Quantitative Characterization of Motor Control during Gait in Dravet Syndrome Using Wearable Sensors: A Preliminary Study

Maria Cristina Bisi, Roberto Di Marco, Francesca Ragona, Francesca Darra, Marilena Vecchi, Stefano Masiero, Alessandra Del Felice, Rita Stagni, Maria Cristina Bisi, Roberto Di Marco, Francesca Ragona, Francesca Darra, Marilena Vecchi, Stefano Masiero, Alessandra Del Felice, Rita Stagni

Abstract

Dravet syndrome (DS) is a rare and severe form of genetic epilepsy characterized by cognitive and behavioural impairments and progressive gait deterioration. The characterization of gait parameters in DS needs efficient, non-invasive quantification. The aim of the present study is to apply nonlinear indexes calculated from inertial measurements to describe the dynamics of DS gait. Twenty participants (7 M, age 9-33 years) diagnosed with DS were enrolled. Three wearable inertial measurement units (OPAL, Apdm, Portland, OR, USA; Miniwave, Cometa s.r.l., Italy) were attached to the lower back and ankles and 3D acceleration and angular velocity were acquired while participants walked back and forth along a straight path. Segmental kinematics were acquired by means of stereophotogrammetry (SMART, BTS). Community functioning data were collected using the functional independence measure (FIM). Mean velocity and step width were calculated from stereophotogrammetric data; fundamental frequency, harmonic ratio, recurrence quantification analysis, and multiscale entropy (τ = 1...6) indexes along anteroposterior (AP), mediolateral (ML), and vertical (V) axes were calculated from trunk acceleration. Results were compared to a reference age-matched control group (112 subjects, 6-25 years old). All nonlinear indexes show a disruption of the cyclic pattern of the centre of mass in the sagittal plane, quantitatively supporting the clinical observation of ataxic gait. Indexes in the ML direction were less altered, suggesting the efficacy of the compensatory strategy (widening the base of support). Nonlinear indexes correlated significantly with functional scores (i.e., FIM and speed), confirming their effectiveness in capturing clinically meaningful biomarkers of gait.

Keywords: IMUs; SCNA1 mutation; entropy; gait analysis; motor control; recurrence.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
IMU placements on the different body locations and relative axis orientations.

References

    1. Scheffer I., Nabbout R. SCN1A-related phenotypes: Epilepsy and beyond. Epilepsia. 2019;60((Suppl. 3)):S17–S24. doi: 10.1111/epi.16386.
    1. Brunklaus A., Ellis R., Reavey E., Forbes G.H., Zuberi S.M. Prognostic, clinical and demographic features in SCN1A mutation-positive Dravet syndrome. Brain. 2012;135:2329–2336. doi: 10.1093/brain/aws151.
    1. Bertuccelli M., Verheyen K., Hallemans A., Sander J.W., Ragona F., Bisiacchi P., Masiero S., Del Felice A. Deconstructing Dravet syndrome neurocognitive development: A scoping review. Epilepsia. 2021;62:874–887. doi: 10.1111/epi.16844.
    1. Wyers L., Van de Walle P., Hoornweg A., Bobescu I.T., Verheyen K., Ceulemansd B., Schoonjans A.-S., Desloovere K., Hallemans A. Gait deviations in patients with dravet syndrome: A systematic review. Eur. J. Paediatr. Neurol. 2019;23:357–367. doi: 10.1016/j.ejpn.2019.03.003.
    1. Rodda J.M., Scheffer I.E., McMahon J., Berkovic S., Graham H.K. Progressive Gait Deterioration in Adolescents with Dravet Syndrome. Arch. Neurol. 2012;69:873–878. doi: 10.1001/archneurol.2011.3275.
    1. Di Marco R., Hallemans A., Bellon G., Ragona F., Piazza E., Granata T., Ceulemans B., Schoonjans A.-S., Van de Walle P., Darra F., et al. Gait abnormalities in people with Dravet syndrome: A cross-sectional multi-center study. Eur. J. Paediatr. Neurol. 2019;23:808–818. doi: 10.1016/j.ejpn.2019.09.010.
    1. Wyers L., Verheyen K., Ceulemans B., Schoonjans A.-S., Desloovere K., Van de Walle P., Hallemans A. The mechanics behind gait problems in patients with Dravet Syndrome. Gait Posture. 2021;84:321–328. doi: 10.1016/j.gaitpost.2020.12.029.
    1. Wyers L., Di Marco R., Zambelli S., Masiero S., Hallemans A., Van de Walle P., Desloovere K., Del Felice A. Foot-floor contact pattern in children and adults with Dravet Syndrome. Gait Posture. 2021;84:315–320. doi: 10.1016/j.gaitpost.2020.12.030.
    1. Bertsch C., Unger H., Winkelmann W., Rosenbaum D. Evaluation of early walking patterns from plantar pressure distribution measurements. First year results of 42 children. Gait Posture. 2004;19:235–242. doi: 10.1016/S0966-6362(03)00064-X.
    1. Hallemans A., De Clercq D., Van Dongen S., Aerts P. Changes in foot-function parameters during the first 5 months after the onset of independent walking: A longitudinal follow-up study. Gait Posture. 2006;23:142–148. doi: 10.1016/j.gaitpost.2005.01.003.
    1. Verheyen K., Wyers L., Del Felice A., Schoonjans A., Ceulemans B., Van de Walle P., Hallemans A. Independent walking and cognitive development in preschool children with Dravet syndrome. Dev. Med. Child Neurol. 2021;63:472–479. doi: 10.1111/dmcn.14738.
    1. Dasgupta P., VanSwearingen J., Godfrey A., Redfern M., Montero-Odasso M., Sejdic E. Acceleration Gait Measures as Proxies for Motor Skill of Walking: A Narrative Review. IEEE Trans. Neural Syst. Rehabil. Eng. 2021;29:249–261. doi: 10.1109/TNSRE.2020.3044260.
    1. Marcante A., Di Marco R., Gentile G., Pellicano C., Assogna F., Pontieri F.E., Spalletta G., Macchiusi L., Gatsios D., Giannakis A., et al. Foot Pressure Wearable Sensors for Freezing of Gait Detection in Parkinson’s Disease. Sensors. 2020;21:128. doi: 10.3390/s21010128.
    1. Rehman R.Z.U., Buckley C., Mico-Amigo M.E., Kirk C., Dunne-Willows M., Mazza C., Shi J.Q., Alcock L., Rochester L., Del Din S. Accelerometry-Based Digital Gait Characteristics for Classification of Parkinson’s Disease: What+ Counts? IEEE Open J. Eng. Med. Biol. 2020;1:65–73. doi: 10.1109/OJEMB.2020.2966295.
    1. Storm F.A., Cesareo A., Reni G., Biffi E. Wearable Inertial Sensors to Assess Gait during the 6-Minute Walk Test: A Systematic Review. Sensors. 2020;20:2660. doi: 10.3390/s20092660.
    1. Soangra R., Lockhart T.E. Inertial Sensor-Based Variables Are Indicators of Frailty and Adverse Post-Operative Outcomes in Cardiovascular Disease Patients. Sensors. 2018;18:1792. doi: 10.3390/s18061792.
    1. Lockhart T.E., Soangra R., Yoon H., Wu T., Frames C.W., Weaver R., Roberto K.A. Prediction of fall risk among community-dwelling older adults using a wearable system. Sci. Rep. 2021;11:20976. doi: 10.1038/s41598-021-00458-5.
    1. Tunca C., Pehlivan N., Ak N., Arnrich B., Salur G., Ersoy C. Inertial Sensor-Based Robust Gait Analysis in Non-Hospital Settings for Neurological Disorders. Sensors. 2017;17:825. doi: 10.3390/s17040825.
    1. Castiglia S., Tatarelli A., Trabassi D., De Icco R., Grillo V., Ranavolo A., Varrecchia T., Magnifica F., Di Lenola D., Coppola G., et al. Ability of a Set of Trunk Inertial Indexes of Gait to Identify Gait Instability and Recurrent Fallers in Parkinson’s Disease. Sensors. 2021;21:3449. doi: 10.3390/s21103449.
    1. Caliandro P., Conte C., Iacovelli C., Tatarelli A., Castiglia S.F., Reale G., Serrao M. Exploring Risk of Falls and Dynamic Unbalance in Cerebellar Ataxia by Inertial Sensor Assessment. Sensors. 2019;19:5571. doi: 10.3390/s19245571.
    1. Phan D., Nguyen N., Pathirana P.N., Horne M., Power L., Szmulewicz D. A Random Forest Approach for Quantifying Gait Ataxia with Truncal and Peripheral Measurements Using Multiple Wearable Sensors. IEEE Sensors J. 2020;20:723–734. doi: 10.1109/JSEN.2019.2943879.
    1. Coates L., Shi J., Rochester L., Del Din S., Pantall A. Entropy of Real-World Gait in Parkinson’s Disease Determined from Wearable Sensors as a Digital Marker of Altered Ambulatory Behavior. Sensors. 2020;20:2631. doi: 10.3390/s20092631.
    1. Clark C.C.T., Bisi M.C., Duncan M.J., Stagni R. Technology-based methods for the assessment of fine and gross motor skill in children: A systematic overview of available solutions and future steps for effective in-field use. J. Sports Sci. 2021;39:1236–1276. doi: 10.1080/02640414.2020.1864984.
    1. Bisi M., Stagni R. Evaluation of toddler different strategies during the first six-months of independent walking: A longitudinal study. Gait Posture. 2015;41:574–579. doi: 10.1016/j.gaitpost.2014.11.017.
    1. Dusing S.C. Postural variability and sensorimotor development in infancy. Dev. Med. Child Neurol. 2016;58((Suppl. 4)):17–21. doi: 10.1111/dmcn.13045.
    1. Costa M., Peng C.-K., Goldberger A.L., Hausdorff J.M. Multiscale entropy analysis of human gait dynamics. Phys. A Stat. Mech. Appl. 2003;330:53–60. doi: 10.1016/j.physa.2003.08.022.
    1. Bisi M., Stagni R. Complexity of human gait pattern at different ages assessed using multiscale entropy: From development to decline. Gait Posture. 2016;47:37–42. doi: 10.1016/j.gaitpost.2016.04.001.
    1. Bisi M., Tamburini P., Stagni R. A ‘Fingerprint’ of locomotor maturation: Motor development descriptors, reference development bands and data-set. Gait Posture. 2019;68:232–237. doi: 10.1016/j.gaitpost.2018.11.036.
    1. Bisi M.C., Stagni R. Human motor control: Is a subject-specific quantitative assessment of its multiple characteristics possible? A demonstrative application on children motor development. Med. Eng. Phys. 2020;85:27–34. doi: 10.1016/j.medengphy.2020.09.002.
    1. Bisi M.C., Tamburini P., Panebianco G.P., Stagni R. Nonlinear Analysis of Human Movement Dynamics Offers New Insights in the Development of Motor Control During Childhood. J. Biomech. Eng. 2018;140:111002. doi: 10.1115/1.4040939.
    1. Cacciari E., Milani S., Balsamo A., Spada E., Bona G., Cavallo L., Cerutti F., Gargantini L., Greggio N., Tonini G., et al. Italian cross-sectional growth charts for height, weight and BMI (2 to 20 yr) J. Endocrinol. Investig. 2006;29:581–593. doi: 10.1007/BF03344156.
    1. Dodds T., Martin D.P., Stolov W.C., Deyo R.A. A validation of the Functional Independence Measurement and its performance among rehabilitation inpatients. Arch. Phys. Med. Rehabil. 1993;74:531–536. doi: 10.1016/0003-9993(93)90119-U.
    1. Davis R.B., Õunpuu S., Tyburski D., Gage J.R. A gait analysis data collection and reduction technique. Hum. Mov. Sci. 1991;10:575–587. doi: 10.1016/0167-9457(91)90046-Z.
    1. Tamburini P., Storm F., Buckley C., Bisi M.C., Stagni R., Mazzà C. Moving from laboratory to real life conditions: Influence on the assessment of variability and stability of gait. Gait Posture. 2017;59:248–252. doi: 10.1016/j.gaitpost.2017.10.024.
    1. Aminian K., Najafi B., Büla C., Leyvraz P.-F., Robert P. Spatio-temporal parameters of gait measured by an ambulatory system using miniature gyroscopes. J. Biomech. 2002;35:689–699. doi: 10.1016/S0021-9290(02)00008-8.
    1. Stergiou N. Nonlinear Analysis for Human Movement Variability. Taylor & Francis Inc.; London, UK: 2016.
    1. Auvinet B., Berrut G., Touzard C., Moutel L., Collet N., Chaleil D., Barrey E. Reference data for normal subjects obtained with an accelerometric device. Gait Posture. 2002;16:124–134. doi: 10.1016/S0966-6362(01)00203-X.
    1. Menz H.B., Lord S.R., Fitzpatrick R.C. Acceleration patterns of the head and pelvis when walking on level and irregular surfaces. Gait Posture. 2003;18:35–46. doi: 10.1016/S0966-6362(02)00159-5.
    1. Labini F.S., Meli A., Ivanenko Y.P., Tufarelli D. Recurrence quantification analysis of gait in normal and hypovestibular subjects. Gait Posture. 2012;35:48–55. doi: 10.1016/j.gaitpost.2011.08.004.
    1. Pasciuto I., Bergamini E., Iosa M., Vannozzi G., Cappozzo A. Overcoming the limitations of the Harmonic Ratio for the reliable assessment of gait symmetry. J. Biomech. 2017;53:84–89. doi: 10.1016/j.jbiomech.2017.01.005.
    1. Riva F., Bisi M.C., Stagni R. Gait variability and stability measures: Minimum number of strides and within-session reliability. Comput. Biol. Med. 2014;50:9–13. doi: 10.1016/j.compbiomed.2014.04.001.
    1. Yentes J.M., Raffalt P.C. Entropy Analysis in Gait Research: Methodological Considerations and Recommendations. Ann. Biomed. Eng. 2021;49:979–990. doi: 10.1007/s10439-020-02616-8.
    1. Castiglia S.F., Trabassi D., Tatarelli A., Ranavolo A., Varrecchia T., Fiori L., Di Lenola D., Cioffi E., Raju M., Coppola G., et al. Identification of Gait Unbalance and Fallers among Subjects with Cerebellar Ataxia by a Set of Trunk Acceleration-Derived Indices of Gait. Cerebellum. 2022 doi: 10.1007/s12311-021-01361-5.
    1. Toebes M.J., Hoozemans M., Furrer R., Dekker J., van Dieën J.H. Local dynamic stability and variability of gait are associated with fall history in elderly subjects. Gait Posture. 2012;36:527–531. doi: 10.1016/j.gaitpost.2012.05.016.
    1. Bellanca J., Lowry K., VanSwearingen J., Brach J., Redfern M. Harmonic ratios: A quantification of step to step symmetry. J. Biomech. 2013;46:828–831. doi: 10.1016/j.jbiomech.2012.12.008.
    1. Zijlstra W. Assessment of spatio-temporal parameters during unconstrained walking. Eur. J. Appl. Physiol. 2004;92:39–44. doi: 10.1007/s00421-004-1041-5.
    1. Kuo A.D., Donelan J.M. Dynamic Principles of Gait and Their Clinical Implications. Phys. Ther. 2010;90:157–174. doi: 10.2522/ptj.20090125.
    1. Ramdani S., Tallon G., Bernard P.L., Blain H. Recurrence Quantification Analysis of Human Postural Fluctuations in Older Fallers and Non-fallers. Ann. Biomed. Eng. 2013;41:1713–1725. doi: 10.1007/s10439-013-0790-x.
    1. Bernardina B.D., Dulac O., Bureau M., Dravet C., Del Zotti F., Roger J. Encephalopathie myoclonique precoce avec epilepsie. Rev. D’electroencéphalogr. Neurophysiol. Clin. 1982;12:8–14. doi: 10.1016/S0370-4475(82)80002-6.
    1. Catterall W.A., Kalume F., Oakley J.C. NaV1.1 channels and epilepsy. J. Physiol. 2010;588:1849–1859. doi: 10.1113/jphysiol.2010.187484.

Source: PubMed

3
Iratkozz fel