Phantosmia, Parosmia, and Dysgeusia Are Prolonged and Late-Onset Symptoms of COVID-19

Sophia E Schambeck, Claudia S Crowell, Karolin I Wagner, Elvira D'Ippolito, Teresa Burrell, Hrvoje Mijočević, Ulrike Protzer, Dirk H Busch, Markus Gerhard, Holger Poppert, Henriette Beyer, Sophia E Schambeck, Claudia S Crowell, Karolin I Wagner, Elvira D'Ippolito, Teresa Burrell, Hrvoje Mijočević, Ulrike Protzer, Dirk H Busch, Markus Gerhard, Holger Poppert, Henriette Beyer

Abstract

Deficiencies in smell and taste are common symptoms of COVID-19. Quantitative losses are well surveyed. This study focuses on qualitative changes such as phantosmia (hallucination of smell), parosmia (alteration of smell), and dysgeusia (alteration of taste) and possible connections with the adaptive immune system. Subjective experience of deficiency in taste and smell was assessed by two different questionnaires after a median of 100 and 244 days after first positive RT-PCR test. SARS-CoV-2-specific antibody levels were measured with the iFlash-SARS-CoV-2 assay. After 100 days a psychophysical screening test for olfactory and gustatory dysfunction was administered. 30 of 44 (68.2%) participants reported a chemosensory dysfunction (14 quantitative, 6 qualitative, 10 quantitative, and qualitative) during COVID-19, eleven (25.0%) participants (1 quantitative, 7 qualitative, 3 quantitative, and quantity) after 100 days, and 14 (31.8%) participants (1 quantitative, 10 qualitative, 3 quantitative and qualitative) after 244 days. Four (9.1%) participants, who were symptom-free after 100 days reported now recently arisen qualitative changes. Serological and T-cell analysis showed no correlation with impairment of taste and smell. In conclusion, qualitative changes can persist for several months and occur as late-onset symptoms months after full recovery from COVID-19-induced quantitative losses in taste and smell.

Keywords: COVID-19; coronavirus; dysgeusia; long-COVID; parosmia; phantosmia; smell; taste.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure A1
Figure A1
(A) CD8+ T-cell response (mean 63 days after positive RT-PCR test) of the participants with or without alteration of taste and smell ongoing after a median of 244 days after positive RT-PCR test. (B,C) Anti SARS-Cov2 IgG levels of the participants with or without alteration of taste and smell ongoing at 100 days (A1B) and 244 days (A1C) after positive RT-PCR test. Data analysis with the Wilcoxon test showed no significant difference between both groups.
Figure A2
Figure A2
Anti SARS-Cov2 IgG levels after a median of 244 days after positive RT-PCR test of the participants with or without alteration of taste and smell during the illness. Data analysis with the Wilcoxon test showed no significant difference between both groups.
Figure 1
Figure 1
Flow chart showing the structure and links between the parental study (EPI-SARS study) and the substudy on smell and taste. RT-PCR positive tested individuals were included in the study and followed over the course of 6 months, with repeat blood sampling and questionnaires (V1–V6). The smell and taste substudy was part of the EPI-SARS study protocol. Part A, including Q1 and psychophysical screening test, and part B with Q2 were conducted at V2–4 and V6 respectively.
Figure 2
Figure 2
Quantitative and qualitative alterations in taste and smell of all 44 participants over the course of the study. Data on chemosensory dysfunction during the disease were collected in retrospectively, whereas information concerning 100 and 244 days were collected prospectively. (a) Development of quantitative and qualitative alterations of taste and smell of each participant. Each slice symbolizes one participant and the respective alteration of taste and smell during COVID-19 infection, as well as 100 and 244 days later. (b) Absolute frequencies and distribution of alterations in taste and smell over the course of study.
Figure 3
Figure 3
Scores odor identification test of the 44 participants (red: women, black: men).

References

    1. Lee Y., Min P., Lee S., Kim S.-W. Prevalence and Duration of Acute Loss of Smell or Taste in COVID-19 Patients. J. Korean Med. Sci. 2020;35:e174. doi: 10.3346/jkms.2020.35.e174.
    1. Reinhard A., Ikonomidis C., Broome M., Gorostidi F. Anosmia and COVID-19. Rev. Med. Suisse. 2020;16:849–851.
    1. Kain P. Loss of Smell and Taste: Potential of Using Them as Markers for Early Detection of COVID-19. Adv. Neurol. Neurosci. 2020;3:49–50.
    1. Huart C., Philpott C., Konstantinidis I., Altundag A., Whitcroft K., Trecca E., Cassano M., Rombaux P., Hummel T. Comparison of COVID-19 and common cold chemosensory dysfunction. Rhinology. 2020;58:623–625. doi: 10.4193/Rhin20.251.
    1. Glezer I., Bruni-Cardoso A., Schechtman D., Malnic B. Viral infection and smell loss: The case of COVID-19. J. Neurochem. 2021;157:930–943. doi: 10.1111/jnc.15197.
    1. Rojas-Lechuga M.J., Izquierdo-Domínguez A., Chiesa-Estomba C., Calvo-Henríquez C., Villarreal I.M., Cuesta-Chasco G., Bernal-Sprekelsen M., Mullol J., Alobid I. Chemosensory dysfunction in COVID-19 out-patients. Eur. Arch. Otorhinolaryngol. 2021;278:695–702. doi: 10.1007/s00405-020-06266-3.
    1. Santos R.E.A., da Silva M.G., Barbosa D.A.M., Gomes A.L.D.V., Galindo L.C.M., Aragão R.D.S., Ferraz-Pereira K.N. Onset and duration of symptoms of loss of smell/taste in patients with COVID-19: A systematic review. Am. J. Otolaryngol. 2021;42:102889. doi: 10.1016/j.amjoto.2020.102889.
    1. Horvath L., Lim J.W.J., Taylor J.W., Saief T., Stuart R., Rimmer J., Michael P. Smell and taste loss in COVID-19 patients: Assessment outcomes in a Victorian population. Acta Otolaryngol. 2021;141:299–302. doi: 10.1080/00016489.2020.1855366.
    1. D’Ascanio L., Pandolfini M., Cingolani C., Latini G., Gradoni P., Capalbo M., Frausini G., Maranzano M., Brenner M.J., Di Stadio A. Olfactory Dysfunction in COVID-19 Patients: Prevalence and Prognosis for Recovering Sense of Smell. Otolaryngol. Head Neck Surg. 2021;164:82–86. doi: 10.1177/0194599820943530.
    1. Duyan M., Ozturan I.U., Altas M. Delayed Parosmia Following SARS-CoV-2 Infection: A Rare Late Complication of COVID-19. SN Compr. Clin. Med. 2021;3:1200–1202. doi: 10.1007/s42399-021-00876-6.
    1. Islek A., Balci M.K. Phantosmia with COVID-19 Related Olfactory Dysfunction: Report of Nine Case. Indian J. Otolaryngol. Head Neck Surg. 2021:1–3. doi: 10.1007/s12070-021-02505-z.
    1. Ercoli T., Masala C., Pinna I., Orofino G., Solla P., Rocchi L., Defazio G. Qualitative smell/taste disorders as sequelae of acute COVID-19. Neurol. Sci. 2021:1–6. doi: 10.1007/s10072-021-05611-6.
    1. Hopkins C., Surda P., Vaira L., Lechien J., Safarian M., Saussez S., Kumar N. Six month follow-up of self-reported loss of smell during the COVID-19 pandemic. Rhinology. 2020;59:26–31. doi: 10.4193/Rhin20.544.
    1. Raad N., Ghorbani J., Naeini A.S., Tajik N., Karimi-Galougahi M. Parosmia in patients with COVID-19 and olfactory dysfunction. Int. Forum Allergy Rhinol. 2021;11:1497–1500. doi: 10.1002/alr.22818.
    1. Blomqvist E.H., Brämerson A., Stjärne P., Nordin S. Consequences of olfactory loss and adopted coping strategies. Rhinology. 2004;42:189–194.
    1. Croy I., Hummel T. Olfaction as a marker for depression. J. Neurol. 2017;264:631–638. doi: 10.1007/s00415-016-8227-8.
    1. Frasnelli J., Hummel T. Olfactory dysfunction and daily life. Eur. Arch. Otorhinolaryngol. 2004;262:231–235. doi: 10.1007/s00405-004-0796-y.
    1. Qian C., Zhou M., Cheng F., Lin X., Gong Y., Xie X., Li P., Li Z., Zhang P., Liu Z., et al. Development and multicenter performance evaluation of fully automated SARS-CoV-2 IgM and IgG immunoassays. Clin. Chem. Lab. Med. 2020;58:1601–1607. doi: 10.1515/cclm-2020-0548.
    1. Wagner K.I., Mateyka L.M., Jarosch S., Grass V., Weber S., Schober K., Hammel M., Burrell T., Kalali B., Poppert H. Recruitment of highly functional SARS-CoV-2-specific CD8+ T cell receptors mediating cytotoxicity of virus-infected target cells in non-severe COVID-19. medRxiv. 2021 doi: 10.1101/2021.07.20.21260845.
    1. Walliczek U., Negoias S., Hähner A., Hummel T. Assessment of Chemosensory Function Using “Sniffin’ Sticks”, Taste Strips, Taste Sprays, and Retronasal Olfactory Tests. Curr. Pharm. Des. 2016;22:2245–2252. doi: 10.2174/1381612822666160216150625.
    1. Stuck B.A., Beule A., Damm M., Gudziol H., Hüttenbrink K.-B., Landis B.N., Renner B., Sommer J.U., Uecker F.C., Vent J., et al. Position paper “Chemosensory testing for expert opinion in smell disorders”. Laryngorhinootologie. 2014;93:327–329.
    1. Wong D.K.C., Gendeh H.S., Thong H.K., Lum S.G., Gendeh B.S., Saim A., Husain S. A review of smell and taste dysfunction in COVID-19 patients. Med. J. Malays. 2020;75:574–581.
    1. Tong J.Y., Wong A., Zhu D., Fastenberg J.H., Tham T. The Prevalence of Olfactory and Gustatory Dysfunction in COVID-19 Patients: A Systematic Review and Meta-analysis. Otolaryngol. Head Neck Surg. 2020;163:3–11. doi: 10.1177/0194599820926473.
    1. Samaranayake L.P., Fakhruddin K.S., Panduwawala C. Sudden onset, acute loss of taste and smell in coronavirus disease 2019 (COVID-19): A systematic review. Acta Odontol. Scand. 2020;78:467–473. doi: 10.1080/00016357.2020.1787505.
    1. Agyeman A.A., Chin K.L., Landersdorfer C.B., Liew D., Ofori-Asenso R. Smell and Taste Dysfunction in Patients with COVID-19: A Systematic Review and Meta-analysis. Mayo Clin. Proc. 2020;95:1621–1631. doi: 10.1016/j.mayocp.2020.05.030.
    1. Boscolo-Rizzo P., Guida F., Polesel J., Marcuzzo A.V., Antonucci P., Capriotti V., Sacchet E., Cragnolini F., D’Alessandro A., Zanelli E., et al. Self-reported smell and taste recovery in coronavirus disease 2019 patients: A one-year prospective study. Eur. Arch. Otorhinolaryngol. 2021:1–6. doi: 10.1007/s00405-021-06839-w.
    1. Boscolo-Rizzo P., Menegaldo A., Fabbris C., Spinato G., Borsetto D., Vaira L.A., Calvanese L., Pettorelli A., Sonego M., Frezza D., et al. Six-Month Psychophysical Evaluation of Olfactory Dysfunction in Patients with COVID-19. Chem. Senses. 2021;46:bjab006. doi: 10.1093/chemse/bjab006.
    1. Rebholz H., Pfaffeneder-Mantai F., Knoll W., Hassel A., Frank W., Kleber C. Olfactory dysfunction in SARS-CoV-2 infection: Focus on odorant specificity and chronic persistence. Am. J. Otolaryngol. 2021;42:103014. doi: 10.1016/j.amjoto.2021.103014.
    1. Parma V., Ohla K., Veldhuizen M.G., Niv M.Y., Kelly C.E., Bakke A.J., Cooper K.W., Bouysset C., Pirastu N., Dibattista M., et al. More Than Smell—COVID-19 Is Associated with Severe Impairment of Smell, Taste, and Chemesthesis. Chem. Senses. 2020;45:609–622. doi: 10.1093/chemse/bjaa041.
    1. Reden J., Maroldt H., Fritz A., Zahnert T., Hummel T. A study on the prognostic significance of qualitative olfactory dysfunction. Eur. Arch. Otorhinolaryngol. 2006;264:139–144. doi: 10.1007/s00405-006-0157-0.
    1. Hong S.-C., Holbrook E.H., Leopold D.A., Hummel T. Distorted olfactory perception: A systematic review. Acta Oto-Laryngol. 2012;132((Suppl. S1)):S27–S31. doi: 10.3109/00016489.2012.659759.
    1. Bonfils P., Avan P., Faulcon P., Malinvaud D. Distorted Odorant Perception. Arch. Otolaryngol. Head Neck Surg. 2005;131:107–112. doi: 10.1001/archotol.131.2.107.
    1. Bagnasco D., Passalacqua G., Braido F., Tagliabue E., Cosini F., Filauro M., Ioppi A., Carobbio A., Mocellin D., Riccio A.M., et al. Quick Olfactory Sniffin’ Sticks Test (Q-Sticks) for the detection of smell disorders in COVID-19 patients. World Allergy Organ. J. 2021;14:100497. doi: 10.1016/j.waojou.2020.100497.
    1. Murphy C., Schubert C.R., Cruickshanks K.J., Klein B.E.K., Klein R., Nondahl D.M. Prevalence of Olfactory Impairment in Older Adults. JAMA. 2002;288:2307–2312. doi: 10.1001/jama.288.18.2307.
    1. Lee M.-H., Perl D.P., Nair G., Li W., Maric D., Murray H., Dodd S.J., Koretsky A.P., Watts J.A., Cheung V., et al. Microvascular Injury in the Brains of Patients with COVID-19. N. Engl. J. Med. 2021;384:481–483. doi: 10.1056/NEJMc2033369.
    1. Brann D.H., Tsukahara T., Weinreb C., Lipovsek M., Berge K.V.D., Gong B., Chance R., Macaulay I.C., Chou H.-J., Fletcher R.B., et al. Non-neuronal expression of SARS-CoV-2 entry genes in the olfactory system suggests mechanisms underlying COVID-19-associated anosmia. Sci. Adv. 2020;6:eabc5801. doi: 10.1126/sciadv.abc5801.
    1. Yousefi-Koma A., Haseli S., Bakhshayeshkaram M., Raad N., Karimi-Galougahi M. Multimodality Imaging With PET/CT and MRI Reveals Hypometabolism in Tertiary Olfactory Cortex in Parosmia of COVID-19. Acad. Radiol. 2021;28:749–751. doi: 10.1016/j.acra.2021.01.031.
    1. Meinhardt J., Radke J., Dittmayer C., Franz J., Thomas C., Mothes R., Laue M., Schneider J., Brünink S., Greuel S., et al. Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous system entry in individuals with COVID-19. Nat. Neurosci. 2021;24:168–175. doi: 10.1038/s41593-020-00758-5.
    1. Butowt R., Meunier N., Bryche B., von Bartheld C.S. The olfactory nerve is not a likely route to brain infection in COVID-19: A critical review of data from humans and animal models. Acta Neuropathol. 2021;141:809–822. doi: 10.1007/s00401-021-02314-2.
    1. Dehgani-Mobaraki P., Zaidi A.K., Yadav N., Floridi A., Floridi E. Longitudinal observation of antibody responses for 14 months after SARS-CoV-2 infection. Clin. Immunol. 2021;230:108814. doi: 10.1016/j.clim.2021.108814.
    1. Miwa T., Furukawa M., Tsukatani T., Costanzo R., Dinardo L.J., Reiter E.R. Impact of Olfactory Impairment on Quality of Life and Disability. Arch. Otolaryngol. Head Neck Surg. 2001;127:497–503. doi: 10.1001/archotol.127.5.497.
    1. Altundag A., Cayonu M., Kayabasoglu G., Salihoglu M., Tekeli H., Saglam O., Hummel T. Modified olfactory training in patients with postinfectious olfactory loss. Laryngoscope. 2015;125:1763–1766. doi: 10.1002/lary.25245.
    1. Hummel T., Rissom K., Reden J., Hähner A., Weidenbecher M., Hüttenbrink K.-B. Effects of olfactory training in patients with olfactory loss. Laryngoscope. 2009;119:496–499. doi: 10.1002/lary.20101.
    1. Damm M., Pikart L.K., Reimann H., Burkert S., Önder G., Haxel B., Frey S., Charalampakis I., Beule A., Renner B., et al. Olfactory training is helpful in postinfectious olfactory loss: A randomized, controlled, multicenter study. Laryngoscope. 2013;124:826–831. doi: 10.1002/lary.24340.
    1. Geißler K., Reimann H., Gudziol H., Bitter T., Guntinas-Lichius O. Olfactory training for patients with olfactory loss after upper respiratory tract infections. Eur. Arch. Otorhinolaryngol. 2013;271:1557–1562. doi: 10.1007/s00405-013-2747-y.
    1. Xydakis M.S., Albers M.W., Holbrook E.H., Lyon D.M., Shih R.Y., Frasnelli J.A., Pagenstecher A., Kupke A., Enquist L.W., Perlman S. Post-viral effects of COVID-19 in the olfactory system and their implications. Lancet Neurol. 2021;20:753–761. doi: 10.1016/S1474-4422(21)00182-4.

Source: PubMed

3
Iratkozz fel