Effectiveness of supplemental oxygenation to prevent surgical site infections: A systematic review with meta-analysis

Eduardo Tavares Gomes, Fábio da Costa Carbogim, Rossana Sant'Anna Lins, Ruy Leite de Melo Lins-Filho, Vanessa de Brito Poveda, Vilanice Alves de Araujo Püschel, Eduardo Tavares Gomes, Fábio da Costa Carbogim, Rossana Sant'Anna Lins, Ruy Leite de Melo Lins-Filho, Vanessa de Brito Poveda, Vilanice Alves de Araujo Püschel

Abstract

Objective: to assess the effectiveness of supplemental oxygenation with high FiO2 when compared to conventional FiO2 in the prevention of surgical site infection.

Method: an effectiveness systematic review with meta-analysis conducted in five international databases and portals. The research was guided by the following question: Which is the effectiveness of supplemental oxygenation with high FiO2 (greater than 80%) when compared to conventional FiO2 (from 30% to 35%) in the prevention of surgical site infections in adults?

Results: fifteen randomized clinical trials were included. Although all the subgroups presented a general effect in favor of the intervention, colorectal surgeries had this relationship evidenced with statistical significance (I2=10%;X2=4.42; p=0.352).

Conclusion: inspired oxygen fractions greater than 80% during the perioperative period in colorectal surgeries have proved to be effective to prevent surgical site infections, reducing their incidence by up to 27% (p=0.006). It is suggested to conduct new studies in groups of patients subjected to surgeries from other specialties, such as cardiac and vascular. PROSPERO registration No.: 178,453.

Conflict of interest statement

Conflict of interest: The authors have declared that there is no conflict of interest.

Figures

Figure 1. Flowchart corresponding to selection of…
Figure 1. Flowchart corresponding to selection of the articles that comprised the analysis corpus according to PRISMA. São Paulo, Brazil, 2021
Figure 4. Forest plot showing incidence and…
Figure 4. Forest plot showing incidence and relative risk of surgical site infections by subgroup (colorectal, cesarean and abdominal surgeries) when compared to high inspired oxygen fraction (FiO2>=80%) versus traditional supply (FiO2: 30%-35%). São Paulo, Brazil, 2021.

References

    1. Berríos-Torres SI, Umsceid CA, Bratzler DW, Leas B, Stone EC, Kelz RR, et al. Centers for Disease Control and Prevention Guideline for the Prevention of Surgical Site Infection. JAMA Surg. 2017;152(8):784–791. doi: 10.1001/jamasurg.2017.0904.
    1. National Healthcare Safety Network, Centers for Disease Control and Prevention Surgical site infection (SSI) event. 2017. [2022 Feb 22]. Available from: .
    1. Martins T, Amante LN, Virtuoso JF, Sell BT, Wechi JS, Senna CVA. Risk factors for surgical site infections in potentially contaminated surgeries. Texto Contexto Enferm. 2018;27(3):e2790016. doi: 10.1590/0104-070720180002790016.
    1. Carvalho RLR, Campos CC, Franco LMC, Rocha AM, Ercole FF. Incidence and risk factors for surgical site infection in general surgeries. Rev. Latino-Am. Enferm. 2017;25:e2848. doi: 10.1590/1518-8345.1502.2848.
    1. Young PY, Khadaroo RG. Surgical site infections. Surg Clin North Am. 2014;94(6):1245–1264. doi: 10.1016/j.suc.2014.08.008.
    1. Badia JM, Casey AL, Petrosillo N, Hudson PM, Mitchell SA, Crosby C. Impact of surgical site infection on healthcare costs and patient outcomes: a systematic review in six European countries. J Hosp Infect. 2017;96(1):1–15. doi: 10.1016/j.jhin.2017.03.004.
    1. Anderson DJ, Podgorny K, Berríos-Torres SI, Bratzler DW, Dellinger EP, Greene L, et al. Strategies to prevent surgical site infections in acute care hospitals. Infect Control Hosp Epidemiol. 2014;35(s2):s66–s88. doi: 10.1086/676022.
    1. Ban KA, Minei JP, Laronga C, Harbrecht BG, Jensen EH, Fry DE, et al. American College of Surgeons and Surgical Infection Society: Surgical Site Infection Guidelines, 2016 Update. J Am Coll Surg. 2017;224(1):59–74. doi: 10.1016/j.jamcollsurg.2016.10.029.
    1. Association for Professionals in Infection Control and Epidemiology . APIC Implementation Guide: Infection Preventionist's Guide to the OR. VA: APIC; 2018. [2022 Feb 22]. Available from:
    1. World Health Organization . Global Guidelines for the Prevention of Surgical Site Infection. Geneva: WHO; 2018. [2022 Feb 22]. Available from:
    1. Qadan M, Akça O, Mahid SS, Hornung CA, Polk HC., Jr Perioperative supplemental oxygen therapy and surgical site infection: a metaanalysis of randomized controlled trials. Arch Surg. 2009;144(4):359–366. doi: 10.1001/archsurg.2009.1.
    1. Cohen B, Schacham YN, Ruetzler K, Ahuja S, Yang D, Mascha EJ, et al. Effect of intraoperative hyperoxia on the incidence of surgical site infections: a meta-analysis. Br J Anaesth. 2018;120(6):1176–1186. doi: 10.1016/j.bja.2018.02.027.
    1. Yang W, Liu Y, Zhang Y, Zhao QH, He SF. Effect of intra-operative high inspired oxygen fraction on surgical site infection: a meta-analysis of randomized controlled trials. J Hosp Infect. 2016;93(4):329–338. doi: 10.1016/j.jhin.2016.03.015.
    1. Wetterslev J, Meyhoff CS, Jørgensen LN, Gluud C, Lindschou J, Rasmussen LS. The Effects of High Perioperative Inspiratory Oxygen Fraction for Adult Surgical Patients. Cochrane Database Syst Rev. 2015;2015(6):CD008884–CD008884. doi: 10.1002/14651858.CD008884.pub2.
    1. Hovaguimian F, Lysakowski C, Elia N, Tramèr MR. Effect of intraoperative high inspired oxygen fraction on surgical site infection, postoperative nausea and vomiting, and pulmonary function: systematic review and meta-analysis of randomized controlled trials. Anesthesiology. 2013;119(2):303–316. doi: 10.1097/ALN.0b013e31829aaff4.
    1. Klingel ML, Patel SV. A meta-analysis of the effect of inspired oxygen concentration on the incidence of surgical site infection following cesarean section. Int J Obstet Anesth. 2013;22(2):104–112. doi: 10.1016/j.ijoa.2013.01.001.
    1. Patel SV, Coughlin SC, Malthaner RA. High-concentration oxygen and surgical site infections in abdominal surgery: a meta-analysis. Can J Surg. 2013;56(4):E82–E90. doi: 10.1503/cjs.001012.
    1. Fakhry SM, Montgomery SC. Peri-operative oxygen and the risk of surgical infection. Surg Infect (Larchmt) 2012;13(4):228–233. doi: 10.1089/sur.2012.122.
    1. Al-Niaimi A, Safdar N. Supplemental perioperative oxygen for reducing surgical site infection: a meta-analysis. J Eval Clin Pract. 2009;15(2):360–365. doi: 10.1111/j.1365-2753.2008.01016.x.
    1. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71–n71. doi: 10.1136/bmj.n71.
    1. Munnz AE. The development of software to support multiple systematic review types: the Joanna Briggs Institute System for the Unified Management, Assessment and Review of Information (JBI SUMARI) Intern J Evidence-Based Healthc. 2019;17(1):36–43. doi: 10.1097/XEB.0000000000000152.
    1. Aromataris E, Munn Z. Joanna Briggs Institute Reviewer's Manual. Adelaide: The Joanna Briggs Institute; 2017. [2022 Feb 22]. Available from:
    1. Tufanaru C, Munn Z, Stephenson M, Aromataris E. Fixed or random effects meta-analysis? Common methodological issues in systematic reviews of effectiveness. Int J Evid Based Healthc. 2015;13(3):196–207. doi: 10.1097/XEB.0000000000000065.
    1. Lo K, Stephenson M, Lockwood C. Analysis of heterogeneity in a systematic review using meta-regression technique. Int J Evid Based Healthc. 2019 doi: 10.1097/XEB.0000000000000163.
    1. Schietroma M, Piccione F, Cecilia EM, Carlei F, De Santis G, Sista F, et al. RETRACTED: How does high-concentration supplemental perioperative oxygen influence surgical outcomes after thyroid surgery? A prospective, randomized, double-blind, controlled, monocentric trial. J Am Coll Surg. 2015;220(5):921–933. doi: 10.1016/j.jamcollsurg.2015.01.046.
    1. Stall A, Paryavi E, Gupta R, Zadnik M, Hui E, O'Toole RV. Perioperative supplemental oxygen to reduce surgical site infection after open fixation of high-risk fractures: a randomized controlled pilot trial. J Trauma Acute Care Surg. 2013;75(4):657–663. doi: 10.1097/TA.0b013e3182a1fe83.
    1. Chen Y, Liu X, Cheng CHK, Gin T, Leslie K, Myles P, et al. Leukocyte DNA damage and wound infection after nitrous oxide administration: a randomized controlled trial. Anesthesiology. 2013;118(6):1322–1331. doi: 10.1097/ALN.0b013e31829107b8.
    1. Belda FJ, Aguilera L, García de la Asunción J, Alberti J, Vicente R, Ferrándiz L. Supplemental perioperative oxygen and the risk of surgical wound infection a randomized controlled trial. JAMA. 2005;26(294):2035–2042. doi: 10.1001/jama.294.16.2035.
    1. Duggal NPV. Perioperative oxygen supplementation and surgical site infection after cesarean delivery: a randomized trial. Obstet Gynecol. 2013;122(1):79–84. doi: 10.1097/AOG.0b013e318297ec6c.
    1. Ferrando C, Aldecoa C, Unzueta C, Belda FJ, Librero J, Tusman G, et al. Effects of oxygen on post-surgical infections during an individualised perioperative open-lung ventilatory strategy: a randomised controlled trial. Br J Anaesth. 2020;124(1):110–120. doi: 10.1016/j.bja.2019.10.009.
    1. Gardella C, Goltra LB, Laschansky E, Drolette L, Magaret A, Chadwick HS, et al. High-concentration supplemental perioperative oxygen to reduce the incidence of postcesarean surgical site infection: a randomized controlled trial. Obstet Gynecol. 2008;112(3):545–552. doi: 10.1097/AOG.0b013e318182340c.
    1. Greif R, Akça O, Horn EP, Kurz A, Sessler DI. Outcomes Research Group Supplemental perioperative oxygen to reduce the incidence of surgical-wound infection. N Engl J Med. 2000;342(3):161–167. doi: 10.1056/NEJM200001203420303.
    1. Kurz A, Fleischmann E, Sessler DI, Buggy DJ, Apfel C, Akça O. Factorial Trial Investigators Effects of supplemental oxygen and dexamethasone on surgical site infection: a factorial randomized trial. Br J Anaesth. 2015;115(3):434–443. doi: 10.1093/bja/aev062.
    1. Mayank M, Mohsina S, Sureshkumar S, Kundra P, Kate V. Effect of Perioperative High Oxygen Concentration on Postoperative SSI in Elective Colorectal Surgery-A Randomized Controlled Trial. J Gastrointest Surg. 2019;23(1):145–152. doi: 10.1007/s11605-018-3996-2.
    1. Meyhoff CS, Wetterslev J, Jorgensen LN, Henneberg SW, Høgdall C, Lundvall L, et al. Effect of high perioperative oxygen fraction on surgical site infection and pulmonary complications after abdominal surgery: the PROXI randomized clinical trial. JAMA. 2009;302(14):1543–1550. doi: 10.1001/jama.2009.1452.
    1. Staehr AK, Meyhoff CS, Rasmussen LS. PROXI Trial Group Inspiratory Oxygen Fraction and Postoperative Complications in Obese Patients A Subgroup Analysis of the PROXI Trial. Anesthesiology. 2011;114(6):1313–1319. doi: 10.1097/ALN.0b013e31821bdb82.
    1. Thibon P, Borgey F, Boutreux S, Hanouz JL, Le Coutour X, Parienti JJ. Effect of perioperative oxygen supplementation on 30-day surgical site infection rate in abdominal, gynecologic, and breast surgery the ISO2 randomized controlled trial. Anesthesiology. 2012;117(3):504–511. doi: 10.1097/ALN.0b013e3182632341.
    1. Wadhwa AKB. Supplemental Postoperative Oxygen Does Not Reduce Surgical Site Infection and Major Healing-Related Complications from Bariatric Surgery in Morbidly Obese Patients: A Randomized, Blinded Trial. Anesth Analg. 2014;119(2):357–365. doi: 10.1213/ANE.0000000000000318.
    1. Williams NL, Glover MM, Crisp C, Acton AL, Mckenna DS. Randomized Controlled Trial of the Effect of 30% versus 80% Fraction of Inspired Oxygen on Cesarean Delivery Surgical Site Infection. Am J Perinatol. 2013;30(9):781–786. doi: 10.1055/s-0032-1333405.
    1. Ball L, Lumb AB, Pelosi P. Intraoperative fraction of inspired oxygen: bringing back the focus on patient outcome. Br J Anaesth. 2017;119(1):16–18. doi: 10.1093/bja/aex176.
    1. Mayzler O, Weksler N, Domchik S, Klein M, Mizrahi S, Gurman GM. Does supplemental perioperative oxygen administration reduce the incidence of wound infection in elective colorectal surgery? Minerva Anestesiol. 2005;71(1-2):21–25. doi: 10.1186/s13054-014-0711-x.
    1. Pryor KO, Fahey TJ, 3rd, Lien CA, Goldstein PA. Surgical site infection and the routine use of perioperative hyperoxia in a general surgical population: a randomized controlled trial. JAMA. 2004;291(1):79–87. doi: 10.1001/jama.291.1.79.
    1. Hopf HW, Holm J. Hyperoxia and infection. Best Pract Res Clin Anaesthesiol. 2008;22(3):553–569. doi: 10.1016/j.bpa.2008.06.001.
    1. Myles PS, Kurz A. Supplemental oxygen and surgical site infection getting to the truth. Br J Anaesth. 2017;119(1):13–15. doi: 10.1093/bja/aex096.
    1. Qadan M, Battista C, Gardner SA, Anderson G, Akca O, Polk HC., Jr Oxygen and surgical site infection a study of underlying immunologic mechanisms. Anesthesiology. 2010;113(2):369–377. doi: 10.1097/ALN.0b013e3181e19d1d.
    1. Scifres CM, Leighton BL, Fogertey PJ, Macones GA, Stamilio DM. Supplemental oxygen for the prevention of postcesarean infectious morbidity: a randomized controlled trial. Am J Obstet Gynecol. 2011;205(3):267–267. doi: 10.1016/j.ajog.2011.06.038.
    1. Andrade LS, Siliprandi EMO, Karsburg LL, Berlesi FP, Carvalho OLF, Rosa DS, et al. Surgical Site Infection Prevention Bundle in Cardiac Surgery. Arq Bras Cardiol. 2019;112(6):769–774. doi: 10.5935/abc.20190070.
    1. Ferraz AAB, Vasconcelos CFM, Santa-Cruz F, Aquino MAR, Buenos-Aires VG, Siqueira LT. Surgical site infection in bariatric surgery: results of a care bundle. Rev Col Bras Cir. 2019;46(4):e2252. doi: 10.1590/0100-6991e-20192252.
    1. Puckridge PJ, Saleem HA, Vasudevan TM, Holdaway CM, Ferrar DW. Perioperative high-dose oxygen therapy in vascular surgery. ANZ J Surg. 2007;77(6):433–436. doi: 10.1111/j.1445-2197.2007.04089.x.
    1. Damiani E, Adrario E, Girardis M, Romano R, Pelaia P, Singer M, et al. Arterial hyperoxia and mortality in critically ill patients: a systematic review and meta-analysis. Crit Care. 2014;18:711–711. doi: 10.1186/s13054-014-0711-x.
    1. Ruetzler K, Cohen B, Leung S, Mascha EJ, Knotzer J, Kurz A, et al. Supplemental Intraoperative Oxygen Does Not Promote Acute Kidney Injury or Cardiovascular Complications After Noncardiac Surgery: Subanalysis of an Alternating Intervention Trial. Anesth Analg. 2020;130(4):933–940. doi: 10.1213/ANE.0000000000004359.
    1. Staehr-Rye AK, Meyhoff CS, Scheffenbichler FT, Vidal Melo MF, Gätke MR, Walsh JL, et al. High intraoperative inspiratory oxygen fraction and risk of major respiratory complications. Br J Anaesth. 2017;119:140–149. doi: 10.1093/bja/aex128.
    1. Cohen B, Ruetzler K, Kurz A, Leung S, Rivas E, Ezell J, et al. Intra-operative high inspired oxygen fraction does not increase the risk of postoperative respiratory complications: alternating intervention clinical trial. Eur J Anaesthesiol. 2019;36:320–326. doi: 10.1097/EJA.0000000000000980.
    1. Rothen HU, Sporre B, Engberg G, Wegenius G, Reber A, Hedenstierna G. Prevention of atelectasis during general anaesthesia. Lancet. 1995;345:1387–1391. doi: 10.1016/s0140-6736(95)92595-3.
    1. Mattishent K, Thavarajah M, Sinha A, Peel A, Egger M, Solomkin J, et al. Safety of 80% vs 30-35% fraction of inspired oxygen in patients undergoing surgery: a systematic review and meta-analysis. Br J Anaesth. 2019;122:311–324. doi: 10.1016/j.bja.2018.11.026.
    1. Wenk M, Van Aken H, Zarbock A. The New World Health Organization Recommendations on Perioperative Administration of Oxygen to Prevent Surgical Site Infections: A Dangerous Reductionist Approach? Anesth Analg. 2017;125(2):682–687. doi: 10.1213/ANE.0000000000002256.

Source: PubMed

3
Iratkozz fel