Exercise Capacity and Physical Activity in Non-Cystic Fibrosis Bronchiectasis after a Pulmonary Rehabilitation Home-Based Programme: A Randomised Controlled Trial

Sindy Cedeño de Jesús, Virginia Almadana Pacheco, Agustín Valido Morales, Ana Miriam Muñíz Rodríguez, Rut Ayerbe García, Aurelio Arnedillo-Muñoz, Sindy Cedeño de Jesús, Virginia Almadana Pacheco, Agustín Valido Morales, Ana Miriam Muñíz Rodríguez, Rut Ayerbe García, Aurelio Arnedillo-Muñoz

Abstract

Background: Patients with chronic respiratory disease have low exercise capacity and limited physical activity (PA), which is associated with worsening dyspnoea, exacerbations, and quality of life. The literature regarding patients with non-cystic fibrosis bronchiectasis (non-CF BQ) is scarce, especially regarding the use of cardiopulmonary exercise tests (CPET) to assess the effects of home-based pulmonary rehabilitation programmes (HPRP). The aim was to evaluate the effect of an HPRP on the exercise capacity of non-CF BQ patients using CPET and PA using an accelerometer.

Methods: Our study describes a non-pharmacological clinical trial in non-CF BQ patients at the Virgen Macarena University Hospital (Seville, Spain). The patients were randomised into two groups: a control group (CG), which received general advice on PA and educational measures, and the intervention group (IG), which received a specific 8-week HPRP with two hospital sessions. The variables included were those collected in the CPET, the accelerometer, and others such as a 6 min walking test (6MWT) and dyspnoea. The data were collected at baseline and at an 8-week follow-up.

Results: After the intervention, there was a significant increase in peak VO2 in the IG, which was not evidenced in the GC (IG 66.8 ± 15.5 mL/min p = 0.001 vs. CG 62.2 ± 14.14 mL/min, p = 0.30). As well, dyspnoea according to the mMRC (modified Medical Research Council), improved significantly in IG (2.19 ± 0.57 to 1.72 ± 0.05, p = 0.047) vs. CG (2.07 ± 0.7 to 2.13 ± 0.64, p = 0.36). In addition, differences between the groups in walked distance (IG 451.19 ± 67.99 m, p = 0.001 vs. CG 433.13 ± 75.88 m, p = 0.981) and in physical activity (IG 6591 ± 3482 steps, p = 0.007 vs. CG 4824 ± 3113 steps, p = 0.943) were found.

Conclusion: Participation in a specific HPRP improves exercise capacity, dyspnoea, walked distance, and PA in non-CF BQ patients.

Keywords: cardiopulmonary exercise test; exercise capacity; non-cystic fibrosis bronchiectasis; physical activity; pulmonary rehabilitation.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Flowchart of patients.
Figure 2
Figure 2
(A) The y-axis represents walked distance difference before and after HPRP, and the x-axis shows the subjects by groups. (B) The y-axis represents VO2/min/kg differences before and after HPRP, and the x-axis shows the subjects by groups.
Figure 2
Figure 2
(A) The y-axis represents walked distance difference before and after HPRP, and the x-axis shows the subjects by groups. (B) The y-axis represents VO2/min/kg differences before and after HPRP, and the x-axis shows the subjects by groups.

References

    1. Martínez-García M.Á., Máiz L., Olveira C., Girón R.M., de la Rosa D., Blanco M., Cantón R., Vendrell M., Polverino E., de Gracia J., et al. Normativa sobre el tratamiento de las bronquiectasias en el adulto. Arch. Bronconeumol. 2018;54:88–98. doi: 10.1016/j.arbres.2017.07.016.
    1. Martínez-García M.A., Soler-Cataluña J.-J., Perpiñá-Tordera M., Román-Sánchez P., Soriano J. Factors associated with lung function decline in adult patients with stable non-cystic fibrosis bronchiectasis. [(accessed on 7 June 2020)];Chest. 2007 132:1565–1572. doi: 10.1378/chest.07-0490. Available online: .
    1. Koulouris N.G.G., Retsou S., Kosmas E., Dimakou K., Malagari K., Mantzikopoulos G., Koutsoukou A., Milic-Emili J., Jordanoglou J. Tidal expiratory flow limitation, dyspnoea and exercise capacity in patients with bilateral bronchiectasis. [(accessed on 18 February 2019)];Eur. Respir. J. 2003 21:743–748. doi: 10.1183/09031936.03.00301103. Available online:
    1. Bar-Yoseph R., Ilivitzki A., Cooper D.M., Gur M., Mainzer G., Hakim F., Livnat G., Schnapp Z., Shalloufeh G., Zucker-Toledano M., et al. Exercise capacity in patients with cystic fibrosis vs. non-cystic fibrosis bronchiectasis. [(accessed on 16 June 2020)];PLoS ONE. 2019 14:e0217491. Available online: .
    1. Patel S., Cole A.D., Nolan C.M., Barker R.E., Jones S.E., Kon S., Cairn J., Loebinger M., Wilson R., Man W.D.-C. Pulmonary rehabilitation in bronchiectasis: A propensity-matched study. [(accessed on 17 June 2019)];Eur. Respir. J. 2019 53:1801264. doi: 10.1183/13993003.01264-2018. Available online: .
    1. Ozalp O., Inal-Ince D., Calik E., Vardar-Yagli N., Saglam M., Savci S., Arikan H., Bosnak-Guclu M., Coplu L. Extrapulmonary features of bronchiectasis: Muscle function, exercise capacity, fatigue, and health status. [(accessed on 19 June 2020)];Multidiscip Respir. Med. 2012 7:3. doi: 10.1186/2049-6958-7-3. Available online: .
    1. Lee A.L., Gordon C.S., Osadnik C.R. Exercise training for bronchiectasis. Cochrane Database Syst. Rev. 2021;4:CD013110. doi: 10.1002/14651858.CD013110.
    1. Lee A.L., Hill C.J., McDonald C.F., Holland A.E. Pulmonary Rehabilitation in Individuals With Non–Cystic Fibrosis Bronchiectasis: A Systematic Review. [(accessed on 19 June 2020)];Arch. Phys. Med. Rehabil. 2017 98:774–782.e1. doi: 10.1016/j.apmr.2016.05.017. Available online: .
    1. Kumar R., Guleria R., Khilnani G.C., Mohan A., Madan K., Hadda V., Pandey R.M. The effects of pulmonary rehabilitation in patients with non-cystic fibrosis bronchiectasis—A randomised controlled trial. [(accessed on 23 January 2022)];Eur. Respir. J. 2017 50((Suppl. 61)):OA307. Available online: .
    1. Corso S.D., José A., Holland A.E., Selman J.P.R., Castro R.A.S., de Camargo C.O., Fonseca D.S., Athanazio R.A., Rached S.Z., Cukier A. Home-based pulmonary rehabilitation in patients with bronchiectasis: A randomized controlled trial. [(accessed on 16 June 2021)];Eur. Respir. J. 2017 50((Suppl. 61)):OA4668. Available online: .
    1. Chalmers J.D., Crichton M.L., Brady G., Finch S., Lonergan M., Fardon T.C. Pulmonary rehabilitation after exacerbation of bronchiectasis: A pilot randomized controlled trial. [(accessed on 10 September 2021)];BMC Pulm. Med. 2019 19:85. doi: 10.1186/s12890-019-0856-0. Available online: .
    1. Lee A.L., Hill C.J., Cecins N., Jenkins S., Mcdonald C.F., Burge A.T., Rautela L., Stirling R.G., Thompson P.J., Holland A.E. The short and long term effects of exercise training in non-cystic fibrosis bronchiectasis—A randomised controlled trial. [(accessed on 14 July 2020)];Respir. Res. 2014 15:44. doi: 10.1186/1465-9921-15-44. Available online: .
    1. Newall C., Stockley R.A., Hill S.L. Exercise training and inspiratory muscle training in patients with bronchiectasis. [(accessed on 5 September 2020)];Thorax. 2005 60:943–948. doi: 10.1136/thx.2004.028928. Available online: .
    1. Pehlivan E., Niksarlıoğlu E.Y., Balcı A., Kılıç L. The effect of pulmonary rehabilitation on the physical activity level and general clinical status of patients with bronchiectasis. Turk. Thorac J. 2019;20:30–35. doi: 10.5152/TurkThoracJ.2018.18093.
    1. José A., Holland A.E., Selman J.P.R.R., De Camargo C.O., Fonseca D.S., Athanazio R.A., Rached S.Z., Cukier A., Stelmach R., Corso S.D. Home-based pulmonary rehabilitation in people with bronchiectasis: A randomised controlled trial. ERJ Open Res. 2021;7:00021-2021. doi: 10.1183/23120541.00021-2021.
    1. Troosters T., Gosselink R., Janssens W., Decramer M. Exercise training and pulmonary rehabilitation: New insights and remaining challenges. Eur. Respir. Rev. 2010;19:24–29. doi: 10.1183/09059180.00007809.
    1. Cakmak A., Inal-Ince D., Sonbahar-Ulu H., Bozdemir-Ozel C., Ozalp O., Calik-Kutukcu E., Saglam M., Vardar-Yagli N., Arikan H., Selcuk Z.T., et al. Physical activity of patients with bronchiectasis compared with healthy counterparts: A cross-sectional study. Hear Lung. 2020;49:99–104. doi: 10.1016/j.hrtlng.2019.09.004.
    1. Bolton C.E., Bevan-Smith E.F., Blakey J.D., Crowe P., Elkin S.L., Garrod R., Greening N.J., Heslop K., Hull J.H., Man W.D.-C., et al. British Thoracic Society guideline on pulmonary rehabilitation in adults. [(accessed on 18 June 2021)];Thorax. 2013 68((Suppl. 2)):ii1–ii30. doi: 10.1136/thoraxjnl-2013-203808. Available online: .
    1. Schulz K.F., Altman D.G., Moher D., Goodman S., Grunberg S. CONSORT 2010 Statement Updated Guidelines for Reporting Parallel Group Randomized Trials Background to CONSORT. [(accessed on 25 January 2021)];Mayo Clin Coll. Med. 2010 115:1097. Available online: .
    1. Hebestreit H., Schmid K., Kieser S., Junge S., Ballmann M., Roth K., Hebestreit A., Schenk T., Schindler C., Posselt H.-G., et al. Quality of life is associated with physical activity and fitness in cystic fibrosis. [(accessed on 31 August 2019)];BMC Pulm. Med. 2014 14:26. doi: 10.1186/1471-2466-14-26. Available online: .
    1. Pritchard A., Burns P., Correia J., Jamieson P., Moxon P., Purvis J., Thomas M., Tighe H., Sylvester K.P. ARTP statement on cardiopulmonary exercise testing 2021. BMJ Open Respir. Res. 2021;8:e001122. doi: 10.1136/bmjresp-2021-001121.
    1. Koch B., Schäper C., Ittermann T., Spielhagen T., Dörr M., Völzke H., Opitz C.F., Ewert R., Gläser D. Reference values for cardiopulmonary exercise testing in healthy volunteers: The SHIP study. [(accessed on 30 June 2022)];Eur. Respir. J. 2009 33:389–397. doi: 10.1183/09031936.00074208. Available online: .
    1. Mueller S., Winzer E.B., Duvinage A., Gevaert A.B., Edelmann F., Haller B., Pieske-Kraigher E., Beckers P., Bobenko A., Hommel J., et al. Effect of High-Intensity Interval Training, Moderate Continuous Training, or Guideline-Based Physical Activity Advice on Peak Oxygen Consumption in Patients With Heart Failure With Preserved Ejection Fraction: A Randomized Clinical Trial. [(accessed on 17 July 2022)];JAMA. 2021 325:542–551. doi: 10.1001/jama.2020.26812. Available online: .
    1. Crapo R.O., Casaburi R., Coates A.L., Enright P.L., MacIntyre N.R., McKay R.T., Johnson D., Wanger J.S., Zeballos R.J., Bittner V., et al. ATS Statement. [(accessed on 14 October 2020)];Am. J. Respir. Crit. Care Med. 2002 166:111–117. Available online: .
    1. Brooks D., Solway S. ATS statement on six-minute walk test. Am. J. Respir. Crit. Care Med. 2003;169:1287. doi: 10.1164/ajrccm.167.9.950.
    1. Lee A.L., Hill C.J., Cecins N., Jenkins S., McDonald C.F., Burge A.T., Rautela L., Stirling R.G., Thompson P.J., Holland A.E. Minimal important difference in field walking tests in non-cystic fibrosis bronchiectasis following exercise training. Respir. Med. 2014;108:1303–1309. doi: 10.1016/j.rmed.2014.07.006.
    1. Pacheco V.A. Cambios en actividad física tras un programa de rehabilitación respiratoria en EPOC. Rev. Esp. Patol. Torac. 2016;28:214–221.
    1. Tudor-Locke C., Craig C.L., Aoyagi Y., Bell R.C., Croteau K.A., De Bourdeaudhuij I., Ewald B., Gardner A.W., Hatano Y., Lutes L.D., et al. How many steps/day are enough? For older adults and special populations. Int. J. Behav. Nutr. Phys. Act. 2011;8:80. doi: 10.1186/1479-5868-8-80.
    1. Martínez-Garcia M., Selma M.J., Navarro C., Martinez-Garcia M.A., Selma M.J., Navarro C. Escalas multidimensionales en bronquiectasias. Med. Respir. 2015;8:31–38.
    1. Kiel C. G*Power 3: A flexible statistical power analysis program for the social. Behav. Biomed. Sci. 2007;39:175–191.
    1. Maturana F.M., Soares R.N., Murias J.M., Schellhorn P., Erz G., Burgstahler C., Widmann M., Munz B., Thiel A., Nieß A.M. Responders and non-responders to aerobic exercise training: Beyond the evaluation of|Enhanced Reader. Physiol. Rep. 2021;9:e14951. doi: 10.14814/phy2.14951.
    1. Thiel A., Sudeck G., Gropper H., Maturana F.M., Schubert T., Srismith D., Widmann M., Behrens S., Martus P., Munz B., et al. The iReAct study—A biopsychosocial analysis of the individual response to physical activity. Contemp. Clin. Trials Commun. 2020;17:100508. doi: 10.1016/j.conctc.2019.100508.
    1. Bouchard C., Rankinen T. Individual differences in response to regular physical activity. Med. Sci. Sports Exerc. 2001;33((Suppl. 6)):446–451. doi: 10.1097/00005768-200106001-00013.
    1. Fiuza-Luces C., Santos-Lozano A., Joyner M., Carrera-Bastos P., Picazo O., Zugaza J.L., Izquierdo M., Ruilope L.M., Lucia A. Exercise benefits in cardiovascular disease: Beyond attenuation of traditional risk factors. [(accessed on 15 June 2022)];Nat. Rev. Cardiol. 2018 15:731–743. doi: 10.1038/s41569-018-0065-1. Available online: .
    1. Swaminathan S., Kuppurao K.V., Somu N., Vijayan V.K. Reduced Exercise Capacity in Non-Cystic Fibrosis Bronchiectasis. [(accessed on 21 March 2022)];Indian J. Pediatrics. 2003 70:553–556. doi: 10.1007/BF02723157. Available online: .
    1. Pastré J., Prévotat A., Tardif C., Langlois C., Duhamel A., Wallaert B. Determinants of exercise capacity in cystic fibrosis patients with mild-to-moderate lung disease. [(accessed on 27 July 2021)];BMC Pulm. Med. 2014 14:74. doi: 10.1186/1471-2466-14-74. Available online: .
    1. de Camargo A.A., Boldorini J.C., Holland A.E., de Castro R.A.S., Lanza F.d.C., Athanazio R.A., Rached S.Z., Carvalho-Pinto R., Cukier A., Stelmach R., et al. Determinants of peripheral muscle strength and activity in daily life in people with bronchiectasis. Phys. Ther. 2018;98:153–161. doi: 10.1093/ptj/pzx123.
    1. Yang F., Gao L., Wang Q., Deng W., Gao W. Effect of exercise-based pulmonary rehabilitation in patients with bronchiectasis: A meta-analysis. Respir. Med. Res. 2022;81:100910. doi: 10.1016/j.resmer.2022.100910.
    1. Singh S.J., Puhan M.A., Andrianopoulos V., Hernandes N.A., Mitchell K.E., Hill C.J., Lee A.L., Camillo C.A., Troosters T., Spruit M.A., et al. An official systematic review of the European Respiratory Society/American Thoracic Society: Measurement properties of field walking tests in chronic respiratory disease. [(accessed on 23 May 2018)];Eur. Respir. J. 2014 44:1447–1478. doi: 10.1183/09031936.00150414. Available online: .
    1. Lee Annemarie L., Cecins Nola E., Holland Anne J., Hill Catherine F., Mcdonald Christine T., Burge Angela J., Rautela L., Thompson P.J., Stirling R.G., Jenkins S. Field Walking Tests Are Reliable and Responsive to Exercise Training in People With Non–Cystic Fibrosis Bronchiectasis. [(accessed on 5 March 2022)];J. Cardiopulm. Rehabil. Prev. 2015 35:439–445. Available online: .
    1. Gugg K., Zwick R.H. Non-responders to outpatient pulmonary rehabilitation: A retrospective, controlled cohort study. [(accessed on 7 July 2022)];Eur. Respir. J. 2020 56((Suppl. 64)):715. Available online: .
    1. José A., Ramos T.M., de Castro R.A.S., de Oliveira C.S., de Camargo A.A., Athanazio R.A., Rached S.Z., Stelmac R., Corso S.D. Reduced Physical Activity With Bronchiectasis. [(accessed on 17 July 2021)];Respir. Care. 2018 63:1498–1505. doi: 10.4187/respcare.05771. Available online: .
    1. Bradley J., O’Neill B., Kent L., Hulzebos E.H.J., Arets B., Hebestreit H., on behalf of the Exercise Working Group European CF Society, for publication in Journal of CF Physical activity assessment in cystic fibrosis: A position statement. J. Cyst. Fibros. 2015;14:e25–e32. doi: 10.1016/j.jcf.2015.05.011.
    1. Spruit M.A., Singh S.J., Garvey C., Zu Wallack R., Nici L., Rochester C., Hill K., Holland A.E., Lareau S.C., Man W.D.-C., et al. An official American thoracic society/European respiratory society statement: Key concepts and advances in pulmonary rehabilitation. Am. J. Respir. Crit. Care Med. 2013;188:e13–e64. doi: 10.1164/rccm.201309-1634ST.

Source: PubMed

3
Iratkozz fel