Glut1 Deficiency Syndrome (Glut1DS): State of the art in 2020 and recommendations of the international Glut1DS study group

Joerg Klepper, Cigdem Akman, Marisa Armeno, Stéphane Auvin, Mackenzie Cervenka, Helen J Cross, Valentina De Giorgis, Adela Della Marina, Kristin Engelstad, Nicole Heussinger, Eric H Kossoff, Wilhelmina G Leen, Baerbel Leiendecker, Umrao R Monani, Hirokazu Oguni, Elizabeth Neal, Juan M Pascual, Toni S Pearson, Roser Pons, Ingrid E Scheffer, Pierangelo Veggiotti, Michél Willemsen, Sameer M Zuberi, Darryl C De Vivo, Joerg Klepper, Cigdem Akman, Marisa Armeno, Stéphane Auvin, Mackenzie Cervenka, Helen J Cross, Valentina De Giorgis, Adela Della Marina, Kristin Engelstad, Nicole Heussinger, Eric H Kossoff, Wilhelmina G Leen, Baerbel Leiendecker, Umrao R Monani, Hirokazu Oguni, Elizabeth Neal, Juan M Pascual, Toni S Pearson, Roser Pons, Ingrid E Scheffer, Pierangelo Veggiotti, Michél Willemsen, Sameer M Zuberi, Darryl C De Vivo

Abstract

Glut1 deficiency syndrome (Glut1DS) is a brain energy failure syndrome caused by impaired glucose transport across brain tissue barriers. Glucose diffusion across tissue barriers is facilitated by a family of proteins including glucose transporter type 1 (Glut1). Patients are treated effectively with ketogenic diet therapies (KDT) that provide a supplemental fuel, namely ketone bodies, for brain energy metabolism. The increasing complexity of Glut1DS, since its original description in 1991, now demands an international consensus statement regarding diagnosis and treatment. International experts (n = 23) developed a consensus statement utilizing their collective professional experience, responses to a standardized questionnaire, and serial discussions of wide-ranging issues related to Glut1DS. Key clinical features signaling the onset of Glut1DS are eye-head movement abnormalities, seizures, neurodevelopmental impairment, deceleration of head growth, and movement disorders. Diagnosis is confirmed by the presence of these clinical signs, hypoglycorrhachia documented by lumbar puncture, and genetic analysis showing pathogenic SLC2A1 variants. KDT represent standard choices with Glut1DS-specific recommendations regarding duration, composition, and management. Ongoing research has identified future interventions to restore Glut1 protein content and function. Clinical manifestations are influenced by patient age, genetic complexity, and novel therapeutic interventions. All clinical phenotypes will benefit from a better understanding of Glut1DS natural history throughout the life cycle and from improved guidelines facilitating early diagnosis and prompt treatment. Often, the presenting seizures are treated initially with antiseizure drugs before the cause of the epilepsy is ascertained and appropriate KDT are initiated. Initial drug treatment fails to treat the underlying metabolic disturbance during early brain development, contributing to the long-term disease burden. Impaired development of the brain microvasculature is one such complication of delayed Glut1DS treatment in the postnatal period. This international consensus statement should facilitate prompt diagnosis and guide best standard of care for Glut1DS throughout the life cycle.

Keywords: Glut1; Glut1 Deficiency Syndrome; Glut1D; Glut1DS; children; consensus; diet; epilepsy; glucose transport; guideline; ketogenic.

© 2020 The Authors. Epilepsia Open published by Wiley Periodicals LLC on behalf of International League Against Epilepsy.

References

    1. Wang D, Pascual JM, De Vivo D.Glucose Transporter Type 1 Deficiency Syndrome In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, editors. GeneReviews((R)). Seattle, WA: University of Washington, 1993‐2020.
    1. De Vivo DC, Trifiletti RR, Jacobson RI, Ronen GM, Behmand RA, Harik SI. Defective glucose transport across the blood‐brain barrier as a cause of persistent hypoglycorrhachia, seizures, and developmental delay. N Engl J Med. 1991;325(10):703–9.
    1. Symonds JD, Zuberi SM, Stewart K, McLellan A, O'Regan M, MacLeod S, et al. Incidence and phenotypes of childhood‐onset genetic epilepsies: a prospective population‐based national cohort. Brain. 2019;142(8):2303–18.
    1. Lopez‐Rivera JA, Perez‐Palma E, Symonds J, Lindy AS, McKnight DA, Leu C, et al. A catalogue of new incidence estimates of monogenic neurodevelopmental disorders caused by de novo variants. Brain. 2020;143(4):1099–105.
    1. Larsen J, Johannesen KM, Ek J, Tang S, Marini C, Blichfeldt S, et al. The role of SLC2A1 mutations in myoclonic astatic epilepsy and absence epilepsy, and the estimated frequency of GLUT1 deficiency syndrome. Epilepsia. 2015;56(12):e203–8.
    1. Coman DJ, Sinclair KG, Burke CJ, Appleton DB, Pelekanos JT, O'Neil CM, et al. Seizures, ataxia, developmental delay and the general paediatrician: glucose transporter 1 deficiency syndrome. J Paediatr Child Health. 2006;42(5):263–7.
    1. Ramm‐Pettersen A, Nakken KO, Skogseid IM, Randby H, Skei EB, Bindoff LA, et al. Good outcome in patients with early dietary treatment of GLUT‐1 deficiency syndrome: results from a retrospective Norwegian study. Dev Med Child Neurol. 2013;55(5):440–7.
    1. Kossoff EH, Zupec‐Kania BA, Auvin S, Ballaban‐Gil KR, Christina Bergqvist AG, Blackford R, et al. Optimal clinical management of children receiving dietary therapies for epilepsy: updated recommendations of the International Ketogenic Diet Study Group. Epilepsia Open. 2018;3(2):175–92.
    1. Pong AW, Geary BR, Engelstad KM, Natarajan A, Yang H, De Vivo DC. Glucose transporter type I deficiency syndrome: epilepsy phenotypes and outcomes. Epilepsia. 2012;53(9):1503–10.
    1. Wolking S, Becker F, Bast T, Wiemer‐Kruel A, Mayer T, Lerche H, et al. Focal epilepsy in Glucose transporter type 1 (Glut1) defects: case reports and a review of literature. J. Neurol.. 2014;261(10):1881–6.
    1. Peeraer A, Damiano JA, Bellows ST, Scheffer IE, Berkovic SF, Mullen SA, et al. Evaluation of GLUT1 variation in non‐acquired focal epilepsy. Epilepsy Res.. 2017;133:54–7.
    1. Arsov T, Mullen SA, Damiano JA, Lawrence KM, Huh LL, Nolan M, et al. Early onset absence epilepsy: 1 in 10 cases is caused by GLUT1 deficiency. Epilepsia. 2012;53(12):e204–7.
    1. Nasser H, Lopez‐Hernandez E, Ilea A, Le Morvan N, Bellavoine V, Delanoe C, et al. Myoclonic jerks are commonly associated with absence seizures in early‐onset absence epilepsy. Epileptic Disord. 2017;19(2):137–46.
    1. Akman CI, Yu J, Alter A, Engelstad K, De Vivo DC. Diagnosing glucose transporter 1 deficiency at initial presentation facilitates early treatment. J Pediatr. 2016;171:220–6.
    1. Pascual JM, Ronen GM. Glucose transporter type I deficiency (G1D) at 25 (1990–2015): presumptions, facts, and the lives of persons with this rare disease. Pediatr Neurol. 2015;53(5):379–93.
    1. Pearson TS, Pons R, Engelstad K, Kane SA, Goldberg ME, De Vivo DC. Paroxysmal eye‐head movements in Glut1 deficiency syndrome. Neurology. 2017;88(17):1666–73.
    1. Suls A, Dedeken P, Goffin K, Van Esch H, Dupont P, Cassiman D, et al. Paroxysmal exercise‐induced dyskinesia and epilepsy is due to mutations in SLC2A1, encoding the glucose transporter GLUT1. Brain. 2008;131(Pt 7):1831–44.
    1. Weber YG, Storch A, Wuttke TV, Brockmann K, Kempfle J, Maljevic S, et al. GLUT1 mutations are a cause of paroxysmal exertion‐induced dyskinesias and induce hemolytic anemia by a cation leak. J Clin Invest. 2008;118(6):2157–68.
    1. Pons R, Collins A, Rotstein M, Engelstad K, De Vivo DC. The spectrum of movement disorders in Glut‐1 deficiency. Mov Disord. 2010;25(3):275–81.
    1. Leen WG, Klepper J, Verbeek MM, Leferink M, Hofste T, van Engelen BG, et al. Glucose transporter‐1 deficiency syndrome: the expanding clinical and genetic spectrum of a treatable disorder. Brain. 2010;133(Pt 3):655–70.
    1. Weber YG, Kamm C, Suls A, Kempfle J, Kotschet K, Schule R, et al. Paroxysmal choreoathetosis/spasticity (DYT9) is caused by a GLUT1 defect. Neurology. 2011;77(10):959–64.
    1. Roubergue A, Apartis E, Mesnage V, Doummar D, Trocello JM, Roze E, et al. Dystonic tremor caused by mutation of the glucose transporter gene GLUT1. J Inherit Metab Dis. 2011;34(2):483–8.
    1. Pearson TS, Akman C, Hinton VJ, Engelstad K, De Vivo DC. Phenotypic spectrum of glucose transporter type 1 deficiency syndrome (Glut1 DS). Curr Neurol Neurosci Rep. 2013;13(4):342.
    1. Leen WG, Taher M, Verbeek MM, Kamsteeg EJ, van de Warrenburg BP, Willemsen MA. GLUT1 deficiency syndrome into adulthood: a follow‐up study. J Neurol. 2014;261(3):589–99.
    1. Alter AS, Engelstad K, Hinton VJ, Montes J, Pearson TS, Akman CI, et al. Long‐term clinical course of Glut1 deficiency syndrome. J Child Neurol. 2015;30(2):160–9.
    1. Ito Y, Takahashi S, Kagitani‐Shimono K, Natsume J, Yanagihara K, Fujii T, et al. Nationwide survey of glucose transporter‐1 deficiency syndrome (GLUT‐1DS) in Japan. Brain Dev. 2015;37(8):780–9.
    1. De Giorgis V, Teutonico F, Cereda C, Balottin U, Bianchi M, Giordano L, et al. Sporadic and familial glut1ds Italian patients: A wide clinical variability. Seizure. 2015;24:28–32.
    1. Hully M, Vuillaumier‐Barrot S, Le Bizec C, Boddaert N, Kaminska A, Lascelles K, et al. From splitting GLUT1 deficiency syndromes to overlapping phenotypes. Eur J Med Genet. 2015;58(9):443–54.
    1. Hao J, Kelly DI, Su J, Pascual JM. Clinical aspects of glucose transporter type 1 deficiency: information from a global registry. JAMA Neurol. 2017;74(6):727–32.
    1. Ramm‐Pettersen A, Nakken KO, Haavardsholm KC, Selmer KK. GLUT1‐deficiency syndrome: report of a four‐generation Norwegian family with a mild phenotype. Epilepsy Behav. 2017;70(Pt A):1–4.
    1. Klepper J, Leiendecker B, Eltze C, Heussinger N. Paroxysmal nonepileptic events in Glut1 deficiency. Mov Disord Clin Pract. 2016;3(6):607–10.
    1. Wang D, Pascual JM, De Vivo DC. Glucose Transporter Type 1 Deficiency Syndrome Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, Amemiya A. editors. Seattle, WA: University of Washington, 1993–2019; 2002. Jul 30 [updated 2018 Mar 1].
    1. Tzadok M, Nissenkorn A, Porper K, Matot I, Marcu S, Anikster Y, et al. The many faces of Glut1 deficiency syndrome. J Child Neurol. 2014;29(3):349–59.
    1. De Giorgis V, Masnada S, Varesio C, Chiappedi MA, Zanaboni M, Pasca L, et al. Overall cognitive profiles in patients with GLUT1 Deficiency Syndrome. Brain Behav. 2019;9(3):e01224.
    1. Braakman HMH, Engelen M, Nicolai J, Willemsen M. Stroke mimics add to the phenotypic spectrum of GLUT1 deficiency syndrome. J Neurol Neurosurg Psychiatry. 2018;89(6):668–70.
    1. Weller CM, Leen WG, Neville BG, Duncan JS, de Vries B, Geilenkirchen MA, et al. A novel SLC2A1 mutation linking hemiplegic migraine with alternating hemiplegia of childhood. Cephalalgia. 2015;35(1):10–5.
    1. Shibata T, Kobayashi K, Yoshinaga H, Ono H, Shinpo M, Kagitani‐Shimono K. Another case of glucose transporter 1 deficiency syndrome with periventricular calcification, cataracts, hemolysis, and pseudohyperkalemia. Neuropediatrics. 2017;48(5):390–3.
    1. Bergqvist AG, Schall JI, Stallings VA, Zemel BS. Progressive bone mineral content loss in children with intractable epilepsy treated with the ketogenic diet. Am J Clin Nutr. 2008;88(6):1678–84.
    1. Heussinger N, Della Marina A, Beyerlein A, Leiendecker B, Hermann‐Alves S, Dalla Pozza R, et al. 10 patients, 10 years ‐ Long term follow‐up of cardiovascular risk factors in Glut1 deficiency treated with ketogenic diet therapies: A prospective, multicenter case series. Clin Nutr. 2018;6 (Pt A):2246–51.
    1. McDonald TJW, Ratchford EV, Henry‐Barron BJ, Kossoff EH, Cervenka MC. Impact of the modified Atkins diet on cardiovascular health in adults with epilepsy. Epilepsy Behav. 2018;79:82–6.
    1. Cervenka MC, Henry BJ, Felton EA, Patton K, Kossoff EH. Establishing an adult epilepsy diet center: experience, efficacy and challenges. Epilepsy Behav. 2016;58:61–8.
    1. Klein P, Tyrlikova I, Mathews GC. Dietary treatment in adults with refractory epilepsy: A review. Neurology. 2014;83(21):1978–85.
    1. Leary LD, Wang D, Nordli DR Jr, Engelstad K, De Vivo DC. Seizure characterization and electroencephalographic features in Glut‐1 deficiency syndrome. Epilepsia. 2003;44(5):701–7.
    1. Vaudano AE, Olivotto S, Ruggieri A, Gessaroli G, De Giorgis V, Parmeggiani A, et al. Brain correlates of spike and wave discharges in GLUT1 deficiency syndrome. Neuroimage Clin. 2017;13:446–54.
    1. Leen WG, Wevers RA, Kamsteeg EJ, Scheffer H, Verbeek MM, Willemsen MA. Cerebrospinal fluid analysis in the workup of GLUT1 deficiency syndrome: a systematic review. JAMA Neurol. 2013;70(11):1440–4.
    1. De Vivo DC, Wang D. Glut1 deficiency: CSF glucose. How low is too low? Rev Neurol (Paris). 2008;164(11):877–80.
    1. Klepper J. GLUT1 deficiency syndrome in clinical practice. Epilepsy Res. 2012;100(3):272–7.
    1. Leen WG, de Wit CJ, Wevers RA, van Engelen BG, Kamsteeg EJ, Klepper J, et al. Child neurology: differential diagnosis of a low CSF glucose in children and young adults. Neurology. 2013;81(24):e178–81.
    1. Leen WG, Willemsen MA, Wevers RA, Verbeek MM. Cerebrospinal fluid glucose and lactate: age‐specific reference values and implications for clinical practice. PLoS One. 2012;7(8):e42745.
    1. Ismayilova N, Hacohen Y, MacKinnon AD, Elmslie F, Clarke A. GLUT‐1 deficiency presenting with seizures and reversible leukoencephalopathy on MRI imaging. Eur J Paediatr Neurol. 2018;22(6):1161–4.
    1. Klepper J, Engelbrecht V, Scheffer H, van der Knaap MS, Fiedler A. GLUT1 deficiency with delayed myelination responding to ketogenic diet. Pediatr Neurol. 2007;37(2):130–3.
    1. Pascual JM, Van Heertum RL, Wang D, Engelstad K, De Vivo DC. Imaging the metabolic footprint of Glut1 deficiency on the brain. Ann Neurol. 2002;52(4):458–64.
    1. Akman CI, Provenzano F, Wang D, Engelstad K, Hinton V, Yu J, et al. Topography of brain glucose hypometabolism and epileptic network in glucose transporter 1 deficiency. Epilepsy Res. 2015;110:206–15.
    1. Akasaka M, Kamei A, Araya N, Oyama K, Sasaki M. Characteristic proton magnetic resonance spectroscopy in glucose transporter type 1 deficiency syndrome. Pediatr Int. 2018;60(10):978–9.
    1. Mochel F, Hainque E, Gras D, Adanyeguh IM, Caillet S, Heron B, et al. Triheptanoin dramatically reduces paroxysmal motor disorder in patients with GLUT1 deficiency. J Neurol Neurosurg Psychiatry. 2016;87(5):550–3.
    1. Brockmann K, Wang D, Korenke CG, von Moers A, Ho YY, Pascual JM, et al. Autosomal dominant glut‐1 deficiency syndrome and familial epilepsy. Ann Neurol. 2001;50(4):476–85.
    1. Klepper J, Monden I, Guertsen E, Voit T, Willemsen M, Keller K. Functional consequences of the autosomal dominant G272A mutation in the human GLUT1 gene. FEBS Lett. 2001;498(1):104–9.
    1. Klepper J, Scheffer H, Elsaid MF, Kamsteeg EJ, Leferink M, Ben‐Omran T. Autosomal recessive inheritance of GLUT1 deficiency syndrome. Neuropediatrics. 2009;40(5):207–10.
    1. Gras D, Cousin C, Kappeler C, Fung CW, Auvin S, Essid N, et al A simple blood test expedites the diagnosis of glucose transporter type 1 deficiency syndrome. Ann Neurol. 2017;82(1):133–8.
    1. Kass HR, Winesett SP, Bessone SK, Turner Z, Kossoff EH. Use of dietary therapies amongst patients with GLUT1 deficiency syndrome. Seizure. 2016;35:83–7.
    1. Bekker YAC, Lambrechts DA, Verhoeven JS, van Boxtel J, Troost C, Kamsteeg EJ, et al. Failure of ketogenic diet therapy in GLUT1 deficiency syndrome. Eur J Paediatr Neurol. 2019;23(3):404–9.
    1. Dressler A, Trimmel‐Schwahofer P, Reithofer E, Groppel G, Muhlebner A, Samueli S, et al. The ketogenic diet in infants–Advantages of early use. Epilepsy Res. 2015;116:53–8.
    1. Kim JA, Yoon JR, Lee EJ, Lee JS, Kim JT, Kim HD, et al. Efficacy of the classic ketogenic and the modified Atkins diets in refractory childhood epilepsy. Epilepsia. 2016;57(1):51–8.
    1. Kossoff EH, Turner Z, Doerrer SC. The Ketogenic and Modified Atkins Diets: Treatments for Epilepsy and Other Disorders. New York, NY: Demos Health; 2016.
    1. Oguni H, Ito Y, Otani Y, Nagata S. Questionnaire survey on the current status of ketogenic diet therapy in patients with glucose transporter 1 deficiency syndrome (GLUT1DS) in Japan. Eur J Paediatr Neurol. 2018;22(3):482–7.
    1. Akman CI, Engelstad K, Hinton VJ, Ullner P, Koenigsberger D, Leary L, et al. Acute hyperglycemia produces transient improvement in glucose transporter type 1 deficiency. Ann Neurol. 2010;67(1):31–40.
    1. Almuqbil M, Go C, Nagy LL, Pai N, Mamak E, Mercimek‐Mahmutoglu S. New paradigm for the treatment of glucose transporter 1 deficiency syndrome: low glycemic index diet and modified high amylopectin cornstarch. Pediatr Neurol. 2015;53(3):243–6.
    1. Fukuda M, Kawabe M, Takehara M, Iwano S, Kuwabara K, Kikuchi C, et al. Carnitine deficiency: Risk factors and incidence in children with epilepsy. Brain Dev. 2015;37(8):790–6.
    1. Cervenka MC, Henry‐Barron BJ, Kossoff EH. Is there a role for diet monotherapy in adult epilepsy? Epilepsy Behav Case Rep. 2017;7:6–9.
    1. Takeoka M, Riviello JJ Jr, Pfeifer H, Thiele EA. Concomitant treatment with topiramate and ketogenic diet in pediatric epilepsy. Epilepsia. 2002;43(9):1072–5.
    1. Paul E, Conant KD, Dunne IE, Pfeifer HH, Lyczkowski DA, Linshaw MA, et al. Urolithiasis on the ketogenic diet with concurrent topiramate or zonisamide therapy. Epilepsy Res. 2010;90(1–2):151–6.
    1. van der Louw EJ, Desadien R, Vehmeijer FO, van der Sijs H, Catsman‐Berrevoets CE, Neuteboom RF. Concomitant lamotrigine use is associated with decreased efficacy of the ketogenic diet in childhood refractory epilepsy. Seizure. 2015;32:75–7.
    1. Ho YY, Yang H, Klepper J, Fischbarg J, Wang D, De Vivo DC. Glucose transporter type 1 deficiency syndrome (Glut1DS): methylxanthines potentiate GLUT1 haploinsufficiency in vitro. Pediatr Res. 2001;50(2):254–60.
    1. Klepper J, Fischbarg J, Vera JC, Wang D, De Vivo DC. GLUT1‐deficiency: barbiturates potentiate haploinsufficiency in vitro. Pediatr Res. 1999;46(6):677–83.
    1. Klepper J, Florcken A, Fischbarg J, Voit T. Effects of anticonvulsants on GLUT1‐mediated glucose transport in GLUT1 deficiency syndrome in vitro. Eur J Pediatr. 2003;162(2):84–9.
    1. Wong HY, Chu TS, Chan YW, Fok TF, Fung LW, Fung KP, et al. The effects of phenytoin and its metabolite 5‐(4‐hydroxyphenyl)‐5‐phenylhydantoin on cellular glucose transport. Life Sci. 2005;76(16):1859–72.
    1. Stubbs BJ, Cox PJ, Evans RD, Santer P, Miller JJ, Faull OK, et al. On the metabolism of exogenous ketones in humans. Front Physiol. 2017;8:848.
    1. Van Hove JL, Grunewald S, Jaeken J, Demaerel P, Declercq PE, Bourdoux P, et al. D, L‐3‐hydroxybutyrate treatment of multiple acyl‐CoA dehydrogenase deficiency (MADD). Lancet. 2003;361(9367):1433–5.
    1. Marin‐Valencia I, Good LB, Ma Q, Malloy CR, Pascual JM. Heptanoate as a neural fuel: energetic and neurotransmitter precursors in normal and glucose transporter I‐deficient (G1D) brain. J Cereb Blood Flow Metab. 2013;33(2):175–82.
    1. Pascual JM, Liu P, Mao D, Kelly DI, Hernandez A, Sheng M, et al. Triheptanoin for glucose transporter type I deficiency (G1D): modulation of human ictogenesis, cerebral metabolic rate, and cognitive indices by a food supplement. JAMA Neurol. 2014;71(10):1255–65.
    1. Mochel F. Triheptanoin for the treatment of brain energy deficit: A 14‐year experience. J Neurosci Res. 2017;95(11):2236–43.
    1. Tang M, Park SH, De Vivo DC, Monani UR. Therapeutic strategies for glucose transporter 1 deficiency syndrome. Ann Clin Transl Neurol. 2019;6(9):1923–32.
    1. Anheim M, Maillart E, Vuillaumier‐Barrot S, Flamand‐Rouviere C, Pineau F, Ewenczyk C, et al. Excellent response to acetazolamide in a case of paroxysmal dyskinesias due to GLUT1‐deficiency. J Neurol. 2011;258(2):316–7.
    1. Chambon R, Vuillaumier‐Barrot S, Seta N, Wagner S, Sarret C. Partial effectiveness of acetazolamide in a mild form of GLUT1 deficiency: a pediatric observation. Mov Disord. 2013;28(12):1749–51.
    1. Tchapyjnikov D, Mikati MA. Acetazolamide‐responsive episodic ataxia without baseline deficits or seizures secondary to GLUT1 deficiency: a case report and review of the literature. Neurologist. 2018;23(1):17–8.
    1. Lloyd KP, Ojelabi OA, De Zutter JK, Carruthers A. Reconciling contradictory findings: Glucose transporter 1 (GLUT1) functions as an oligomer of allosteric, alternating access transporters. J Biol Chem. 2017;292(51):21035–46.
    1. Raja M, Kinne RKH. Mechanistic Insights Into Protein Stability And Self‐Aggregation in GLUT1 genetic variants causing GLUT1‐deficiency Syndrome. J Membr Biol. 2020;253(2):87–99.
    1. Liu Y, Bao X, Wang D, Fu N, Zhang X, Cao G, et al. Allelic variations of glut‐1 deficiency syndrome: the chinese experience. Pediatr Neurol. 2012;47(1):30–4.
    1. Willemsen MA, Vissers LE, Verbeek MM, van Bon BW, Geuer S, Gilissen C, et al. Upstream SLC2A1 translation initiation causes GLUT1 deficiency syndrome. Eur J Hum Genet. 2017;25(6):771–4.
    1. Klepper J. Absence of SLC2A1 mutations does not exclude Glut1 deficiency syndrome. Neuropediatrics. 2013;44(4):235–6.
    1. Meyer K, Kirchner M, Uyar B, Cheng JY, Russo G, Hernandez‐Miranda LR, et al. Mutations in disordered regions can cause disease by creating dileucine motifs. Cell. 2018;175(1):239–53 e17.
    1. Marin‐Valencia I, Good LB, Ma Q, Duarte J, Bottiglieri T, Sinton CM, et al. Glut1 deficiency (G1D): epilepsy and metabolic dysfunction in a mouse model of the most common human phenotype. Neurobiol Dis. 2012;48(1):92–101.
    1. Pascual JM, Wang D, Yang R, Shi L, Yang H, De Vivo DC. Structural signatures and membrane helix 4 in GLUT1: inferences from human blood‐brain glucose transport mutants. J Biol Chem. 2008;283(24):16732–42.
    1. Cheshkov S, Dimitrov IE, Jakkamsetti V, Good L, Kelly D, Rajasekaran K, et al. Oxidation of [U‐(13) C]glucose in the human brain at 7T under steady state conditions. Magn Reson Med. 2017;78(6):2065–71.
    1. Tang M, Gao G, Rueda CB, Yu H, Thibodeaux DN, Awano T, et al Brain microvasculature defects and Glut1 deficiency syndrome averted by early repletion of the glucose transporter‐1 protein. Nat Commun. 2017;8:14152.
    1. Nakamura S, Muramatsu SI, Takino N, Ito M, Jimbo EF, Shimazaki K, et al. Gene therapy for Glut1‐deficient mouse using an adeno‐associated virus vector with the human intrinsic GLUT1 promoter. J Gene Med. 2018;20(4):e3013.
    1. Kahn BB. Dietary regulation of glucose transporter gene expression: tissue specific effects in adipose cells and muscle. J Nutr. 1994;124(8 Suppl):1289S–S1295.
    1. Swarup A, Samuels IS, Bell BA, Han JYS, Du J, Massenzio E, et al. Modulating GLUT1 expression in retinal pigment epithelium decreases glucose levels in the retina: impact on photoreceptors and Muller glial cells. Am J Physiol Cell Physiol. 2019;316(1):C121–33.
    1. Szablewski L. Glucose transporters in healthy heart and in cardiac disease. Int J Cardiol. 2017;230:70–5.
    1. von Wolff M, Ursel S, Hahn U, Steldinger R, Strowitzki T. Glucose transporter proteins (GLUT) in human endometrium: expression, regulation, and function throughout the menstrual cycle and in early pregnancy. J Clin Endocrinol Metab. 2003;88(8):3885–92.

Source: PubMed

3
Iratkozz fel