The role of saline irrigation prior to wound closure in the reduction of surgical site infection: protocol for a systematic review and meta-analysis

Dawid Pieper, Tanja Rombey, Johannes Doerner, Julian-Dario Rembe, Hubert Zirngibl, Konstantinos Zarras, Peter C Ambe, Dawid Pieper, Tanja Rombey, Johannes Doerner, Julian-Dario Rembe, Hubert Zirngibl, Konstantinos Zarras, Peter C Ambe

Abstract

Background: Surgical site infection describes an infectious complication of surgical wounds. This single complication is thought to occur in close to 20% of surgical cases. This complication has been described in all kinds of surgical procedure including minimally invasive procedures. Wound irrigation is frequently used as a means of reducing surgical site infection. However, there is lack of solid evidence to support routine wound irrigation. The aim of this review is to provide evidence for the efficacy of routine wound irrigation with normal saline in preventing surgical site infection. The rate of surgical site infection in cases with and without wound irrigation will be analyzed.

Methods/design: Systematic literature searches will be conducted to identify all published and unpublished studies. The following databases will be searched for citations from inception to present: MEDLINE (via PubMed), Embase (via Embase), and CENTRAL (via the Cochrane library). The search strategy will be developed by the research team in collaboration with an experienced librarian and checked by a referee according to the Peer Review of Electronic Search Strategies (PRESS) guideline. A draft of the PubMed search strategy could be (irrigation[tiab] OR "Therapeutic Irrigation"[mesh] OR lavage[tiab]) AND (saline[tiab] OR "Sodium Chloride"[mesh] OR sodium chloride[tiab]) NOT ("Comment" [Publication Type] OR "Letter" [Publication Type] OR "Editorial" [Publication Type]). No time limits will be set. The reference lists of eligible articles will be hand searched. Relevant data will be extracted from eligible studies using a previously designed data extraction sheet. Relative risks will be calculated for binary outcomes and mean differences or standardized mean differences, if necessary, for continuous outcomes. For all measures, 95% confidence levels will be calculated. Both arms would be compared with regard to the rate of surgical site infection within 30 days following surgery. We will report the review using the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) statement.

Discussion: This review aims at investigating the value of routine wound irrigation using normal saline in preventing surgical site infection.

Systematic review registration: PROSPERO: CRD42018082287.

Conflict of interest statement

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

    1. Organization WH . Global guidelines for the prevention of surgical site infection: World Health Organization. 2016.
    1. Allegranzi B, Bagheri Nejad S, Combescure C, Graafmans W, Attar H, Donaldson L, Pittet D. Burden of endemic health-care-associated infection in developing countries: systematic review and meta-analysis. Lancet. 2011;377(9761):228–241. doi: 10.1016/S0140-6736(10)61458-4.
    1. Tommi Kärki, Carl Suetens. . SossiiESECfDPaCaO. Accessed on Oct 8 2017.
    1. Leaper DJ, van Goor H, Reilly J, Petrosillo N, Geiss HK, Torres AJ, Berger A. Surgical site infection - a European perspective of incidence and economic burden. Int Wound J. 2004;1(4):247–273. doi: 10.1111/j.1742-4801.2004.00067.x.
    1. Anderson DJ, Podgorny K, Berrios-Torres SI, Bratzler DW, Dellinger EP, Greene L, Nyquist AC, Saiman L, Yokoe DS, Maragakis LL, et al. Strategies to prevent surgical site infections in acute care hospitals: 2014 update. Infect Control Hosp Epidemiol. 2014;35(6):605–627. doi: 10.1086/676022.
    1. Gilmore O, Martin T. Aetiology and prevention of wound infection in appendicectomy. Br J Surg. 1974;61(4):281–287. doi: 10.1002/bjs.1800610407.
    1. Leaper D., Burman-Roy S., Palanca A., Cullen K., Worster D., Gautam-Aitken E., Whittle M. Prevention and treatment of surgical site infection: summary of NICE guidance. BMJ. 2008;337(oct28 1):a1924–a1924. doi: 10.1136/bmj.a1924.
    1. Saves GfssSS, Lives. Geneva: World Health Organization; 2009 . Accessed 8 Oct 2017.
    1. Classen DC, Evans RS, Pestotnik SL, Horn SD, Menlove RL, Burke JP. The timing of prophylactic administration of antibiotics and the risk of surgical-wound infection. N Engl J Med. 1992;326(5):281–286. doi: 10.1056/NEJM199201303260501.
    1. Bratzler DW, Dellinger EP, Olsen KM, Perl TM, Auwaerter PG, Bolon MK, Fish DN, Napolitano LM, Sawyer RG, Slain D, et al. Clinical practice guidelines for antimicrobial prophylaxis in surgery. Surg Infect. 2013;14(1):73–156. doi: 10.1089/sur.2013.9999.
    1. Gheorghe Adrian, Roberts Tracy E., Pinkney Thomas D., Bartlett David C., Morton Dion, Calvert Melanie. The Cost-Effectiveness of Wound-Edge Protection Devices Compared to Standard Care in Reducing Surgical Site Infection after Laparotomy: An Economic Evaluation alongside the ROSSINI Trial. PLoS ONE. 2014;9(4):e95595. doi: 10.1371/journal.pone.0095595.
    1. Whiteside OJ, Tytherleigh MG, Thrush S, Farouk R, Galland RB. Intra-operative peritoneal lavage--who does it and why? Ann R Coll Surg Engl. 2005;87(4):255–258. doi: 10.1308/1478708051847.
    1. Mangram AJ, Horan TC, Pearson ML, Silver LC, Jarvis WR. Guideline for prevention of surgical site infection, 1999. Centers for disease control and prevention (CDC) hospital infection control practices advisory committee. Am J Infect Control. 1999;27(2):97–132. doi: 10.1016/S0196-6553(99)70088-X.
    1. Andersen B, Korner B, Ostergaard AH. Topical ampicillin against wound infection after colorectal surgery. Ann Surg. 1972;176(2):129. doi: 10.1097/00000658-197208000-00001.
    1. Andersen JR, Burcharth F, Larsen HW, Røder O, Andersen B. Polyglycolic acid, silk, and topical ampicillin: their use in hernia repair and cholecystectomy. Arch Surg. 1980;115(3):293–295. doi: 10.1001/archsurg.1980.01380030041009.
    1. De Jong T, Vierhout R, Van Vroonhoven T. Povidone-iodine irrigation of the subcutaneous tissue to prevent surgical wound infections. Surg Gynecol Obstet. 1982;155(2):221–224.
    1. Galle PC, Homesley HD. Ineffectiveness of povidone-iodine irrigation of abdominal incisions. Obstet Gynecol. 1980;55(6):744–746.
    1. Gill RS, Al-Adra DP, Campbell S, Olson DW, Rowe BH. Povidone-iodine irrigation of subcutaneous tissues may decrease surgical site infections in elective colorectal operations: a systematic review. Gastroenterology Res. 2011;4(3):97.
    1. Stevenson TR, Thacker JG, Rodeheaver GT, Bacchetta C, Edgerton MT, Edlich RF. Cleansing the traumatic wound by high pressure syringe irrigation. J Am Coll Emerg Physicians. 1976;5(1):17–21. doi: 10.1016/S0361-1124(76)80160-8.
    1. Lord JW, LaRaja RD, Daliana M, Gordon MT. Prophylactic antibiotic wound irrigation in gastric, biliary, and colonic surgery. Am J Surg. 1983;145(2):209–212. doi: 10.1016/0002-9610(83)90064-8.
    1. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097. doi: 10.1371/journal.pmed.1000097.
    1. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JP, Clarke M, Devereaux PJ, Kleijnen J, Moher D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med. 2009;6(7):e1000100. doi: 10.1371/journal.pmed.1000100.
    1. Higgins JP, Altman DG, Gotzsche PC, Juni P, Moher D, Oxman AD, Savovic J, Schulz KF, Weeks L, Sterne JA, et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011;343:d5928. doi: 10.1136/bmj.d5928.
    1. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315(7109):629–634. doi: 10.1136/bmj.315.7109.629.
    1. Kirkland KB, Briggs JP, Trivette SL, Wilkinson WE, Sexton DJ. The impact of surgical-site infections in the 1990s: attributable mortality, excess length of hospitalization, and extra costs. Infect Control Hosp Epidemiol. 1999;20(11):725–730. doi: 10.1086/501572.
    1. Merle V, Germain JM, Chamouni P, Daubert H, Froment L, Michot F, Teniere P, Czernichow P. Assessment of prolonged hospital stay attributable to surgical site infections using appropriateness evaluation protocol. Am J Infect Control. 2000;28(2):109–115. doi: 10.1067/mic.2000.102353.
    1. de Lissovoy G, Fraeman K, Hutchins V, Murphy D, Song D, Vaughn BB. Surgical site infection: incidence and impact on hospital utilization and treatment costs. Am J Infect Control. 2009;37(5):387–397. doi: 10.1016/j.ajic.2008.12.010.
    1. Mueller TC, Loos M, Haller B, Mihaljevic AL, Nitsche U, Wilhelm D, Friess H, Kleeff J, Bader FG. Intra-operative wound irrigation to reduce surgical site infections after abdominal surgery: a systematic review and meta-analysis. Langenbecks Arch Surg. 2015;400(2):167–181. doi: 10.1007/s00423-015-1279-x.

Source: PubMed

3
Iratkozz fel