Adiponectin in Cerebrospinal Fluid from Patients Affected by Multiple Sclerosis Is Correlated with the Progression and Severity of Disease

Elisabetta Signoriello, Marta Mallardo, Ersilia Nigro, Rita Polito, Sara Casertano, Andrea Di Pietro, Marcella Coletta, Maria Ludovica Monaco, Fabiana Rossi, Giacomo Lus, Aurora Daniele, Elisabetta Signoriello, Marta Mallardo, Ersilia Nigro, Rita Polito, Sara Casertano, Andrea Di Pietro, Marcella Coletta, Maria Ludovica Monaco, Fabiana Rossi, Giacomo Lus, Aurora Daniele

Abstract

Adiponectin exerts relevant actions in immunity and is modulated in several disorders, such as multiple sclerosis (MS). In this study, we characterized adiponectin expression and profiles in cerebrospinal fluid (CSF) from MS patients to investigate its potential relationship with the severity and progression of the disease. Total adiponectin in CSF was measured by ELISA in 66 unrelated CSF MS patients and compared with 24 age- and sex-matched controls. Adiponectin oligomer profiles were analysed by Western blotting and FPLC chromatography. Total CSF adiponectin was significantly increased in MS patients compared with controls (9.91 ng/mL vs 6.02 ng/mL) (p < 0.001). Interestingly, CSF adiponectin positively correlated with CSF IgG, and CSF/serum albumin directly correlated with CSF/serum adiponectin. Our data demonstrated that CSF adiponectin predicts a worse prognosis: patients with the progressive form of MS had higher levels compared with the relapsing remitting form; patients with higher EDSS at baseline and a higher MS severity score at 4.5-year follow-up had significantly elevated adiponectin levels with respect to patients with a less severe phenotype. Finally, the adiponectin oligomerization profile was altered in CSF from MS patients, with a significant increase in HMW and MMW. The correlation of CSF adiponectin with the severity and prognosis of MS disease confirmed the role of this adipokine in the inflammatory/immune processes of MS and suggested its use as a complementary tool to assess the severity, progression and prognosis of the disease. Further studies on larger MS cohorts are needed to clarify the contribution of adiponectin to the etiopathogenesis of MS.

Keywords: Adiponectin; Cerebrospinal fluid; HMW oligomers; Inflammation; Multiple sclerosis.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
ELISA showed that total CSF adiponectin levels were significantly higher in MS patients than in controls (9.91 ± 7.53 vs 6.02 ± 2.74, p value = 0.009)
Fig. 2
Fig. 2
CSF adiponectin directly correlates with CSF IgG
Fig. 3
Fig. 3
Adiponectin high molecular weight (HMW) and medium molecular weight (MMW) oligomers are significantly higher in patients with multiple sclerosis (MS) than in controls. a Representative Western blot for total adiponectin and its different oligomers [HMW, MMW, low molecular weight (LMW)] in the serum of five controls and five patients with MS. b Pixel quantization of all controls and all patients with MS. Values are reported as percentages compared with the control. *P < 0.05
Fig. 4
Fig. 4
Adiponectin oligomers are increased in CSF from MS patients compared with normal controls. Adiponectin oligomers in each fraction obtained from fast protein liquid chromatography analysis and subjected to ELISA (a) and Western blotting (b)

References

    1. Monaco S, Nicholas R, Reynolds R, Magliozzi R (2020) Intrathecal inflammation in progressive multiple sclerosis. Int J Mol Sci 21(21)
    1. Tafti, D., Ehsan, M., and Xixis, K.L. (2020) Multiple sclerosis., Treasure Island (FL).
    1. Fame RM, Lehtinen MK. Emergence and developmental roles of the cerebrospinal fluid system. Dev Cell. 2020;52(3):261–275. doi: 10.1016/j.devcel.2020.01.027.
    1. Goldsmith JF, Herskovits AZ. Cerebrospinal fluid testing for multiple sclerosis. Clin Lab Med. 2020;40(3):369–377. doi: 10.1016/j.cll.2020.06.002.
    1. Lo Sasso B, Agnello L, Bivona G, Bellia C, Ciaccio M. Cerebrospinal fluid analysis in multiple sclerosis diagnosis: an update. Medicina (Kaunas) 2019;55(6):245. doi: 10.3390/medicina55060245.
    1. Huang J, Khademi M, Fugger L, Lindhe Ö, Novakova L, Axelsson M, Malmeström C, Constantinescu C, Lycke J, Piehl F, Olsson T, Kockum I. Inflammation-related plasma and CSF biomarkers for multiple sclerosis. Proc Natl Acad Sci U S A. 2020;117(23):12952–12960. doi: 10.1073/pnas.1912839117.
    1. Pinhas-Hamiel O, Livne M, Harari G, Achiron A. Prevalence of overweight, obesity and metabolic syndrome components in multiple sclerosis patients with significant disability. Eur J Neurol. 2015;22(9):1275–1279. doi: 10.1111/ene.12738.
    1. Francisco V, Pino J, Gonzalez-Gay MA, Mera A, Lago F, Gómez R, Mobasheri A, Gualillo O. Adipokines and inflammation: Is it a question of weight? Br J Pharmacol. 2018;175(10):1569–1579. doi: 10.1111/bph.14181.
    1. Di Zazzo E, Polito R, Bartollino S, Nigro E, Porcile C, Bianco A, Daniele A, Moncharmont B (2019) Adiponectin as link factor between adipose tissue and cancer. Int J Mol Sci 20(4)
    1. Leszek J, Barreto GE, Gąsiorowski K, Koutsouraki E, Ávila-Rodrigues M, Aliev G. Inflammatory mechanisms and oxidative stress as key factors responsible for progression of neurodegeneration: role of brain innate immune system. CNS Neurol Disord Drug Targets. 2016;15(3):329–336. doi: 10.2174/1871527315666160202125914.
    1. Feijóo-Bandín S, Aragón-Herrera A, Moraña-Fernández S, Anido-Varela L, Tarazón E, Roselló-Lletí E, Portolés M, Moscoso I et al (2020) Adipokines and inflammation: focus on cardiovascular diseases. Int J Mol Sci 21(20)
    1. Polito R, Nigro E, Messina A, Monaco ML, Monda V, Scudiero O, Cibelli G, Valenzano A, Picciocchi E, Zammit C, Pisanelli D, Monda M, Cincione IR, Daniele A, Messina G. Adiponectin and Orexin-A as a potential immunity link between adipose tissue and central nervous system. Front Physiol. 2018;9:982. doi: 10.3389/fphys.2018.00982.
    1. Bianco A, Mazzarella G, Turchiarelli V, Nigro E, Corbi G, Scudiero O, Sofia M, Daniele A. Adiponectin: an attractive marker for metabolic disorders in chronic obstructive pulmonary disease (COPD) Nutrients. 2013;5(10):4115–4125. doi: 10.3390/nu5104115.
    1. Nigro E, Scudiero O, Monaco ML, Palmieri A, Mazzarella G, Costagliola C, Bianco A, Daniele A. New insight into adiponectin role in obesity and obesity-related diseases. Biomed Res Int. 2014;2014:658913. doi: 10.1155/2014/658913.
    1. Kadowaki T, Yamauchi T. Adiponectin and adiponectin receptors. Endocr Rev. 2005;26(3):439–451. doi: 10.1210/er.2005-0005.
    1. Hattori Y, Nakano Y, Hattori S, Tomizawa A, Inukai K, Kasai K. High molecular weight adiponectin activates AMPK and suppresses cytokine-induced NF-kappaB activation in vascular endothelial cells. FEBS Lett. 2008;582(12):1719–1724. doi: 10.1016/j.febslet.2008.04.037.
    1. Corbi G, Polito R, Monaco ML, Cacciatore F, Scioli M, Ferrara N, Daniele A, Nigro E (2019) Adiponectin expression and genotypes in Italian people with severe obesity undergone a hypocaloric diet and physical exercise program. Nutrients 11(9)
    1. Signoriello E, Lus G, Polito R, Casertano S, Scudiero O, Coletta M, Monaco ML, Rossi F, Nigro E, Daniele A. Adiponectin profile at baseline is correlated to progression and severity of multiple sclerosis. Eur J Neurol. 2019;26(2):348–355. doi: 10.1111/ene.13822.
    1. Choi HM, Doss HM, Kim KS. Multifaceted physiological roles of adiponectin in inflammation and diseases. Int. J. Mol. Sci. 2020;21(4):1219. doi: 10.3390/ijms21041219.
    1. Schön M, Kovaničová Z, Košutzká Z, Nemec M, Tomková M, Jacková L, Máderová D, Slobodová L, Valkovič P, Ukropec J, Ukropcová B. Effects of running on adiponectin, insulin and cytokines in cerebrospinal fluid in healthy young individuals. Sci Rep. 2019;9(1):1959. doi: 10.1038/s41598-018-38201-2.
    1. Letra L, Matafome P, Rodrigues T, Duro D, Lemos R, Baldeiras I, Patrício M, Castelo-Branco M, Caetano G, Seiça R, Santana I. Association between adipokines and biomarkers of Alzheimer’s disease: a cross-sectional study. J Alzheimers Dis. 2019;67(2):725–735. doi: 10.3233/JAD-180669.
    1. Cisternas P, Martinez M, Ahima RS, William Wong G, Inestrosa NC. Modulation of glucose metabolism in hippocampal neurons by adiponectin and resistin. Mol Neurobiol. 2019;56(4):3024–3037. doi: 10.1007/s12035-018-1271-x.
    1. Nicolas, S., Chabry, J., Guyon, A., Zarif, H., Heurteaux, C., and Petit-Paitel, A. (2018) [Adiponectin: an endogenous molecule with anti-inflammatory and antidepressant properties?]. Med. Sci. (Paris)., 34 (5), 417–423.
    1. Bossolasco P, Cancello R, Doretti A, Morelli C, Silani V, Cova L. Adiponectin levels in the serum and cerebrospinal fluid of amyotrophic lateral sclerosis patients: possible influence on neuroinflammation? J. Neuroinflammation. 2017;14(1):85. doi: 10.1186/s12974-017-0861-2.
    1. Thompson AJ, Banwell BL, Barkhof F, Carroll WM, Coetzee T, Comi G, Correale J, Fazekas F, Filippi M, Freedman MS, Fujihara K, Galetta SL, Hartung HP, Kappos L, Lublin FD, Marrie RA, Miller AE, Miller DH, Montalban X, Mowry EM, Sorensen PS, Tintoré M, Traboulsee AL, Trojano M, Uitdehaag BMJ, Vukusic S, Waubant E, Weinshenker BG, Reingold SC, Cohen JA. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018;17(2):162–173. doi: 10.1016/S1474-4422(17)30470-2.
    1. Inojosa H, Schriefer D, Ziemssen T. Clinical outcome measures in multiple sclerosis: a review. Autoimmun Rev. 2020;19(5):102512. doi: 10.1016/j.autrev.2020.102512.
    1. Roxburgh RHSR, Seaman SR, Masterman T, Hensiek AE, Sawcer SJ, Vukusic S, Achiti I, Confavreux C, Coustans M, le Page E, Edan G, McDonnell GV, Hawkins S, Trojano M, Liguori M, Cocco E, Marrosu MG, Tesser F, Leone MA, Weber A, Zipp F, Miterski B, Epplen JT, Oturai A, Sørensen PS, Celius EG, Lara NT, Montalban X, Villoslada P, Silva AM, Marta M, Leite I, Dubois B, Rubio J, Butzkueven H, Kilpatrick T, Mycko MP, Selmaj KW, Rio ME, Sá M, Salemi G, Savettieri G, Hillert J, Compston DAS. Multiple sclerosis severity score: using disability and disease duration to rate disease severity. Neurology. 2005;64(7):1144–1151. doi: 10.1212/01.WNL.0000156155.19270.F8.
    1. Nigro E, Stiuso P, Matera MG, Monaco ML, Caraglia M, Maniscalco M, Perrotta F, Mazzarella G, Daniele A, Bianco A. The anti-proliferative effects of adiponectin on human lung adenocarcinoma A549cells and oxidative stress involvement. Pulm Pharmacol Ther. 2019;55:25–30. doi: 10.1016/j.pupt.2019.01.004.
    1. Giovannoni G. Cerebrospinal fluid analysis. Handb Clin Neurol. 2014;122:681–702. doi: 10.1016/B978-0-444-52001-2.00029-7.
    1. Kunkl M, Frascolla S, Amormino C, Volpe E, Tuosto L (2020) T helper cells: the modulators of inflammation in multiple sclerosis. Cells 9(2)
    1. Bharath LP, Ip BC, Nikolajczyk BS. Adaptive immunity and metabolic health: harmony becomes dissonant in obesity and aging. Compr Physiol. 2017;7(4):1307–1337. doi: 10.1002/cphy.c160042.
    1. Luo Y, Liu M. Adiponectin: a versatile player of innate immunity. J Mol Cell Biol. 2016;8(2):120–128. doi: 10.1093/jmcb/mjw012.
    1. Neumeier M, Weigert J, Buettner R, Wanninger J, Schäffler A, Müller AM, Killian S, Sauerbruch S, Schlachetzki F, Steinbrecher A, Aslanidis C, Schölmerich J, Buechler C. Detection of adiponectin in cerebrospinal fluid in humans. Am J Physiol Endocrinol Metab. 2007;293(4):E965–E969. doi: 10.1152/ajpendo.00119.2007.
    1. Ng RC-L, Chan K-H. Potential neuroprotective effects of adiponectin in Alzheimer’s disease. Int J Mol Sci. 2017;18(3):592. doi: 10.3390/ijms18030592.
    1. Chen R, Shu Y, Zeng Y. Links between adiponectin and dementia: from risk factors to pathophysiology. Front Aging Neurosci. 2019;11:356. doi: 10.3389/fnagi.2019.00356.
    1. Hietaharju A, Kuusisto H, Nieminen R, Vuolteenaho K, Elovaara I, Moilanen E. Elevated cerebrospinal fluid adiponectin and adipsin levels in patients with multiple sclerosis: a Finnish co-twin study. Eur J Neurol. 2010;17(2):332–334. doi: 10.1111/j.1468-1331.2009.02701.x.
    1. Vecchio D, Bellomo G, Serino R, Virgilio E, Lamonaca M, Dianzani U, Cantello R, Comi C, Crespi I. Intrathecal kappa free light chains as markers for multiple sclerosis. Sci Rep. 2020;10(1):20329. doi: 10.1038/s41598-020-77029-7.
    1. Vecchio D, Crespi I, Virgilio E, Naldi P, Campisi MP, Serino R, Dianzani U, Bellomo G, Cantello R, Comi C. Kappa free light chains could predict early disease course in multiple sclerosis. Mult Scler Relat Disord. 2019;30:81–84. doi: 10.1016/j.msard.2019.02.001.
    1. Otvos LJ. Potential adiponectin receptor response modifier therapeutics. Front Endocrinol (Lausanne) 2019;10:539. doi: 10.3389/fendo.2019.00539.
    1. Piccio L, Cantoni C, Henderson JG, Hawiger D, Ramsbottom M, Mikesell R, Ryu J, Hsieh C-S, Cremasco V, Haynes W, Dong LQ, Chan L, Galimberti D, Cross AH. Lack of adiponectin leads to increased lymphocyte activation and increased disease severity in a mouse model of multiple sclerosis. Eur J Immunol. 2013;43(8):2089–2100. doi: 10.1002/eji.201242836.
    1. Lee TH-Y, Cheng KK-Y, Hoo RL-C, Siu PM-F, Yau S-Y (2019) The novel perspectives of adipokines on brain health. Int J Mol Sci 20(22)
    1. Zhang K, Guo Y, Ge Z, Zhang Z, Da Y, Li W, Zhang Z, Xue Z, Li Y, Ren Y, Jia L, Chan K-H, Yang F, Yan J, Yao Z, Xu A, Zhang R. Adiponectin suppresses T helper 17 cell differentiation and limits autoimmune CNS inflammation via the SIRT1/PPARγ/RORγt pathway. Mol Neurobiol. 2017;54(7):4908–4920. doi: 10.1007/s12035-016-0036-7.

Source: PubMed

3
Iratkozz fel