Pathogenesis of Myeloproliferative Neoplasms: Role and Mechanisms of Chronic Inflammation

Sylvie Hermouet, Edith Bigot-Corbel, Betty Gardie, Sylvie Hermouet, Edith Bigot-Corbel, Betty Gardie

Abstract

Myeloproliferative neoplasms (MPNs) are a heterogeneous group of clonal diseases characterized by the excessive and chronic production of mature cells from one or several of the myeloid lineages. Recent advances in the biology of MPNs have greatly facilitated their molecular diagnosis since most patients present with mutation(s) in the JAK2, MPL, or CALR genes. Yet the roles played by these mutations in the pathogenesis and main complications of the different subtypes of MPNs are not fully elucidated. Importantly, chronic inflammation has long been associated with MPN disease and some of the symptoms and complications can be linked to inflammation. Moreover, the JAK inhibitor clinical trials showed that the reduction of symptoms linked to inflammation was beneficial to patients even in the absence of significant decrease in the JAK2-V617F mutant load. These observations suggested that part of the inflammation observed in patients with JAK2-mutated MPNs may not be the consequence of JAK2 mutation. The aim of this paper is to review the different aspects of inflammation in MPNs, the molecular mechanisms involved, the role of specific genetic defects, and the evidence that increased production of certain cytokines depends or not on MPN-associated mutations, and to discuss possible nongenetic causes of inflammation.

Figures

Figure 1
Figure 1
Progression from chronic inflammation to solid and blood cancers. A physical, chemical, or infectious injury leads to tissue and cell damage and activation of antiapoptosis signaling pathways in affected cells, which results in the autocrine and paracrine production and consumption of prosurvival, inflammatory cytokines, as well as chemokines, to attract immune cells of the lymphoid and myeloid lineages to the site of injury. Over time, established inflammation (chronic inflammation) constantly overstimulates the production of hematopoietic cells and induces more tissue and cell damage, hereby increasing the rate of DNA duplication and risk of defective DNA reparation and mutation, both in cells from affected tissues (increased risk of solid cancer) and in lymphoid and myeloid cells participating in the immune/inflammatory response (increased risk of hematological malignancy).
Figure 2
Figure 2
Increased risk of myeloid malignancy in case of chronic inflammation. Chronic inflammation may be related to solid cancer or to other causes (infectious, toxic, and physical). In all cases the immune response includes an increased stimulation of the production of myeloid cells, with the associated increased risk of DNA alteration in dividing progenitor cells. Over the years, a myeloid progenitor may acquire a defect in a gene critical for survival or proliferation (MPL, JAK2, and CALR?) and a MPL-, JAK2-, or CALR-mutated malignant clone may expand and lead to a MPN. Other mutations providing a mild growth advantage (TET2, IDH1/2?) may occur before or after the MPL, JAK2, or CALR mutations. In the case of inflammation related to solid cancer, cancer cells and the inflammatory cytokines they produce likely affect immune cells.
Figure 3
Figure 3
Main molecular pathways activated for the production of inflammatory cytokines. Three main transcription factors control the production of inflammatory cytokines and subsequently cell survival and proliferation: (i) HIF-1α, activated in hypoxic tissues, regulates the transcription of multiple genes including numerous inflammatory cytokines and growth factors that promote cell survival, fibrosis, and neoangiogenesis [12, 13]; (ii) NF-κB induces the expression of many inflammation cytokines and growth factors, as well as HIF-1α mRNA; (iii) STAT1, like NF-κB, induces the expression of several inflammation cytokines. To a lesser degree, STAT3 also regulates cytokine transcription, notably of IL-6. STAT1 and STAT3 are activated by JAK kinases, essentially JAK1, but other kinases also activate STAT transcription factors (e.g., MET, the HGF receptor). In addition, cancer-associated mutations may affect the expression (TET2 and IDH1/2 mutations) or signaling (JAK2-V617F, CBL, or LNK mutations) of cytokines or cytokine receptors. Certain growth factors (TGF-β) and other molecules such as liposaccharide (LPS), a component of Gram-negative bacteria, can also activate the NF-κB pathway and subsequently the HIF and JAK/STAT pathways. Red arrows represent pathways that directly lead to increased production of inflammatory cytokines.
Figure 4
Figure 4
Molecular pathways activated by inflammatory cytokines and growth factors and affected by MPN-associated mutations. Most cytokine and growth factor receptors can activate the HIF-1α, NF-κB, and/or one or more of the different JAK/STAT pathways, either directly or indirectly. Among the JAK kinases, myeloid cells express essentially JAK2 and to a lesser degree JAK1 and TYK2 (not represented). JAK2 activates STAT5 and STAT3. JAK1 activates mainly STAT1 and to a lesser degree STAT3. The different STAT transcription factors form homodimers as well as heterodimers, which allows for a differential regulation of the expression of inflammatory cytokines. In MPN clonal cells, the JAK2-coupled receptors of EPO, TPO, and G-CSF may form complexes with and activate wild type JAK2 only, V617F-mutated JAK2 only, or wild type and V617F-mutated JAK2, which likely result in different levels of activation of the JAK2/STAT pathways concerned. Moreover, EPO, TPO, and G-CSF activate other molecular pathways besides the JAK/STAT pathways, such as the antiapoptosis, prosurvival PI3K/AKT pathway and the proproliferation RAS/MAPK pathway. Of note, activation of HIF-1α leads to an increased production of inflammatory cytokines in all cell types, but HIF-1α induces EPO expression only in the rare EPO-producing cell types (renal cells, neuronal cells, and certain tumors). LNK loss-of-function mutants result in enhanced activation of JAK2/STAT5. The CBL mutants detected in MPNs also enhance JAK/STAT signaling. Blue arrows represent JAK/STAT pathways, and red arrows represent HIF pathways.
Figure 5
Figure 5
Chronic inflammation in myeloid neoplasms and new therapeutic options. In MPN patients, chronic inflammation includes the participation of JAK2-V617F-, MPL-W515 L/K-, or CALR-mutated cells and the production of inflammation cytokines under the control of these mutations. Chronic inflammation may also be reactive to the MPN clone or to other coexisting causes of inflammation (hypoxia due to cell accumulation in the bone marrow; thrombosis; infection; others). Healthy and mutated (clonal) myeloid cells participate in MPN-associated reactive inflammation, and the NF-κB, JAK/STAT, and HIF pathways are chronically activated in the MPN clone and in cells from the bone marrow environment. Ideally treatment should combine the following: (1) inhibition of the JAK2-V617F, MPL-W515L/K, or CALR mutations, possible with JAK inhibitors; (2) inhibition of chronic inflammation, via the neutralization or inhibition of inflammation cytokines or receptors, and/or the inhibition of the NF-κB and HIF pathways; (3) in cases where chronic inflammation precedes mutation, and a cause is identified, adequate treatment of the initial cause of inflammation could be added (e.g., antibiotics or antiviral treatment in case of latent infection).

References

    1. Tefferi A., Thiele J., Vardiman J. W. The 2008 World Health Organization classification system for myeloproliferative neoplasms: order out of chaos. Cancer. 2009;115(17):3842–3847. doi: 10.1002/cncr.24440.
    1. Groffen J., Stephenson J. R., Heisterkamp N., de Klein A., Bartram C. R., Grosveld G. Philadelphia chromosomal breakpoints are clustered within a limited region, bcr, on chromosome 22. Cell. 1984;36(1):93–99. doi: 10.1016/0092-8674(84)90077-1.
    1. James C., Ugo V., Le Couédic J.-P., et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature. 2005;434(7037):1144–1148. doi: 10.1038/nature03546.
    1. Kralovics R., Passamonti F., Buser A. S., et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. The New England Journal of Medicine. 2005;352(17):1779–1790. doi: 10.1056/nejmoa051113.
    1. Pikman Y., Lee B. H., Mercher T., et al. MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Medicine. 2006;3(7, article e270) doi: 10.1371/journal.pmed.0030270.
    1. Scott L. M., Tong W., Levine R. L., et al. JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. The New England Journal of Medicine. 2007;356(5):459–468. doi: 10.1056/nejmoa065202.
    1. Schnittger S., Bacher U., Haferlach C., et al. Characterization of 35 new cases with four different MPLW515 mutations and essential thrombocytosis or primary myelofibrosis. Haematologica. 2009;94(1):141–144. doi: 10.3324/haematol.13224.
    1. Klampfl T., Gisslinger H., Harutyunyan A. S., et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. The New England Journal of Medicine. 2013;369(25):2379–2390. doi: 10.1056/nejmoa1311347.
    1. Nangalia J., Massie C. E., Baxter E. J., et al. Somatic CALR mutations in myeloproliferative neoplasms with non-mutated JAK2. The New England Journal of Medicine. 2013;369(25):2391–2405. doi: 10.1056/nejmoa1312542.
    1. Lippert E., Boissinot M., Kralovics R., et al. The JAK2-V617F mutation is frequently present at diagnosis in patients with essential thrombocythemia and polycythemia vera. Blood. 2006;108(6):1865–1867. doi: 10.1182/blood-2006-01-013540.
    1. Cleyrat C., Jelinek J., Girodon F., et al. JAK2 mutation and disease phenotype: a double L611V/V617F in cis mutation of JAK2 is associated with isolated erythrocytosis and increased activation of AKT and ERK1/2 rather than STAT5. Leukemia. 2010;24(5):1069–1073. doi: 10.1038/leu.2010.23.
    1. Mantovani A. Molecular pathways linking inflammation and cancer. Current Molecular Medicine. 2010;10(4):369–373. doi: 10.2174/156652410791316968.
    1. Fernández-Sánchez R., Berzal S., Sánchez-Niño M.-D., et al. AG490 promotes HIF-1α accumulation by inhibiting its hydroxylation. Current Medicinal Chemistry. 2012;19(23):4014–4023. doi: 10.2174/092986712802002554.
    1. Kralovics R., Teo S.-S., Li S., et al. Acquisition of the V617F mutation of JAK2 is a late genetic event in a subset of patients with myeloproliferative disorders. Blood. 2006;108(4):1377–1380. doi: 10.1182/blood-2005-11-009605.
    1. Schaub F. X., Looser R., Li S., et al. Clonal analysis of TET2 and JAK2 mutations suggests that TET2 can be a late event in the progression of myeloproliferative neoplasms. Blood. 2010;115(10):2003–2007. doi: 10.1182/blood-2009-09-245381.
    1. Vilaine M., Olcaydu D., Harutyunyan A., et al. Homologous recombination of wild-type JAK2, a novel early step in the development of myeloproliferative neoplasm. Blood. 2011;118(24):6468–6470. doi: 10.1182/blood-2011-08-372813.
    1. Lambert J. R., Everington T., Linch D. C., Gale R. E. In essential thrombocythemia, multiple JAK2-V617F clones are present in most mutant-positive patients: a new disease paradigm. Blood. 2009;114(14):3018–3023. doi: 10.1182/blood-2009-03-209916.
    1. Lundberg P., Karow A., Nienhold R., et al. Clonal evolution and clinical correlates of somatic mutations in myeloproliferative neoplasms. Blood. 2014;123(14):2220–2228. doi: 10.1182/blood-2013-11-537167.
    1. Hasselbalch H. C. Perspectives on the impact of JAK-inhibitor therapy upon inflammation-mediated comorbidities in myelofibrosis and related neoplasms. Expert Review of Hematology. 2014;7(2):203–216. doi: 10.1586/17474086.2013.876356.
    1. Pemmaraju N., Kantarjian H., Kadia T., et al. Phase I/II study of the Janus kinase (JAK)1 and 2 inhibitor ruxolitinib in patients with relapsed or refractory acute myeloid leukemia. Clinical Lymphoma, Myeloma and Leukemia. 2015;15(3):171–176. doi: 10.1016/j.clml.2014.08.003.
    1. Mantovani A., Allavena P., Sica A., Balkwill F. Cancer-related inflammation. Nature. 2008;454(7203):436–444. doi: 10.1038/nature07205.
    1. Yaqub S., Aandahl E. M. Inflammation versus adaptive immunity in cancer pathogenesis. Critical Review Oncology. 2009;15(1-2):43–63. doi: 10.1615/critrevoncog.v15.i1-2.20.
    1. Crusz S. M., Balkwill F. R. Inflammation and cancer: advances and new agents. Nature Reviews Clinical Oncology. 2015 doi: 10.1038/nrclinonc.2015.105.
    1. Hackett P. H., Roach R. C. High-altitude illness. The New England Journal of Medicine. 2001;345(2):107–114. doi: 10.1056/nejm200107123450206.
    1. Hartmann G., Tschöp M., Fischer R., et al. High altitude increases circulating interleukin-6, interleukin-1 receptor antagonist and C-reactive protein. Cytokine. 2000;12(3):246–252. doi: 10.1006/cyto.1999.0533.
    1. Niu X., Miasnikova G. Y., Sergueeva A. I., et al. Altered cytokine profiles in patients with Chuvash polycythemia. American Journal of Hematology. 2009;84(2):74–78. doi: 10.1002/ajh.21327.
    1. Biddlestone J., Bandarra D., Rocha S. The role of hypoxia in inflammatory disease (Review) International Journal of Molecular Medicine. 2015;35(4):859–869. doi: 10.3892/ijmm.2015.2079.
    1. Ryu J.-H., Chae C.-S., Kwak J.-S., et al. Hypoxia-inducible factor-2α is an essential catabolic regulator of inflammatory rheumatoid arthritis. PLoS Biology. 2014;12(6):1–16. doi: 10.1371/journal.pbio.1001881.e1001881
    1. Cramer T., Yamanishi Y., Clausen B. E., et al. HIF-1α is essential for myeloid cell-mediated inflammation. Cell. 2003;112(5):645–657. doi: 10.1016/s0092-8674(03)00154-5.
    1. Delhommeau F., Dupont S., Tonetti C., et al. Evidence that the JAK2 G1849T (V617F) mutation occurs in a lymphomyeloid progenitor in polycythemia vera and idiopathic myelofibrosis. Blood. 2007;109(1):71–77. doi: 10.1182/blood-2006-03-007146.
    1. Cesarman E., Chang Y., Moore P. S., Said J. W., Knowles D. M. Kaposi's sarcoma-associated herpesvirus-like DNA sequences in AIDS-related body-cavity-based lymphomas. The New England Journal of Medicine. 1995;332(18):1186–1191. doi: 10.1056/nejm199505043321802.
    1. Parsonnet J. Microbes and Malignancy. Infection As a Cause of Human Cancers. New York, NY, USA: Oxford University Press; 1999.
    1. Cohen J. I. Epstein-Barr virus infection. The New England Journal of Medicine. 2000;343(7):481–492. doi: 10.1056/nejm200008173430707.
    1. Du M.-Q., Isaccson P. G. Gastric MALT lymphoma: from aetiology to treatment. Lancet Oncology. 2002;3(2):97–104. doi: 10.1016/s1470-2045(02)00651-4.
    1. Dammacco F., Sansonno D., Piccoli C., Racanelli V., D'Amore F. P., Lauletta G. The lymphoid system in hepatitis C virus infection: autoimmunity, mixed cryoglobulinemia, and overt B-cell malignancy. Seminars in Liver Disease. 2000;20(2):143–157. doi: 10.1055/s-2000-9613.
    1. Montella M., Crispo A., Frigeri F., et al. HCV and tumors correlated with immune system: a case-control study in an area of hyperendemicity. Leukemia Research. 2001;25(9):775–781. doi: 10.1016/s0145-2126(01)00027-3.
    1. De Falco M., Lucariello A., Iaquinto S., Esposito V., Guerra G., De Luca A. Molecular mechanisms of Helicobacter pylori pathogenesis. Journal of Cellular Physiology. 2015;230(8):1702–1707. doi: 10.1002/jcp.24933.
    1. Levy D. E., Darnell J. E., Jr. STATs: transcriptional control and biological impact. Nature Reviews Molecular Cell Biology. 2002;3(9):651–662. doi: 10.1038/nrm909.
    1. Frede S., Berchner-Pfannschmidt U., Fandrey J. Regulation of hypoxia-inducible factors during inflammation. Methods in Enzymology. 2007;435:403–419. doi: 10.1016/s0076-6879(07)35021-0.
    1. Flamant L., Toffoli S., Raes M., Michiels C. Hypoxia regulates inflammatory gene expression in endothelial cells. Experimental Cell Research. 2009;315(5):733–747. doi: 10.1016/j.yexcr.2008.11.020.
    1. Gerber S. A., Pober J. S. IFN-α induces transcription of hypoxia-inducible factor-1α to inhibit proliferation of human endothelial cells. Journal of Immunology. 2008;181(2):1052–1062. doi: 10.4049/jimmunol.181.2.1052.
    1. Wenger R. H., Stiehl D. P., Camenisch G. Integration of oxygen signaling at the consensus HRE. Science's STKE. 2005;306, article re12
    1. Kamato D., Burch M. L., Piva T. J., et al. Transforming growth factor-β signalling: role and consequences of Smad linker region phosphorylation. Cellular Signalling. 2013;25(10):2017–2024. doi: 10.1016/j.cellsig.2013.06.001.
    1. Conte C., Riant E., Toutain C., et al. FGF2 translationally induced by hypoxia is involved in negative and positive feedback loops with HIF-1α . PLoS ONE. 2008;3(8) doi: 10.1371/journal.pone.0003078.e3078
    1. Stark G. R., Darnell J. E., Jr. The JAK-STAT pathway at twenty. Immunity. 2012;36(4):503–514. doi: 10.1016/j.immuni.2012.03.013.
    1. Marzo F., Lavorgna A., Coluzzi G., et al. Erythropoietin in heart and vessels: focus on transcription and signalling pathways. Journal of Thrombosis and Thrombolysis. 2008;26(3):183–187. doi: 10.1007/s11239-008-0212-3.
    1. Salzman S. A., Mazza J. J., Burmester J. K. Regulation of colony-stimulating factor-induced human myelopoiesis by transforming growth factor-beta isoforms. Cytokines, Cellular and Molecular Therapy. 2002;7(1):31–36. doi: 10.1080/13684730216400.
    1. Zhang J., Zhang X., Xie F., et al. The regulation of TGF-β/SMAD signaling by protein deubiquitination. Protein & Cell. 2014;5(7):503–517. doi: 10.1007/s13238-014-0058-8.
    1. Vaidya R., Gangat N., Jimma T., et al. Plasma cytokines in polycythemia vera: phenotypic correlates, prognostic relevance, and comparison with myelofibrosis. American Journal of Hematology. 2012;87(11):1003–1005. doi: 10.1002/ajh.23295.
    1. Pourcelot E., Trocme C., Mondet J., Bailly S., Toussaint B., Mossuz P. Cytokine profiles in polycythemia vera and essential thrombocythemia patients: clinical implications. Experimental Hematology. 2014;42(5):360–368. doi: 10.1016/j.exphem.2014.01.006.
    1. Hermouet S., Corre I., Lippert E. Interleukin-8 and other agonists of Gi2 proteins: autocrine paracrine growth factors for human hematopoietic progenitors acting in synergy with colony stimulating factors. Leukemia and Lymphoma. 2000;38(1-2):39–48.
    1. Hermouet S., Godard A., Pineau D., et al. Abnormal production of interleukin (IL)-11 and IL-8 in polycythaemia vera. Cytokine. 2002;20(4):178–183. doi: 10.1006/cyto.2002.1994.
    1. Boissinot M., Cleyrat C., Vilaine M., Jacques Y., Corre I., Hermouet S. Anti-inflammatory hepatocyte growth factor and interleukin-11 are overexpressed in Polycythemia Vera and contribute to the growth of mutated erythroblasts independently of JAK2V617F. Oncogene. 2011;30(8):990–1001.
    1. Tefferi A., Vaidya R., Caramazza D., Finke C., Lasho T., Pardanani A. Circulating interleukin (IL)-8, IL-2R, IL-12, and IL-15 levels are independently prognostic in primary myelofibrosis: a comprehensive cytokine profiling study. Journal of Clinical Oncology. 2011;29(10):1356–1363. doi: 10.1200/jco.2010.32.9490.
    1. Lymperi S., Ferraro F., Scadden D. T. The HSC niche concept has turned 31. Has our knowledge matured? Annals of the New York Academy of Sciences. 2010;1192:12–18. doi: 10.1111/j.1749-6632.2009.05223.x.
    1. Le Bousse-Kerdilès M.-C. Primary myelofibrosis and the ‘bad seeds in bad soil’ concept. Fibrogenesis and Tissue Repair. 2012;5(supplement 1, article S20) doi: 10.1186/1755-1536-5-s1-s20.
    1. Lataillade J.-J., Pierre-Louis O., Hasselbalch H. C., et al. Does primary myelofibrosis involve a defective stem cell niche? From concept to evidence. Blood. 2008;112(8):3026–3035. doi: 10.1182/blood-2008-06-158386.
    1. Corre-Buscail I., Pineau D., Boissinot M., Hermouet S. Erythropoietin-independent erythroid colony formation by bone marrow progenitors exposed to interleukin-11 and interleukin-8. Experimental Hematology. 2005;33(11):1299–1308. doi: 10.1016/j.exphem.2005.07.002.
    1. Fleischman A. G., Aichberger K. J., Luty S. B., et al. TNFα facilitates clonal expansion of JAK2V617F positive cells in myeloproliferative neoplasms. Blood. 2011;118(24):6392–6398. doi: 10.1182/blood-2011-04-348144.
    1. Mossuz P., Girodon F., Donnard M., et al. Diagnostic value of serum erythropoietin level in patients with absolute erythrocytosis. Haematologica. 2004;89(10):1194–1279.
    1. Mager L. F., Riether C., Schürch C. M., et al. IL-33 signaling contributes to the pathogenesis of myeloproliferative neoplasms. The Journal of Clinical Investigation. 2015;125(7):2579–2591. doi: 10.1172/jci77347.
    1. Kristinsson S. Y., Landgren O., Samuelsson J., Björkholm M., Goldin L. R. Autoimmunity and the risk of myeloproliferative neoplasms. Haematologica. 2010;95(7):1216–1220. doi: 10.3324/haematol.2009.020412.
    1. Le Bousse-Kerdilès M. C., Martyré M. C. Dual implication of fibrogenic cytokines in the pathogenesis of fibrosis and myeloproliferation in myeloid metaplasia with myelofibrosis. Annals of Hematology. 1999;78(10):437–444. doi: 10.1007/s002770050595.
    1. Barbui T., Carobbio A., Finazzi G., et al. Inflammation and thrombosis in essential thrombocythemia and polycythemia vera: different role of C-reactive protein and pentraxin 3. Haematologica. 2011;96(2):315–318. doi: 10.3324/haematol.2010.031070.
    1. Barbui T., Carobbio A., Finazzi G., et al. Elevated C-reactive protein is associated with shortened leukemia-free survival in patients with myelofibrosis. Leukemia. 2013;27(10):2084–2086. doi: 10.1038/leu.2013.207.
    1. Risum M., Madelung A., Bondo H., et al. The JAK2V617F allele burden and STAT3- and STAT5 phosphorylation in myeloproliferative neoplasms: early prefibrotic myelofibrosis compared with essential thrombocythemia, polycythemia vera and myelofibrosis. Acta Pathologica Microbiologica et Immunologica Scandivinia. 2011;119(8):498–504.
    1. Lee T.-S., Kantarjian H., Ma W., Yeh C.-H., Giles F., Albitar M. Effects of clinically relevant MPL mutations in the transmembrane domain revealed at the atomic level through computational modeling. PLoS ONE. 2011;6(8) doi: 10.1371/journal.pone.0023396.e23396
    1. Hitchcock I. S., Kaushansky K. Thrombopoietin from beginning to end. British Journal of Haematology. 2014;165(2):259–268. doi: 10.1111/bjh.12772.
    1. Hirao A. TPO signal for stem cell genomic integrity. Blood. 2014;123(4):459–460. doi: 10.1182/blood-2013-11-537084.
    1. Pardanani A., Lasho T., Finke C., Oh S. T., Gotlib J., Tefferi A. LNK mutation studies in blast-phase myeloproliferative neoplasms, and in chronic-phase disease with TET2, IDH, JAK2 or MPL mutations. Leukemia. 2010;24(10):1713–1718. doi: 10.1038/leu.2010.163.
    1. Dunbar A. J., Gondek L. P., O'Keefe C. L., et al. 250K single nucleotide polymorphism array karyotyping identifies acquired uniparental disomy and homozygous mutations, including novel missense substitutions of c-Cbl, in myeloid malignancies. Cancer Research. 2008;68(24):10349–10357. doi: 10.1158/0008-5472.can-08-2754.
    1. Sanada M., Suzuki T., Shih L.-Y., et al. Gain-of-function of mutated C-CBL tumour suppressor in myeloid neoplasms. Nature. 2009;460(7257):904–908. doi: 10.1038/nature08240.
    1. Grand F. H., Hidalgo-Curtis C. E., Ernst T., et al. Frequent CBL mutations associated with 11q acquired uniparental disomy in myeloproliferative neoplasms. Blood. 2009;113(24):6182–6192. doi: 10.1182/blood-2008-12-194548.
    1. Bersenev A., Wu C., Balcerek J., et al. Lnk constrains myeloproliferative diseases in mice. The Journal of Clinical Investigation. 2010;120(6):2058–2069. doi: 10.1172/jci42032.
    1. Delhommeau F., Dupont S., Della Valle V., et al. Mutation in TET2 in myeloid cancers. The New England Journal of Medicine. 2009;360(22):2289–2301. doi: 10.1056/nejmoa0810069.
    1. Carbuccia N., Murati A., Trouplin V., et al. Mutations of ASXL1 gene in myeloproliferative neoplasms. Leukemia. 2009;23(11):2183–2186. doi: 10.1038/leu.2009.141.
    1. Mardis E. R., Ding L., Dooling D. J., et al. Recurring mutations found by sequencing an acute myeloid leukemia genome. The New England Journal of Medicine. 2009;361(11):1058–1066. doi: 10.1056/nejmoa0903840.
    1. Ernst T., Chase A. J., Score J., et al. Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nature Genetics. 2010;42(8):722–726. doi: 10.1038/ng.621.
    1. Figueroa M. E., Abdel-Wahab O., Lu C., et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell. 2010;18(6):553–567. doi: 10.1016/j.ccr.2010.11.015.
    1. Tahiliani M., Koh K. P., Shen Y., et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. 2009;324(5929):930–935. doi: 10.1126/science.1170116.
    1. Ito S., Dalessio A. C., Taranova O. V., Hong K., Sowers L. C., Zhang Y. Role of tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature. 2010;466(7310):1129–1133. doi: 10.1038/nature09303.
    1. Viny A. D., Levine R. L. Genetics of myeloproliferative neoplasms. Cancer Journal. 2014;20(1):61–65. doi: 10.1097/ppo.0000000000000013.
    1. Reuther G. W. Recurring mutations in myeloproliferative neoplasms alter epigenetic regulation of gene expression. American Journal of Cancer Research. 2011;1(6):752–762.
    1. Kleppe M., Kwak M., Koppikar P., et al. JAK-STAT pathway activation in malignant and nonmalignant cells contributes to MPN pathogenesis and therapeutic response. Cancer Discovery. 2015;5(3):316–331. doi: 10.1158/-14-0736.
    1. Hoermann G., Cerny-Reiterer S., Herrmann H., et al. Identification of oncostatin M as a JAK2 V617F-dependent amplifier of cytokine production and bone marrow remodeling in myeloproliferative neoplasms. The FASEB Journal. 2012;26(2):894–906. doi: 10.1096/fj.11-193078.
    1. Duo C.-C., Gong F.-Y., He X.-Y., et al. Soluble calreticulin induces tumor necrosis factor-α (TNF-α) and interleukin (IL)-6 production by macrophages through mitogen-activated protein kinase (MAPK) and NFκB signaling pathways. International Journal of Molecular Sciences. 2014;15(2):2916–2928. doi: 10.3390/ijms15022916.
    1. Tefferi A., Lasho T. L., Abdel-Wahab O., et al. IDH1 and IDH2 mutation studies in 1473 patients with chronic-, fibrotic- or blast-phase essential thrombocythemia, polycythemia vera or myelofibrosis. Leukemia. 2010;24(7):1302–1309. doi: 10.1038/leu.2010.113.
    1. Vannucchi A. M., Lasho T. L., Guglielmelli P P., et al. TET2 and IDH1 mutations and poor prognosis in primary myelofibrosis. Leukemia. 2013;27(9):1861–1869.
    1. Inoue D., Kitaura J., Matsui H., et al. SETBP1 mutations drive leukemic transformation in ASXL1-mutated MDS. Leukemia. 2014 doi: 10.1038/leu.2014.301.
    1. Olcaydu D., Harutyunyan A., Jäger R., et al. A common JAK2 haplotype confers susceptibility to myeloproliferative neoplasms. Nature Genetics. 2009;41(4):450–454. doi: 10.1038/ng.341.
    1. Jones A. V., Chase A., Silver R. T., et al. JAK2 haplotype is a major risk factor for the development of myeloproliferative neoplasms. Nature Genetics. 2009;41(4):446–449. doi: 10.1038/ng.334.
    1. Kilpivaara O., Mukherjee S., Schram A. M., et al. A germline JAK2 SNP is associated with predisposition to the development of JAK2V617F-positive myeloproliferative neoplasms. Nature Genetics. 2009;41(4):455–459. doi: 10.1038/ng.342.
    1. Jäger R., Harutyunyan A. S., Rumi E., et al. Common germline variation at the TERT locus contributes to familial clustering of myeloproliferative neoplasms. American Journal of Hematology. 2014;89(12):1107–1110. doi: 10.1002/ajh.23842.
    1. Tapper W., Jones A. V., Kralovics R., et al. Genetic variation at MECOM, TERT, JAK2 and HBS1L-MYB predisposes to myeloproliferative neoplasms. Nature Communications. 2015;6:p. 6691. doi: 10.1038/ncomms7691.
    1. Nahajevszky S., Andrikovics H., Batai A., et al. The prognostic impact of germline 46/1 haplotype of Janus Kinase 2 in cytogenetically normal acute myeloid leukemia. Haematologica. 2011;96(11):1613–1618. doi: 10.3324/haematol.2011.043885.
    1. Hermouet S., Vilaine M. The JAK2 46/1 haplotype: a marker of inappropriate myelomonocytic response to cytokine stimulation, leading to increased risk of inflammation, myeloid neoplasm, and impaired defense against infection? Haematologica. 2011;96(11):1575–1579. doi: 10.3324/haematol.2011.055392.
    1. Braig M., Pällmann N., Preukschas M., et al A ‘telomere-associated secretory phenotype’ cooperates with BCR-ABL to drive malignant proliferation of leukemic cells. Leukemia. 2014;28(10):2028–2039. doi: 10.1038/leu.2014.95.
    1. Sood R., Talwar-Trikha A., Chakrabarti S. R., Nucifora G. MDS1/EVI1 enhances TGF-beta1 signaling and strengthens its growth-inhibitory effect but the leukemia-associated fusion protein AML1/MDS1/EVI1, product of the t(3;21), abrogates growth-inhibition in response to TGF-beta1. Leukemia. 1999;13(3):348–357.
    1. Yasui K., Konishi C., Gen Y., et al. EVI1, a target gene for amplification at 3q26, antagonizes transforming growth factor-β-mediated growth inhibition in hepatocellular carcinoma. Cancer Science. 2015;106(7):929–937. doi: 10.1111/cas.12694.
    1. Saxena R. Th1/Th2 cytokines and their genotypes as predictors of hepatitis B virus related hepatocellular carcinoma. World Journal of Hepatology. 2015;7(11):1572–1580. doi: 10.4254/wjh.v7.i11.1572.
    1. Ding C., Ji X., Chen X., Xu Y., Zhong L. TNF-α gene promoter polymorphisms contribute to periodontitis susceptibility: evidence from 46 studies. Journal of Clinical Periodontology. 2014;41(8):748–759. doi: 10.1111/jcpe.12279.
    1. Alvarez-Rodriguez L., Lopez-Hoyos M., Carrasco-Marín E., et al. Cytokine gene considerations in giant cell arteritis: IL10 promoter polymorphisms and a review of the literature. Clinical Reviews in Allergy and Immunology. 2014;47(1):56–64. doi: 10.1007/s12016-013-8405-8.
    1. Światek B. J. Is interleukin-10 gene polymorphism a predictive marker in HCV infection? Cytokine and Growth Factor Reviews. 2012;23(1-2):47–59. doi: 10.1016/j.cytogfr.2012.01.005.
    1. Wang N., Zhou R., Wang C., et al. −251 T/A polymorphism of the interleukin-8 gene and cancer risk: a HuGE review and meta-analysis based on 42 case-control studies. Molecular Biology Reports. 2012;39(3):2831–2841. doi: 10.1007/s11033-011-1042-5.
    1. Suárez A., Lpez P., Gutiérrez C. IL-10 and TNFα genotypes in SLE. Journal of Biomedicine and Biotechnology. 2010;2010:11. doi: 10.1155/2010/838390.838390
    1. Gao L.-B., Pan X.-M., Jia J., et al. IL-8 -251A/T polymorphism is associated with decreased cancer risk among population-based studies: Evidence from a meta-analysis. European Journal of Cancer. 2010;46(8):1333–1343. doi: 10.1016/j.ejca.2010.03.011.
    1. Eklund C. M. Proinflammatory cytokines in CRP baseline regulation. Advances in Clinical Chemistry. 2009;48:111–136. doi: 10.1016/s0065-2423(09)48005-3.
    1. Tesch G. H. MCP-1/CCL2: a new diagnostic marker and therapeutic target for progressive renal injury in diabetic nephropathy. The American Journal of Physiology—Renal Physiology. 2008;294(4):F697–F701. doi: 10.1152/ajprenal.00016.2008.
    1. Aguillón J. C., Cruzat A., Aravena O., Salazar L., Llanos C., Cuchacovich M. Could single-nucleotide polymorphisms (SNPs) affecting the tumour necrosis factor promoter be considered as part of rheumatoid arthritis evolution? Immunobiology. 2006;211(1-2):75–84. doi: 10.1016/j.imbio.2005.09.005.
    1. Stüber F., Klaschik S., Lehmann L. E., Schewe J.-C., Weber S., Book M. Cytokine promoter polymorphisms in severe sepsis. Clinical Infectious Diseases. 2005;41(supplement 7):S416–S420. doi: 10.1086/431991.
    1. Aguillón G J. C., Cruzat C A., Cuenca M J., Cuchacovich T M. Tumor necrosis factor alpha genetic polymorphism as a risk factor in disease. Revista Medica de Chile. 2002;130(9):1043–1050.
    1. Giannitrapani L., Soresi M., Balasus D., Licata A., Montalto G. Genetic association of interleukin-6 polymorphism (-174 G/C) with chronic liver diseases and hepatocellular carcinoma. World Journal of Gastroenterology. 2013;19(16):2449–2455. doi: 10.3748/wjg.v19.i16.2449.
    1. Grotenboer N. S., Ketelaar M. E., Koppelman G. H., Nawijn M. C. Decoding asthma: translating genetic variation in IL33 and IL1RL1 into disease pathophysiology. Journal of Allergy and Clinical Immunology. 2013;131(3):856–865. doi: 10.1016/j.jaci.2012.11.028.
    1. Akhabir L., Sandford A. Genetics of interleukin 1 receptor-like 1 in immune and inflammatory diseases. Current Genomics. 2010;11(8):591–606. doi: 10.2174/138920210793360907.
    1. Takiuchi S., Mannami T., Miyata T., et al. Identification of 21 single nucleotide polymorphisms in human hepatocyte growth factor gene and association with blood pressure and carotid atherosclerosis in the Japanese population. Atherosclerosis. 2004;173(2):301–307. doi: 10.1016/j.atherosclerosis.2003.12.020.
    1. Koutras A., Kotoula V., Fountzilas G. Prognostic and predictive role of vascular endothelial growth factor polymorphisms in breast cancer. Pharmacogenomics. 2015;16(1):79–94. doi: 10.2217/pgs.14.148.
    1. Ziakas P. D., Karsaliakos P., Prodromou M. L., Mylonakis E. Interleukin-6 polymorphisms and hematologic malignancy: a re-appraisal of evidence from genetic association studies. Biomarkers. 2013;18(7):625–631. doi: 10.3109/1354750x.2013.840799.
    1. Joshi N., Kannan S., Kotian N., Bhat S., Kale M., Hake S. Interleukin 6 -174G>C polymorphism and cancer risk: meta-analysis reveals a site dependent differential influence in Ancestral North Indians. Human Immunology. 2014;75(8):901–908. doi: 10.1016/j.humimm.2014.06.018.
    1. Boissinot M., Vilaine M., Hermouet S. The Hepatocyte Growth Factor (HGF)/met axis: a neglected target in the treatment of chronic myeloproliferative neoplasms? Cancers. 2014;6(3):1631–1669. doi: 10.3390/cancers6031631.
    1. Hasselbalch H. C. Chronic inflammation as a promotor of mutagenesis in essential thrombocythemia, polycythemia vera and myelofibrosis. A human inflammation model for cancer development? Leukemia Research. 2013;37(2):214–220. doi: 10.1016/j.leukres.2012.10.020.
    1. Frederiksen H., Farkas D. K., Christiansen C. F., Hasselbalch H. C., Sørensen H. T. Chronic myeloproliferative neoplasms and subsequent cancer risk: a Danish population-based cohort study. Blood. 2011;118(25):6515–6520. doi: 10.1182/blood-2011-04-348755.
    1. Schonberg K., Rudolph J., Vonnahme M., et al. JAK inhibition impairs NK cell function in myeloproliferative neoplasms. Cancer Research. 2015;75(11):2187–2199. doi: 10.1158/0008-5472.can-14-3198.
    1. Tedeschi A., Baratè C., Minola E., Morra E. Cryoglobulinemia. Blood Reviews. 2007;21(4):183–200. doi: 10.1016/j.blre.2006.12.002.
    1. Hermouet S., Corre I., Gassin M., et al. Hepatitis C virus human herpesvirus 8 and the development of plasma cell leukemia. The New England Journal of Medicine. 2003;348(2):178–179.
    1. Bigot-Corbel E., Gassin M., Corre I., Carrer D. L., Delaroche O., Hermouet S. Hepatitis C virus (HCV) infection, monoclonal immunoglobulin specific for HCV core protein, and plasma-cell malignancy. Blood. 2008;112(10):4357–4358. doi: 10.1182/blood-2008-07-167569.
    1. Feron D., Charlier C., Gourain V., et al. Chronic viral infection, virus-specific monoclonal immunoglobulin, and development of plasma cell malignancy. Blood. 2011;118(21):1240–1241. abstract 38923.
    1. Feron D., Charlier C., Gourain V., et al. Multiplexed infectious protein microarray immunoassay suitable for the study of the specificity of monoclonal immunoglobulins. Analytical Biochemistry. 2013;433(2):202–209. doi: 10.1016/j.ab.2012.10.012.
    1. Panfilio S., D'Urso P., Annechini G., et al. Regression of a case of multiple myeloma with antiviral treatment in a patient with chronic HCV infection. Leukemia Research Reports. 2013;2(1):39–40. doi: 10.1016/j.lrr.2013.01.002.
    1. Grisouard J., Shimizu T., Duek A., et al. Deletion of Stat3 in hematopoietic cells enhances thrombocytosis and shortens survival in a JAK2-V617F mouse model of MPN. Blood. 2015;125(13):2131–2140. doi: 10.1182/blood-2014-08-594572.
    1. Jenkins B. J., Roberts A. W., Najdovska M., Grail D., Ernst M. The threshold of gp130-dependent STAT3 signaling is critical for normal regulation of hematopoiesis. Blood. 2005;105(9):3512–3520. doi: 10.1182/blood-2004-09-3751.
    1. Jenkins B. J., Roberts A. W., Greenhill C. J., et al. Pathologic consequences of STAT3 hyperactivation by IL-6 and IL-11 during hematopoiesis and lymphopoiesis. Blood. 2007;109(6):2380–2388. doi: 10.1182/blood-2006-08-040352.
    1. Coppo P., Dusanter-Fourt I., Vainchenker W., Turhan A. G. BCR-ABL induces opposite phenotypes in murine ES cells according to STAT3 activation levels. Cellular Signalling. 2009;21(1):52–60. doi: 10.1016/j.cellsig.2008.09.006.
    1. Fuchs O. Transcription factor NF-κB inhibitors as single therapeutic agents or in combination with classical chemotherapeutic agents for the treatment of hematologic malignancies. Current Molecular Pharmacology. 2010;3(3):98–122. doi: 10.2174/1874467211003030098.
    1. Lu Z., Jin Y., Chen C., Li J., Cao Q., Pan J. Pristimerin induces apoptosis in imatinib-resistant chronic myelogenous leukemia cells harboring T315I mutation by blocking NF-κB signaling and depleting Bcr-Abl. Molecular Cancer. 2010;9, article 112 doi: 10.1186/1476-4598-9-112.
    1. Heavey S., Godwin P., Baird A.-M., et al. Strategic targeting of the PI3K-NFκB axis in cisplatin-resistant NSCLC. Cancer Biology and Therapy. 2014;15(10):1367–1377. doi: 10.4161/cbt.29841.
    1. Monti E., Gariboldi M. B. HIF-1 as a target for cancer chemotherapy, chemo-sensitisation and chemoprevention. Current Molecular Pharmacology. 2011;4(1):62–77.
    1. Xia Y., Choi H.-K., Lee K. Recent advances in hypoxia-inducible factor (HIF)-1 inhibitors. European Journal of Medicinal Chemistry. 2012;49:24–40. doi: 10.1016/j.ejmech.2012.01.033.
    1. Masoud G. N., Wang J., Chen J., Miller D., Li W. Design, synthesis and biological evaluation of novel HIF1α Inhibitors. Anticancer Research. 2015;35(7):3849–3859.
    1. Barosi G., Gattoni E., Guglielmelli P., et al. Phase I/II study of single-agent bortezomib for the treatment of patients with myelofibrosis. Clinical and biological effects of proteasome inhibition. American Journal of Hematology. 2010;85(8):616–619. doi: 10.1002/ajh.21754.
    1. Aman M. J., Bug G., Aulitzky W. E., Huber C., Peschel C. Inhibition of interleukin-11 by interferon-α in human bone marrow stromal cells. Experimental Hematology. 1996;24(8):863–867.
    1. Radaeva S., Jaruga B., Hong F., et al. Interferon-α activates multiple STAT signals and down-regulates c-Met in primary human hepatocytes. Gastroenterology. 2002;122(4):1020–1034. doi: 10.1053/gast.2002.32388.
    1. Kennedy G. A., Varelias A., Vuckovic S., et al. Addition of interleukin-6 inhibition with tocilizumab to standard graft-versus-host disease prophylaxis after allogeneic stem-cell transplantation: a phase 1/2 trial. The Lancet Oncology. 2014;15(13):1451–1459. doi: 10.1016/s1470-2045(14)71017-4.
    1. Qi X.-S., Guo X.-Z., Han G.-H., Li H.-Y., Chen J. MET inhibitors for treatment of advanced hepatocellular carcinoma: a review. World Journal of Gastroenterology. 2015;21(18):5445–5453. doi: 10.3748/wjg.v21.i18.5445.
    1. Scott D. L., Ibrahim F., Farewell F., et al. Tumour necrosis factor inhibitors versus combination intensive therapy with conventional disease modifying anti-rheumatic drugs in established rheumatoid arthritis: TACIT non-inferiority randomised controlled trial. British Medical Journal. 2015;350 doi: 10.1136/bmj.h1046.h1046
    1. Bianchi G., Munshi N. C. Pathogenesis beyond the cancer clone(s) in multiple myeloma. Blood. 2015;125(20):3049–3058. doi: 10.1182/blood-2014-11-568881.
    1. Manzo V. E., Bhatt A. S. The human microbiome in hematopoiesis and hematologic disorders. Blood. 2015;126(3):311–318. doi: 10.1182/blood-2015-04-574392.
    1. Xu G. J., Kula T., Xu Q., et al. Viral immunology. Comprehensive serological profiling of human populations using a synthetic human virome. Science. 2015;348(6239)aaa0698
    1. Esplin B. L., Shimazu T., Welner R. S., et al. Chronic exposure to a TLR ligand injures hematopoietic stem cells. Journal of Immunology. 2011;186(9):5367–5375. doi: 10.4049/jimmunol.1003438.

Source: PubMed

3
Iratkozz fel