The Effect of Green Tea Ingestion and Interval Sprinting Exercise on the Body Composition of Overweight Males: A Randomized Trial

Daniel Gahreman, Mehrdad Heydari, Yati Boutcher, Judith Freund, Stephen Boutcher, Daniel Gahreman, Mehrdad Heydari, Yati Boutcher, Judith Freund, Stephen Boutcher

Abstract

The combined effect of green tea ingestion and interval sprinting exercise on body and abdominal fat of overweight males was investigated. Participants were randomly assigned into control (C), green tea (GT), interval sprinting exercise (ISE), and green tea and ISE (GT + ISE) groups. The GT, GT + ISE, and C groups consumed three GT capsules daily. The ISE and GT + ISE groups completed 36 ISE sessions over 12 weeks. Forty eight overweight males with a mean BMI of 28.5 ± 0.92 kg/m² and age of 26 ± 0.7 years acted as participants. There was a significant reduction in total and abdominal fat mass for the ISE and GT + ISE groups, p < 0.05, however, total and abdominal fat mass did not significantly change in the GT and C groups. There was a significant increase in total lean mass, p < 0.05, after the intervention for the ISE and GT + ISE groups only. There was a significant increase in fat oxidation during submaximal aerobic exercise, p < 0.05, after the intervention for the ISE, GT + ISE, and GT groups with no change for the C group. Following the 12-week intervention the ISE and GT + ISE groups, compared to C, recorded a significantly greater decrease in body and abdominal fat, and a significant increase in total lean mass. Ingestion of green tea by itself, however, did not result in a significant decrease in body or abdominal fat, but increased fat utilization during submaximal exercise. The combination of 12 weeks of GT ingestion and ISE did not result in greater total and abdominal fat reduction compared to 12 weeks of ISE alone.

Keywords: abdominal fat; green tea; overweight males; sprinting.

Figures

Figure 1
Figure 1
Change in total body fat mass after the 12-week intervention for the control (C), interval sprinting exercise (ISE), green tea (GT), and green tea and interval sprinting exercise (GT + ISE) groups. * Significantly different from the control group, p < 0.05.
Figure 2
Figure 2
Change in abdominal fat mass after the 12-week intervention for the control (C), interval sprinting exercise (ISE), green tea (GT), and green tea and interval sprinting exercise (GT + ISE) groups. * Significantly different from the control group, p < 0.05.

References

    1. Jakicic J.M., Clark K., Coleman E., Donnelly J.E., Foreyt J., Melanson E., Volek J., Volpe S.L., American College of Sports Medicine Appropriate intervention strategies for weight loss and prevention of weight regain for adults. Med. Sci. Sports. Exerc. 2001;33:2145–2156. doi: 10.1097/00005768-200112000-00026.
    1. Clarke J.E. Diet, exercise or diet with exercise: Comparing the effectiveness of treatment options for weight-loss and changes in fitness for adults (18–65 years old) who are overfat, or obese; systematic review and meta-analysis. J. Diabetes Metab. Dis. 2015 doi: 10.1186/s40200-015-0204-8.
    1. Mann T., Tomiyama A.J., Westling E., Lew A.M., Samuels B., Chapman J. Medicare’s search for effective obesity treatments: Diets are not the answer. Am. Psychol. 2007;62:220–233. doi: 10.1037/0003-066X.62.3.220.
    1. Saris W.H. The role of exercise in the dietary treatment of obesity. Int. J. Obes. 1993;17:S17–S21.
    1. Hursel R., Viechtbauer W., Westerterp-Plantenga M.S. The effects of green tea on weight loss and weight maintenance: A meta-analysis. Int. J. Obes. (Lond.) 2009;33:956–961. doi: 10.1038/ijo.2009.135.
    1. Boutcher S.H. High-intensity intermittent exercise and fat loss. J. Obes. 2011 doi: 10.1155/2011/868305.
    1. Zhanga Y.Y., Lia X., Megurod S., Hayashie S., Katashimae M., Yasumasue T., Wang J., Li K. Effects of catechin-enriched green tea beverage on visceral fat loss in adults with a high proportion of visceral fat: A double-blind, placebo-controlled, randomized trial. J. Funct. Food. 2013;4:315–322. doi: 10.1016/j.jff.2011.12.010.
    1. Nagao T., Komine Y., Soga S., Meguro S., Hase T., Tanaka Y., Tokimitsu I. Ingestion of a tea rich in catechins leads to a reduction in body fat and malondialdehyde-modified LDL in men. Am. J. Clin. Nutr. 2005;81:122–129.
    1. Wu C.H., Lu F.H., Chang C.S., Chang T.C., Wang R.H., Chang C.J. Relationship among habitual tea consumption, percent body fat, and body fat distribution. Obes. Res. 2003;11:1088–1095. doi: 10.1038/oby.2003.149.
    1. Hsu C.H., Tsai T.H., Kao Y.H., Hwang K.C., Tseng T.Y., Chou P. Effect of green tea extract on obese women: A randomized, double-blind, placebo-controlled clinical trial. Clin. Nutr. 2008;27:363–370. doi: 10.1016/j.clnu.2008.03.007.
    1. Chan C.C., Koo M.W.L., Ng E.H.Y., Tang O., Yeung W.S.B., Ho P. Effects of Chinese green tea on weight, and hormonal and biochemical profiles in obese patients with polycystic ovary syndrome—A randomized placebo-controlled trial. J. Soc. Gynecol. Investig. 2006;13:63–68. doi: 10.1016/j.jsgi.2005.10.006.
    1. Janssens P.L., Hursel R., Westerterp-Plantenga M.S. Long-term green tea extract supplementation does not affect fat absorption, resting energy expenditure, and body composition in adults. J. Nutr. 2015;145:864–870. doi: 10.3945/jn.114.207829.
    1. Bérubé-Parent S., Pelletier C., Doré J., Tremblay A. Effects of encapsulated green tea and Guarana extracts containing a mixture of epigallocatechin-3-gallate and caffeine on 24 h energy expenditure and fat oxidation in men. Br. J. Nutr. 2005;94:432–436. doi: 10.1079/BJN20051502.
    1. Dulloo A.G., Duret C., Rohrer D., Girardier L., Mensi N., Fathi M., Chantre P., Vandermander J. Efficacy of a green tea extract rich in catechin polyphenols and caffeine in increasing 24-h energy expenditure and fat oxidation in humans. Am. J. Clin. Nutr. 1999;70:1040–1045.
    1. Tjønna A.E., Lee S.J., Rognmo Ø., Stølen T.O., Bye A., Haram P.M., Loennechen J.P., Al-Share Q.Y., Skogvoll E., Slørdahl S.A. Aerobic interval training versus continuous moderate exercise as a treatment for the metabolic syndrome: A pilot study. Circulation. 2008;118:346–354. doi: 10.1161/CIRCULATIONAHA.108.772822.
    1. Bartlett J.D., Close G.L., MacLaren D.P., Gregson W., Drust B., Morton J.P. High-intensity interval running is perceived to be more enjoyable than moderate-intensity continuous exercise: Implications for exercise adherence. J. Sports Sci. 2011;29:547–453. doi: 10.1080/02640414.2010.545427.
    1. Trapp E.G., Chisholm D.J., Boutcher S.H. Metabolic response of trained and untrained women during high-intensity intermittent cycle exercise. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2007;293:R2370–R2375. doi: 10.1152/ajpregu.00780.2006.
    1. Heydari M., Freund J., Boutcher S.H. The effect of high-intensity intermittent exercise on body composition of overweight young males. J. Obes. 2012 doi: 10.1155/2012/480467.
    1. Dunn S.L., Siu W., Freund J., Boutcher S.H. The effect of a lifestyle intervention on metabolic health in young women. Diabetes Metab. Syn. Obes. 2014;7:437–444. doi: 10.2147/DMSO.S67845.
    1. Gahreman D., Wang R., Boutcher Y.N., Boutcher S.H. Green tea, intermittent sprinting exercise, and fat oxidation. Nutrients. 2015;7:5646–5663. doi: 10.3390/nu7075245.
    1. Gahreman D., Boutcher Y.N., Bustamante S., Boutcher S.H. The combined effect of green tea and acute interval sprinting exercise on fat oxidation of trained and untrained males. J. Exerc. Nutr. Biochem. 2016;20:1–8. doi: 10.20463/jenb.2016.03.20.1.1.
    1. The GT Capsule. [(accessed on 17 August 2016)]. Available online: .
    1. Borg G. Psychological basis of perceived exertion. Med. Sci. Sports. Exerc. 1982;14:377–381. doi: 10.1249/00005768-198205000-00012.
    1. Talanian J.L., Galloway S.D., Heigenhauser G.J., Bonen A., Spriet L.L. Two weeks of high-intensity aerobic interval training increases the capacity for fat oxidation during exercise in women. J. Appl. Physiol. 2007;102:1439–1447. doi: 10.1152/japplphysiol.01098.2006.
    1. Heydari M., Boutcher Y.N., Boutcher S.H. High-intensity intermittent exercise and cardiovascular and autonomic function. Clin. Auton. Res. 2013;23:57–65. doi: 10.1007/s10286-012-0179-1.
    1. Heydari M., Boutcher Y.N., Boutcher S.H. The effects of high-intensity intermittent exercise training on cardiovascular response to mental and physical challenge. Int. J. Psychophysiol. 2013;87:141–146. doi: 10.1016/j.ijpsycho.2012.11.013.
    1. Trilk J.L., Singhak A., Bigelman K.A., Cureton K.J. Effect of sprint interval training on circulatory function during exercise in sedentary, overweight/obese women. Eur. J. Appl. Physiol. 2011;111:1591–1597. doi: 10.1007/s00421-010-1777-z.
    1. Milanovic Z., Sporis G., Weston M. Effectiveness of high-intensity interval training (HIT) and continuous endurance training for VO2max improvements: A systematic review and meta-analysis of controlled trials. Sports Med. 2015;45:1469–1481. doi: 10.1007/s40279-015-0365-0.
    1. Blair S.N. Physical inactivity: The biggest public health problem of the 21st century. Br. J. Sports Med. 2009;43:1–2.
    1. Kuk J.L., Katzmarzyk P.T., Nichman M.Z., Church T.S., Blair S.N., Ross R. Visceral fat is an independent predictor of all-cause mortality in men. Obesity. 2006;14:336–341. doi: 10.1038/oby.2006.43.
    1. Ross R., Dagnone D., Jones P.J., Smith H., Paddags A., Hudson R., Janssen I. Reduction in obesity and related comorbid conditions after diet-induced weight loss or exercise-induced weight loss in men: A randomized, controlled trial. Ann. Int. Med. 2000;133:92–103. doi: 10.7326/0003-4819-133-2-200007180-00008.
    1. Okauchi Y., Nishzawa H., Funahashi T., Ogawa T., Noguchi M., Ryo M., Kihara S., Iwahashi H., Yamagata K., Nakamura T., et al. Reduction of visceral fat is associated with decrease in the number of metabolic risk factors in Japanese men. Diabetes Care. 2007;30:2392–2394. doi: 10.2337/dc07-0218.
    1. Boudou P., Sobngwi E., Mauvais-Jarvis F., Vexiau P., Gautier J.F. Absence of exercise-induced variations in adiponectin levels despite decreased abdominal adiposity and improved insulin sensitivity in type 2 diabetic men. Eur. J. Endocrinol. 2003;149:421–424. doi: 10.1530/eje.0.1490421.
    1. Stiegler P., Cunliffe A. The role of diet and exercise for the maintenance of fat-free mass and resting metabolic rate during weight loss. Sports Med. 2006;36:239–262. doi: 10.2165/00007256-200636030-00005.
    1. Shimotoyodome A., Haramizu S., Inaba M., Murase T., Tokimitsu I. Exercise and green tea extract stimulate fat oxidation and prevent obesity in mice. Med. Sci. Sports Exerc. 2005;37:1884–1892. doi: 10.1249/01.mss.0000178062.66981.a8.
    1. Wolfram S., Raederstorff D., Wang Y., Teixeira S.R., Elste V., Weber P. TEAVIGO (epigallocatechin gallate) supplementation prevents obesity in rodents by reducing adipose tissue mass. Ann. Nutr. Metab. 2005;49:54–63. doi: 10.1159/000084178.
    1. Ichinose T., Nomura S., Someya Y., Akimoto S., Tachiyashiki K., Imaizumi K. Effect of endurance training supplemented with green tea extract on substrate metabolism during exercise in humans. Scand. J. Med. Sci. Sports. 2011;21:598–605. doi: 10.1111/j.1600-0838.2009.01077.x.
    1. Roberts J.D., Roberts M.G., Tarpey M.D., Weekes J.C., Thomas C.H. The effect of a decaffeinated green tea extract formula on fat oxidation, body composition and exercise performance. J. Int. Soc. Sports Nutr. 2015;145:864–870. doi: 10.1186/s12970-014-0062-7.
    1. Murase T., Haramizu S., Shimotodome A., Nagasawa A., Tokimitsu I. Green tea extract improves endurance capacity and increases muscle lipid oxidation in mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2005;288:R708–R715. doi: 10.1152/ajpregu.00693.2004.
    1. Lu H., Meng X., Yang C.S. Enzymology of methylation of tea catechins and inhibition of catechol-O-methyltransferase by (–)-epigallocatechin gallate. Drug Metab. Dispos. 2003;31:572–579. doi: 10.1124/dmd.31.5.572.
    1. Liao S., Kao Y.H., Hiipakka R.A. Green tea: Biochemical and biological basis for health benefits. Vitam. Horm. 2001;62:91–94.

Source: PubMed

3
Iratkozz fel