Randomised Controlled Trials. J. Funct. Foods. 2021;86:104711. doi: 10.1016/j.jff.2021.104711.
    1. Woźniak D., Cichy W., Przysławski J., Drzymała-Czyż S. The Role of Microbiota and Enteroendocrine Cells in Maintaining Homeostasis in the Human Digestive Tract. Adv. Med. Sci. 2021;66:284–292. doi: 10.1016/j.advms.2021.05.003.
    1. Specter M. Germs are Us. New Yorker. 2012 October 15;Volume 88:32–39.
    1. Li J., Jia H., Cai X., Zhong H., Feng Q. An integrated Catalog of Reference Genes in the Human Gut Microbiome. Nat. Biotechnol. 2014;32:834–841. doi: 10.1038/nbt.2942.
    1. Arumugam M., Raes J., Pelletier E., Le Paslier D., Yamada T. Enterotypes of the Human Gut Microbiome. Nature. 2011;473:174–180. doi: 10.1038/nature09944.
    1. Watanabe M., Kojima H., Fukui M. Complete Genome Sequence and Cell Structure of Limnochorda Pilosa, a Gram-Negative Spore-former within the Phylum Firmicutes. Int. J. Syst. Evol. Microbiol. 2016;66:1330–1339. doi: 10.1099/ijsem.0.000881.
    1. Qin J., Li R., Raes J. A Human Gut Microbial Gene Catalogue Established by Metagenomic Sequencing. Nature. 2010;464:59–65. doi: 10.1038/nature08821.
    1. Rinninella E., Raoul P., Cintoni M., Franceschi F., Miggiano G., Gasbarrini A. What Is the Healthy Gut Microbiota Composition? A Changing Ecosystem Across Age, Environment, Diet, and Diseases. Microorganisms. 2019;7:14. doi: 10.3390/microorganisms7010014.
    1. Binda C., Lopetuso L.R., Rizzatti G., Gibiino G., Cennamo V., Gasbarrini A. Actinobacteria: A Relevant Minority for the Maintenance of Gut Homeostasis. Dig. Liver. Dis. 2018;50:421–428. doi: 10.1016/j.dld.2018.02.012.
    1. Lapébie P., Lombard V., Drula E., Terrapon N., Henrissat B. Bacteroidetes Use Thousands of Enzyme Combinations to Break Down Glycans. Nat. Commun. 2019;10:2043. doi: 10.1038/s41467-019-10068-5.
    1. Ivanov I.I., de Llanos Frutos R., Manel N., Yoshinaga K., Rifkin D.B., Sartor R.B., Finlay B.B., Littman D.R. Specific Microbiota Direct the Differentiation of Th17 Cells in the Mucosa of the Small intestine. Cell Host Microbe. 2008;4:337–349. doi: 10.1016/j.chom.2008.09.009.
    1. Chassaing B., Koren O., Goodrich J.K., Poole A.C., Srinivasan S., Ley R.E., Gewirtz A.T. Dietary Emulsifiers Impact the Mouse Gut Microbiota Promoting Colitis and Metabolic Syndrome. Nature. 2015;519:92–96. doi: 10.1038/nature14232.
    1. Gibiino G., Lopetuso L.R., Scaldaferri F., Rizzatti G., Binda C., Gasbarrini A. Exploring Bacteroidetes: Metabolic Key Points and Immunological Tricks of Our Gut Commensals. Dig. Liver. Dis. 2018;50:635–639. doi: 10.1016/j.dld.2018.03.016.
    1. Quigley E.M.M. Microbiota-Brain-Gut Axis and Neurodegenerative Diseases. Curr. Neurol. Neurosci. Rep. 2017;17:94. doi: 10.1007/s11910-017-0802-6.
    1. Lukiw W.J. Bacteroides Fragilis Lipopolysaccharide and inflammatory Signaling in Alzheimer’s Disease. Front. Microbiol. 2016;7:1544. doi: 10.3389/fmicb.2016.01544.
    1. Stilling R.M., Van de Wouw M., Clarke G., Stanton C., Dinan T.G., Cryan J.F. The Neuropharmacology of Butyrate: The Bread and Butter of the Microbiota-Gut-Brain Axis? Neurochem. Int. 2016;99:110–132. doi: 10.1016/j.neuint.2016.06.011.
    1. Morrison D.J., Preston T. Formation of Short Chain Fatty Acids by the Gut Microbiota and their Impact on Human Metabolism. Gut Microbes. 2016;7:189–200. doi: 10.1080/19490976.2015.1134082.
    1. Thorburn A.N., Macia L., Mackay C.R. Diet, Metabolites, and “Western-Lifestyle” inflammatory Diseases. Immunity. 2014;40:833–842. doi: 10.1016/j.immuni.2014.05.014.
    1. Macfarlane G.T., Macfarlane S. Bacteria, Colonic Fermentation, and Gastrointestinal Health. J. AOAC Int. 2012;95:50–60. doi: 10.5740/jaoacint.SGE_Macfarlane.
    1. Jung T.-H., Park J.H., Jeon W.-M., Han K.-S. Butyrate Modulates Bacterial Adherence on LS174T Human Colorectal Cells by Stimulating Mucin Secretion and MAPK Signaling Pathway. Nutr. Res. Pract. 2015;9:343. doi: 10.4162/nrp.2015.9.4.343.
    1. Fukuda S., Toh H., Hase K., Oshima K., Nakanishi Y., Yoshimura K., Tobe T., Clarke J.M., Topping D.L., Suzuki T., et al. Bifidobacteria Can Protect from Enteropathogenic infection Through Production of Acetate. Nature. 2011;469:543–547. doi: 10.1038/nature09646.
    1. Wrzosek L., Miquel S., Noordine M.-L., Bouet S., Chevalier-Curt M.J., Robert V., Philippe C., Bridonneau C., Cherbuy C., Robbe-Masselot C., et al. Bacteroides thetaiotaomicron and Faecalibacterium Prausnitziiinfluence the Production of Mucus Glycans and the Development of Goblet Cells in the Colonic Epithelium of a Gnotobiotic Model Rodent. BMC Biol. 2013;11:61. doi: 10.1186/1741-7007-11-61.
    1. Miyauchi S., Gopal E., Fei Y.J., Ganapathy V. Functional Identification of SLC5A8, A Tumor Suppressor Down-Regulated in Colon Cancer, as a Na+-coupled Transporter for Short-chain Fatty Acids. J. Biol. Chem. 2004;279:13293–13296. doi: 10.1074/jbc.C400059200.
    1. Chassard C., Lacroix C. Carbohydrates and the Human Gut Microbiota. Curr. Opin. Clin. Nutr. Metab. Care. 2013;16:453–460. doi: 10.1097/MCO.0b013e3283619e63.
    1. Ríos-Covián D., Ruas-Madiedo P., Margolles A., Gueimonde M., de los Reyes-Gavilán C.G., Salazar N. Intestinal Short Chain Fatty Acids and their Link with Diet and Human Health. Front. Microbiol. 2016;7:185. doi: 10.3389/fmicb.2016.00185.
    1. Parada Venegas D., De la Fuente M.K., Landskron G., González M.J., Quera R., Dijkstra G., Harmsen H.J., Faber K.N., Hermoso M.A. Short Chain Fatty Acids (SCFAs)-Mediated Gut Epithelial and Immune Regulation and Its Relevance for inflammatory Bowel Diseases. Front. Immunol. 2019;10:277. doi: 10.3389/fimmu.2019.00277.
    1. Kim C.H., Park J., Kim M. Gut Microbiota-Derived Short-Chain Fatty Acids, T Cells, and inflammation. Immune Netw. 2014;14:277–288. doi: 10.4110/in.2014.14.6.277.
    1. Zhao Y., Chen F., Wu W., Sun M., Bilotta A.J., Yao S., Xiao Y., Huang X., Eaves-Pyles T.D., Golovko G., et al. GPR43 Mediates Microbiota Metabolite SCFA Regulation of Antimicrobial Peptide Expression in intestinal Epithelial Cells via Activation of mTOR and STAT3. Mucosal Immunol. 2018;11:752–762. doi: 10.1038/mi.2017.118.
    1. Park J., Kim M., Kang S.G., Jannasch A.H., Cooper B., Patterson J., Kim C.H. Short-Chain Fatty Acids induce Both Effector and Regulatory T Cells by Suppression of Histone Deacetylases and Regulation of the mTOR–S6K Pathway. Mucosal Immunol. 2015;8:80–93. doi: 10.1038/mi.2014.44.
    1. Kim K.N., Yao Y., Ju S.Y. Short Chain Fatty Acids and Fecal Microbiota Abundance in Humans with Obesity: A Systematic Review and Meta-Analysis. Nutrients. 2019;11:2512. doi: 10.3390/nu11102512.
    1. Byrne C.S., Chambers E.S., Morrison D.J., Frost G. The Role of Short Chain Fatty Acids in Appetite Regulation and Energy Homeostasis. Int. J. Obes. 2015;39:1331–1338. doi: 10.1038/ijo.2015.84.
    1. Larraufie P. SCFas Strongly Stimulate PYY Production in Human Enteroendocrine Cells. Sci. Rep. 2018;74:1–8. doi: 10.1038/s41598-017-18259-0.
    1. Tolhurst G., Heffron H., Lam Y.S., Parker H.E., Habib A.M., Diakogiannaki E., Cameron J., Grosse J., Reimann F., Gribble F.M. Short-Chain Fatty Acids Stimulate Glucagon-like Peptide-1 Secretion via the G-Protein–Coupled Receptor FFAR2. Diabetes. 2012;61:364–371. doi: 10.2337/db11-1019.
    1. Chambers E.S., Byrne C.S., Aspey K., Chen Y., Khan S., Morrison D.J., Frost G. Acute Oral Sodium Propionate Supplementation Raises Resting Energy Expenditure and Lipid Oxidation in Fasted Humans. Diabetes Obes. Metab. 2018;20:1034–1039. doi: 10.1111/dom.13159.
    1. Chambers E.S., Viardot A., Psichas A., Morrison D.J., Murphy K.G., Zac-Varghese S.E.K., MacDougall K., Preston T., Tedford C., Finlayson G.S., et al. Effects of Targeted Delivery of Propionate to the Human Colon on Appetite Regulation, Body Weight Maintenance and Adiposity in Overweight Adults. Gut. 2015;64:1744–1754. doi: 10.1136/gutjnl-2014-307913.
    1. Byrne C., Chambers E.S., Alhabeeb H., Chhina N., Morrison D.J., Preston T., Tedford C., Fitzpatrick J., Irani C., Busza A., et al. Increased Colonic Propionate Reduces Anticipatory Reward Responses in the Human Striatum to High-Energy Foods. Am. J. Clin. Nutr. 2016;104:5–14. doi: 10.3945/ajcn.115.126706.
    1. Pluznick J.L., Protzko R.J., Gevorgyan H., Peterlin Z., Sipos A., Han J., Brunet I., Wan L.X., Rey F., Wang T., et al. Olfactory Receptor Responding to Gut Microbiota-Derived Signals Plays a Role in Renin Secretion and Blood Pressure Regulation. Proc. Natl. Acad. Sci. USA. 2013;110:4410–4415. doi: 10.1073/pnas.1215927110.
    1. Natarajan N., Hori D., Flavahan S., Steppan J., Flavahan N.A., Berkowitz D.E., Pluznick J.L. Microbial Short Chain Fatty Acid Metabolites Lower Blood Pressure via Endothelial G Protein-Coupled Receptor 41. Physiol. Genom. 2016;48:826–834. doi: 10.1152/physiolgenomics.00089.2016.
    1. Benítez-Páez A., Del Pulgar E.M.G., Kjølbæk L., Brahe L.K., Astrup A., Larsen L., Sanz Y. Impact of Dietary Fiber and Fat on Gut Microbiota Re-Modeling and Metabolic Health. Trends Food Sci. Technol. 2016;57:201–212. doi: 10.1016/j.tifs.2016.11.001.
    1. Broekaert W.F., Courtin C.M., Verbeke K., Van de Wiele T., Verstraete W., Delcour J.A. Prebiotic and Other Health-Related Effects of Cereal-Derived Arabinoxylans, Arabinoxylan-Oligosaccharides, and Xylooligosaccharides. Crit. Rev. Food Sci. Nutr. 2011;51:178–194. doi: 10.1080/10408390903044768.
    1. McCleary B.V. Dietary Fiber Analysis. Proc. Nutr. Soc. 2003;62:3–9. doi: 10.1079/PNS2002204.
    1. Garrido D., Ruiz-Moyano S., Jimenez-Espinoza R., Eom H.-J., Block D.E., Mills D.A. Utilization of Galactooligosaccharides by Bifidobacterium Longum Subsp. Infantis Isolates. Food Microbiol. 2013;33:262–270. doi: 10.1016/j.fm.2012.10.003.
    1. Rivière A., Moens F., Selak M., Maes D., Weckx S., De Vuyst L. The Ability of Bifidobacteria to Degrade Arabinoxylan Oligosaccharide Constituents and Derived Oligosaccharides Is Strain Dependent. Appl. Environ. Microbiol. 2014;80:204–217. doi: 10.1128/AEM.02853-13.
    1. Sanchez J.I., Marzorati M., Grootaert C., Baran M., Van Craeyveld V., Courtin C.M., Broekaert W.F., Delcour J.A., Verstraete W., Van de Wiele T. Arabinoxylan-oligosaccharides (AXOS) Affect the Protein/Carbohydrate Fermentation Balance and Microbial Population Dynamics of the Simulator of Human intestinal Microbial Ecosystem: AXOS Effect on Protein/Carbohydrate Fermentation Balance. Microb. Biotechnol. 2009;2:101–113. doi: 10.1111/j.1751-7915.2008.00064.x.
    1. Chassard C., Goumy V., Leclerc M., Del’homme C., Bernalier-Donadille A. Characterization of the Xylan-degrading Microbial Community from Human Faeces: Xylanolytic Microbiota from Human Faeces. FEMS Microbiol. Ecol. 2007;61:121–131. doi: 10.1111/j.1574-6941.2007.00314.x.
    1. Martinez-Guryn K., Hubert N., Frazier K., Urlass S., Musch M.W., Ojeda P., Pierre J., Miyoshi J., Sontag T.J., Cham C.M., et al. Small intestine Microbiota Regulate Host Digestive and Absorptive Adaptive Responses to Dietary Lipids. Cell Host Microbe. 2018;23:458–469. doi: 10.1016/j.chom.2018.03.011.
    1. Maharshak N., Packey C.D., Ellermann M., Manick S., Siddle J.P., Huh E.Y., Plevy S., Sartor R.B., Carroll I.M. Altered Enteric Microbiota Ecology in interleukin 10-Deficient Mice During Development and Progression of intestinal inflammation. Gut Microbes. 2013;4:316–324. doi: 10.4161/gmic.25486.
    1. Tseng C.H., Wu C.Y. The Gut Microbiome in Obesity. J. Formos. Med. Assoc. 2019;118:3–9. doi: 10.1016/j.jfma.2018.07.009.
    1. Gomes A.C., Hoffmann C., Mota J.F. The Human Gut Microbiota: Metabolism and Perspective in Obesity. Gut Microbes. 2018;18:308–325. doi: 10.1080/19490976.2018.1465157.
    1. Jáquez J.L., Lascurain L., Falcon A.C., Montoya J.R. Obesidad, Disbiosis Y Trastornos Gastrointestinales Funcionales En Edades Pediátricas. Neurogastrol. LATAM Rev. 2020;4:4268. doi: 10.24875/NGL.20000053.
    1. Petersen C., Round J.L. Defining Dysbiosis and Its influence on Host Immunity and Disease. Cell Microbiol. 2014;16:1024–1033. doi: 10.1111/cmi.12308.
    1. Musso G., Gambino R., Cassader M. Interactions between Gut Microbiota and Host Metabolism Predisposing to Obesity and Diabetes. Annu. Rev. Med. 2011;62:361–380. doi: 10.1146/annurev-med-012510-175505.
    1. Million M., Thuny F., Angelakis E., Casalta J.-P., Giorgi R., Habib G., Raoult D. Lactobacillus Reuteri and Escherichia coli in the Human Gut Microbiota May Predict Weight Gain Associated with Vancomycin Treatment. Nutr. Diabetes. 2013;3:87. doi: 10.1038/nutd.2013.28.
    1. Wang J., Tang H., Zhang C., Zhao Y., Derrien M., Rocher E., van-Hylckama Vlieg J.E., Strissel K., Zhao L., Obin M., et al. Modulation of Ggut Microbiota During Probiotic-Mediated Attenuation of Metabolic Syndrome in High Fat Diet-Fed Mice. ISME J. 2015;9:1–15. doi: 10.1038/ismej.2014.99.
    1. de La Serre C.B., Ellis C.L., Lee J., Hartman A.L., Rutledge J.C., Raybould H.E. Propensity to High-Fat Diet-induced Obesity in Rats Is Associated with Changes in the Gut Microbiota and Gut inflammation. Am. J. Physiol.-Gastrointest. Liver. Physiol. 2010;299:440–448. doi: 10.1152/ajpgi.00098.2010.
    1. Krautkramer K.A., Kreznar J.H., Romano K.A., Vivas E.I., Barrett-Wilt G.A., Rabaglia M.E., Keller M.P., Attie A.D., Rey F.E., Denu J.M. Diet-Microbiota interactions Mediate Global Epigenetic Programming in Multiple Host Tissues. Mol. Cell. 2016;64:982–992. doi: 10.1016/j.molcel.2016.10.025.
    1. Farhadi A., Banan A., Fields J., Keshavarzian A. Intestinal Barrier: An interface between Health and Disease. J. Gastroenterol. Hepatol. 2003;18:479–497. doi: 10.1046/j.1440-1746.2003.03032.x.
    1. Rosenbaum M., Knight R., Leibel R.L. The Gut Microbiota in Human Energy Homeostasis and Obesity. Trends Endocrinol. Metab. 2015;26:493–501. doi: 10.1016/j.tem.2015.07.002.
    1. Amabebe E., Robert F.O., Agbalalah T., Orubu E.S.F. Microbial Dysbiosis-induced Obesity: Role of Gut Microbiota in Homoeostasis of Energy Metabolism. Br. J. Nutr. 2020;123:1127–1137. doi: 10.1017/S0007114520000380.
    1. Do M., Lee E., Oh M.J., Kim Y., Park H.Y. High-Glucose or -Fructose Diet Cause Changes of the Gut Microbiota and Metabolic Disorders in Mice without Body Weight Change. Nutrients. 2018;10:761. doi: 10.3390/nu10060761.
    1. Suzuki T. Regulation of the intestinal Barrier by Nutrients: The Role of Tight Junctions. Anim. Sci. J. 2020;91:13357. doi: 10.1111/asj.13357.
    1. FAO/WHO Working Group . Guidelines for the Evaluation of Probiotics in Food. FAO/WHO Working Group; Geneva, Switzerland: 2002.
    1. Zendeboodi F., Khorshidian N., Mortazavian A.M., da Cruz A.G. Probiotic: Conceptualisation from a New Approach. Curr. Opin. Food Sci. 2020;32:103–123. doi: 10.1016/j.cofs.2020.03.009.
    1. Allen A.P., Hutch W., Borre Y.E., Kennedy P.J., Temko A., Boylan G., Murphy E., Cryan J.F., Dinan T.G., Clarke G. Bifidobacterium Longum 1714 as a Translational Psychobiotic: Modulation of Sstress, Electrophysiology and Neurocognition in Healthy Volunteers. Transl. Psychiatry. 2016;6:939. doi: 10.1038/tp.2016.191.
    1. Lopez M., Li N., Kataria J., Russell M., Neu J. Live and Ultraviolet-inactivated Lactobacillus Rhamnosus GG Decrease Flagellin-induced interleukin-8 Production in Caco-2 Cells. J. Nutr. 2008;138:2264–2268. doi: 10.3945/jn.108.093658.
    1. Ajmal S., Ahmed N. Probiotic Potential of Lactobacillus Strains in Human infections. Afr. J. Microbiol. Res. 2009;3:851–855.
    1. Wegh C.A., Geerlings S.Y., Knol J., Roeselers G., Belzer C. Postbiotics and their Potential Applications in Early Life Nutrition and Beyond. Int. J. Mol. Sci. 2019;20:4673. doi: 10.3390/ijms20194673.
    1. Sánchez M.T., Ruiz M.A., Morales M.E. Microorganismos Probióticos Y Salud. Ars Pharm. 2015;56:45–59. doi: 10.4321/S2340-98942015000100007.
    1. Debédat J., Clément K., Aron-Wisnewsky J. Gut Microbiota Dysbiosis in Human Obesity: Impact of Bariatric Surgery. Curr. Obes. Rep. 2019;8:229–242. doi: 10.1007/s13679-019-00351-3.
    1. da Silva Pontes K.S., Guedes M.R., da Cunha M.R., de Souza Mattos S., Silva M.I.B., Neves M.F., Marques B.C.A.A., Klein M.R.S.T. Effects of Probiotics on Body Adiposity and Cardiovascular Risk Markers in individuals with Overweight and Obesity: A Systematic Review and Meta-Analysis of Randomised Controlled Trials. Clin. Nutr. 2021;40:4915–4931. doi: 10.1016/j.clnu.2021.06.023.
    1. Koutnikova H., Genser B., Monteiro-Sepulveda M., Faurie J.M., Rizkalla S., Schrezenmeir J., Clément K. Impact of Bacterial Probiotics on Obesity Diabetes and Non-Alcoholic Fatty Liver Disease Related Variables: A Systematic Review and Meta-Analysis of Randomised Controlled Trials. BMJ Open. 2019;9:e017995. doi: 10.1136/bmjopen-2017-017995.

Source: PubMed

3
Iratkozz fel