Crystalloid and Colloid Compositions and Their Impact

Elke Rudloff, Kate Hopper, Elke Rudloff, Kate Hopper

Abstract

This manuscript will review crystalloid (hypo-, iso-, and hyper-tonic) and colloid (synthetic and natural) fluids that are available for intravenous administration with a focus on their electrolyte, acid-base, colligative, and rheological effects as they relate to each solution's efficacy and safety. The goal is for the reader to better understand the differences between each fluid and the influence on plasma composition, key organ systems, and their implications when used therapeutically in animals with critical illness.

Keywords: COP; SID; colloid; crystalloid; fluid therapy; osmolarity; plasma; strong ion difference.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Rudloff and Hopper.

References

    1. Levick JR, Michel CC. Microvascular fluid exchange and the revised Starling principle. Cardiovasc Res. (2010) 87:198–210. 10.1093/cvr/cvq062
    1. Gaudette S, Hughes D, Boller M. The endothelial glycocalyx: structure and function in health and critical illness. J Vet Emerg Crit Care (San Antonio). (2020) 30:117–34. 10.1111/vec.12925
    1. Hahn RG. Understanding volume kinetics. Acta Anaesthesiol Scand. (2020) 64:570–8. 10.1111/aas.13533
    1. Hoorn EJ. Intravenous fluids: balancing solutions. J Nephrol. (2017) 30:485–92. 10.1007/s40620-016-0363-9
    1. Muir W. Effect of intravenously administered crystalloid solutions on acid-base balance in domestic animals. J Vet Intern Med. (2017) 31:1371–81. 10.1111/jvim.14803
    1. Guyton AC. The body fluid compartments: extracellular and intracellular fluids; interstitial fluid and edema. In: Guyton AC, editor. Textbook of Medical Physiology. 8th ed. Philadelphia, PA: WB Saunders; (1991). p. 274–85.
    1. Kilic O, Gultekin Y, Yazici S. The impact of intravenous fluid therapy on acid-base status of critically ill adults: a stewart approach-based perspective. Int J Nephrol Renovasc Dis. (2020) 13:219–30. 10.2147/IJNRD.S266864
    1. Hahn RG, Lyons G. The half-life of infusion fluids. Eur J Anesthesiol. (2016) 33:475–82. 10.1097/EJA.0000000000000436
    1. Hahn RG. Why crystalloids will do the job in the operating room. Anaesthesiol Intensive Ther. (2014) 46:342–9. 10.5603/AIT.2014.0058
    1. Pfortmueller CA, Schefold JC. Hypertonic saline in critical illness—a systematic review. J Crit Care. (2017) 42:168–77. 10.1016/j.jcrc.2017.06.019
    1. Rizoli SB, Kapus A, Parodo J, Rotstein OD. Hypertonicity prevents lipopolysaccharide-stimulated CD11b/CD18 expression in human neutrophils in vitro: role for p38 inhibition. J Trauma. (1999) 46:794–8. 10.1097/00005373-199905000-00006
    1. Poli-de-Figueiredo LF, Cruz RJ, Jr., Sannomiya P, Rocha-E-Silva. Mechanisms of action of hypertonic saline resuscitation in severe sepsis and septic shock. Endocr Metab Immune Disord Drug Targets. (2006) 6:201–6. 10.2174/187153006777442305
    1. Theobaldo MC, Barbeiro HV, Barbeiro DF, Petroni R, Soriano FG. Hypertonic saline solution reduces the inflammatory response in endotoxemic rats. Clinics (Sáo Paulo). (2012) 67:1463–8. 10.6061/clinics/2012(12)18
    1. Chan DL, Freeman LM, Rozanski EA, Rush JE. Colloid osmotic pressure of parenteral nutrition components and intravenous fluids. J Vet Emerg Crit Care. (2001) 11:269–73. 10.1111/j.1476-4431.2001.tb00065.x
    1. Nicholson JP, Wolmarans MR, Park GR. The role of albumin in critical illness. Br J Anaesth. (2000) 85:599–610. 10.1093/bja/85.4.599
    1. Randolph HS. Editorial: the case for measuring plasma colloid osmotic pressure. J Vet Intern Med. (2000) 14:473–4. 10.1111/j.1939-1676.2000.tb02260.x
    1. Mazzaferro EM, Rudloff E, Kirby R. The role of albumin replacement in the critically ill veterinary patient. J Vet Emerg Crit Care. (2002) 12:113–24. 10.1046/j.1435-6935.2002.00025.x
    1. Mathews KA, Barry M. The use of 25% human serum albumin: outcome and efficacy in raising serum albumin and systemic blood pressure in critically ill dogs and cats. J Vet Emerg Crit Care (San Antonio). (2005) 15:110–8. 10.1111/j.1476-4431.2005.00141.x
    1. Craft EM, Powell LL. The use of canine-specific albumin in dogs with septic peritonitis. J Vet Emerg Crit Care. (2012) 22:631–9. 10.1111/j.1476-4431.2012.00819.x
    1. Enders BD, Musulin SE, Holowaychuk MK, Hale AS. Repeated Infusion of lyophilized canine albumin safely and effectively increases serum albumin and colloid osmotic pressure in healthy dogs. J Vet Emerg Crit Care. (2018) 28:S5. 10.1111/vec.12758
    1. Roberts I, Blackhall K, Alderson P, Bunn F, Schierhout G. Human albumin solution for resuscitation and volume expansion in critically ill patients. Cochrane Database Syst Rev. (2011) 2011:CD001208. 10.1002/14651858.CD001208.pub4
    1. Cohn LA, Kerl ME, Lenox CE, Livingston RS, Dodam JR. Response of healthy dogs to infusions of human serum albumin. Am J Vet Res. (2007) 68:657–63. 10.2460/ajvr.68.6.657
    1. Trow AV, Rozanski EA, Delaforcade AM, Chan DL. Evaluation of use of human albumin in critically ill dogs: 73 cases (2003-2006). J Am Vet Med Assoc. (2008) 233:607–12. 10.2460/javma.233.4.607
    1. Vigano F, Blasi C, Carminati N, Giudice E. Prospective review of clinical hypersensitivity reactions after administration of 5% human serum albumin in 40 critically ill cats. Top Companion Anim Med. (2019) 35:38–41. 10.1053/j.tcam.2019.03.004
    1. Viganó F, Perissinotto L, Bosco VR. Administration of 5% human serum albumin in critically ill small animal patients with hypoalbuminemia: 418 dogs and 170 cats (1994-2008). J Vet Emerg Crit Care (San Antonio). (2010) 20:237–43. 10.1111/j.1476-4431.2010.00526.x
    1. Conner BJ. Treating hypoalbuminemia. Vet Clin North Am Small Anim. (2017) 47:451–9. 10.1016/j.cvsm.2016.09.009
    1. Glover PA, Rudloff E, Kirby R. Hydroxyethyl starch: a review of pharmacokinetics, pharmacodynamics, current products, and potential clinical risks, benefits, and use. J Vet Emerg Crit Care. (2014) 24:642–61. 10.1111/vec.12208
    1. Westphal M, James MF, Kozek-Langenecker S, Stocker R, Guidet B, Van Aken H. Hydroxyethyl starches: different products–different effects. Anesthesiology. (2009) 111:187–202. 10.1097/ALN.0b013e3181a7ec82
    1. Driessen B, Brainard B. Fluid therapy for the traumatized patient. J Vet Emerg Crit Care. (2006) 16:313–33. 10.1111/j.1476-4431.2006.00184.x
    1. Griego-Valles M, Buriko Y, Prittie JE, Fox PR. An in vitro comparison of the effects of voluven (6% hydroxyethyl starch 130.0.4) and hespan (6% hydroxyethyl starch 670/0.75) on measures of blood coagulation in canine blood. J Vet Emerg Crit Care. (2017) 1:44–51. 10.1111/vec.12541
    1. Waitzinger J, Bepperling F, Pabst G, Opitz J. Hydroxyethyl starch (HES) [130/0.4], a new HES specification: pharmacokinetics and safety after multiple infusions of 10% solution in healthy volunteers. Drugs R D. (2003) 4:149–57. 10.2165/00126839-200304030-00002
    1. Persson J, Grände PO. Volume expansion of albumin, gelatin, HES, saline and erythrocytes after haemorrhage in rat. Intensive Care Med. (2005) 31:296–301. 10.1007/s00134-004-2510-3
    1. Holbeck S, Grände PO. Effects on capillary fluid permeability and fluid exchange of albumin, dextran, gelatin, and hydroxyethyl starch in cat skeletal muscle. Crit Care Med. (2000) 28:1089–95. 10.1097/00003246-200004000-00030
    1. Taylor AE, Granger DN. Exchange of macromolecules across the microcirculation. In: Handbook of Physiology. Bethesda, MD: American Physiological Society; (1984). p. 467.
    1. Rippe B, Haraldsson B. Transport of macromolecules across microvascular walls: the two-pore theory. Physiol Rev. (1994) 74:163–219. 10.1152/physrev.1994.74.1.163
    1. Arfors K-E, Buckley PB. Pharmacological characteristics of artificial colloids. In: Haljamae H, editor. Plasma Volume Support. London: Saunders; (1997). p. 15–47.
    1. Zhao H, Zhu Y, Zhang J, Wu Y, Xiang X, Zhang Z, et al. . The beneficial effect of HES on vascular permeability and its relationship with endothelial glycocalyx and intercellular junction after hemorrhagic shock. Front Pharmacol. (2020) 11:597. 10.3389/fphar.2020.00597
    1. Holliday MA, Segar WE. The maintenance need for water in parenteral fluid therapy. Pediatrics. (1957) 19:823–32.
    1. Moritz ML, Ayus JC. Maintenance intravenous fluids in acutely ill patients. N Engl J Med. (2015) 373:1350–60. 10.1056/NEJMra1412877
    1. National Research Council . Minerals Nutrient Requirements of Dogs and Cats. Washington, DC: The National Academy Press; (2006). p. 45–92.
    1. Hansen B, Vigani A. Maintenance fluid therapy: isotonic versus hypotonic solutions. Vet Clin North Am Small Anim Pract. (2017) 47:383–95. 10.1016/j.cvsm.2016.10.001
    1. Shukla S, Basu S, Moritz ML. Use of hypotonic maintenance intravenous fluids and hospital-acquired hyponatremia remain common in children admitted to a general pediatric ward. Front Pediatr. (2016) 4:90. 10.3389/fped.2016.00090
    1. Wang J, Xu E, Xiao Y. Isotonic versus hypotonic maintenance IV fluids in hospitalized children: a meta-analysis. Pediatrics. (2014) 133:105–13. 10.1542/peds.2013-2041
    1. Friedman JN, Beck CE, DeGroot J, Geary DF, Sklansky DJ, Freedman SB. Comparison of isotonic and hypotonic intravenous maintenance fluids: a randomized clinical trial. JAMA Pediatr. (2015) 169:445–51. 10.1001/jamapediatrics.2014.3809
    1. Van Regenmortel N, Hendrickx S, Roelant E, Baar I, Dams K, Van Vlimmeren K, et al. . 154 compared to 54 mmol per liter of sodium in intravenous maintenance fluid therapy for adult patients undergoing major thoracic surgery (TOPMAST): a single-center randomized controlled double-blind trial. Intensive Care Med. (2019) 45:1422–32. 10.1007/s00134-019-05772-1
    1. McNab S, Duke T, South M, Babl FE, Lee KJ, Arnup SJ, et al. . 140 mmol/L of sodium versus 77 mmol/L of sodium in maintenance intravenous fluid therapy for children in hospital (PIMS): a randomised controlled double-blind trial. Lancet. (2015) 385:1190–7. 10.1016/S0140-6736(14)61459-8
    1. Flores Robles CM, Cuello García CA. A prospective trial comparing isotonic with hypotonic maintenance fluids for prevention of hospital-acquired hyponatraemia. Paediatr Int Child Health. (2016) 36:168–74. 10.1179/2046905515Y.0000000047
    1. Darmon M, Pichon M, Schwebel C, Ruckly S, Adrie C, Haouache H, et al. . Influence of early dysnatremia correction on survival of critically ill patients. Shock. (2014) 41:394–9. 10.1097/SHK.0000000000000135
    1. Yunos NM, Kim IB, Bellomo R, Bailey M, Ho L, Story D, et al. . The biochemical effects of restricting chloride-rich fluids in intensive care. Crit Care Med. (2011) 39:2419–24. 10.1097/CCM.0b013e31822571e5
    1. Semler MW, Self WH, Wanderer JP, Ehrenfeld JM, Wang L, Byrne DW, et al. . Balanced crystalloids versus saline in critically ill adults. N Engl J Med. (2018) 378:829–39. 10.1056/NEJMoa1711584
    1. Self WH, Semler MW, Wanderer JP, Wang L, Byrne DW, Collins SP, et al. . Balanced crystalloids versus saline in noncritically ill adults. N Engl J Med. (2018) 378:819–28. 10.1056/NEJMoa1711586
    1. Goggs R, De Rosa S, Fletcher DJ. Electrolyte disturbances are associated with non-survival in dogs-a multivariable analysis. Front Vet Sci. (2017) 4:135. 10.3389/fvets.2017.00135
    1. Haines RW, Kirwan CJ, Prowle JR. Managing chloride and bicarbonate in the prevention and treatment of acute kidney injury. Semin Nephrol. (2019) 39:473–83. 10.1016/j.semnephrol.2019.06.007
    1. Chowdhury AH, Cox EF, Francis ST, Lobo DN. A randomized, controlled, double-blind crossover study on the effects of 2-L infusions of 0.9% saline and plasma-lyte® 148 on renal blood flow velocity and renal cortical tissue perfusion in healthy volunteers. Ann Surg. (2012) 256:18–24. 10.1097/SLA.0b013e318256be72
    1. Wilcox CS. Regulation of renal blood flow by plasma chloride. J Clin Invest. (1983) 71:726–35. 10.1172/JCI110820
    1. Weinberg L, Harris L, Bellomo R, Ierino FL, Story D, Eastwood G, et al. . Effects of intraoperative and early postoperative normal saline or Plasma-Lyte 148® on hyperkalaemia in deceased donor renal transplantation: a double-blind randomized trial. Br J Anaesth. (2017) 119:606–15. 10.1093/bja/aex163
    1. Potura E, Lindner G, Biesenbach P, Funk GC, Reiterer C, Kabon B, Schwarz C, et al. . An acetate-buffered balanced crystalloid versus 0.9% saline in patients with end-stage renal disease undergoing cadaveric renal transplantation: a prospective randomized controlled trial. Anesth Analg. (2015) 120:123–9. 10.1213/ANE.0000000000000419
    1. Drobatz K, Cole S. The influence of crystalloid type on acid-base and electrolyte status of cats with urethral obstruction. J Vet Emerg Crit Care. (2008) 18:355–61. 10.1111/j.1476-4431.2008.00328.x
    1. Cunha MG, Freitas GC, Carregaro AB, Gomes K, Cunha JP, Beckmann DV, et al. . Renal and cardiorespiratory effects of treatment with lactated Ringer's solution or physiologic saline (0.9% NaCl) solution in cats with experimentally induced urethral obstruction. Am J Vet Res. (2010) 71:840–6. 10.2460/ajvr.71.7.840
    1. Gunn E, Shiel RE, Mooney CT. Hydrocortisone in the management of acute hypoadrenocorticism in dogs: a retrospective series of 30 cases. J Small Anim Prac. (2016) 57:227–33. 10.1111/jsap.12473
    1. Brady CA, Vite CH, Drobatz KJ. Severe neurologic sequelae in a dog after treatment of hypoadrenal crisis. J Am Vet Med Assoc. (1999) 215:222–5.
    1. Bateman S. Disorders of magnesium, magnesium deficit and excess. In: DiBartola SP, editor. Fluid, Electrolyte and Acid-Base Disorders in Small Animal Practice. 4th ed. St Louis: Elsevier-Saunders; (2012).
    1. Weinberg L, Collins N, Van Mourik K, Tan C, Bellomo R. Plasma-lyte 148: a clinical review. World J Crit Care Med. (2016) 5:235–50. 10.5492/wjccm.v5.i4.235
    1. Adwaney A, Randall DW, Blunden MJ, Prowle JR, Kirwan CJ. Perioperative Plasma-Lyte use reduces the incidence of renal replacement therapy and hyperkalaemia following renal transplantation when compared with 0.9% saline: a retrospective cohort study. Clin Kidney J. (2017) 10:838–44. 10.1093/ckj/sfx040
    1. Lorenzo M, Davis JW, Negin S, Kaups K, Parks S, Brubaker D, et al. . Can Ringer's lactate be used safely with blood transfusions? Am J Surg. (1998) 175:308–10. 10.1016/s0002-9610(98)00011-7
    1. Albert K, van Vlymen J, James P, Parlow J. Ringer's lactate is compatible with the rapid infusion of AS-3 preserved packed red blood cells. Can J Anaesth. (2009) 56:352–6. 10.1007/s12630-009-9070-5
    1. Lebowitz MH, Masuda JY, Beckerman JH. The pH and acidity of intravenous infusion solutions. J Am Med Assoc. (1971) 215:1937. 10.1001/jama.1971.03180250029005
    1. Noritomi DT, Pereira AJ, Bugano DD, Rehder PS, Silva E. Impact of plasma-lyte pH 7.4 on acid-base status and hemodynamics in a model of controlled hemorrhagic shock. Clinics (Sáo Paulo). (2011) 66:1969–74. 10.1590/s1807-59322011001100019
    1. Nagami GT. Hyperchloremia—why and how. Nefrologia. (2016) 36:347–53. 10.1016/j.nefro.2016.04.001
    1. Hopper K, Rojas A, Barter L. An online survey of small animal veterinarians regarding current fluid therapy practices in dogs and cats. J Am Vet Med Assoc. (2018) 252:553–9. 10.2460/javma.252.5.553
    1. Kirkendol PL, Starrs J, Gonzalez FM. The effects of lactate, acetate, succinate and gluconate on plasma pH and electrolytes in dogs. Trans Am Soc Artif Intern Organs. (1980) 26:323–7.
    1. Muller KR, Gentile A, Klee W, Constable PD. Importance of effective strong ion difference of an intravenous solution in the treatment of diarrheic calves with naturally acquired acidemia and strong ion (metabolic) acidosis. J Vet Intern Med. (2012) 26:674–83. 10.1111/j.1939-1676.2012.00917.x
    1. Boysen SR, Dorval P. Effects of rapid intravenous 100% L-isomer lactated Ringer's administration on plasma lactate concentration in healthy dogs. J Vet Emerg Crit Care. (2014) 24:571–7. 10.1111/vec.12213
    1. Kiraly LN, Differding JA, Enomoto TM, Sawai RS, Muller PJ, Diggs B, et al. . Resuscitation with normal saline (NS) vs. lactated ringers (LR) modulates hypercoagulability and leads to increased blood loss in an uncontrolled hemorrhagic shock swine model. J Trauma. (2006) 61:57–64; discussion 64–5. 10.1097/01.ta.0000220373.29743.69
    1. Martini WZ, Cortez DS, Dubick MA. Comparisons of normal saline and lactated Ringer's resuscitation on hemodynamics, metabolic responses, and coagulation in pigs after severe hemorrhagic shock. Scand J Trauma Resusc Emerg Med. (2013) 21:86–78. 10.1186/1757-7241-21-86
    1. Ellekjaer KL, Perner A, Jensen MM, Møller MH. Lactate versus acetate buffered intravenous crystalloid solutions: a scoping review. Br J Anaesth. (2020) 125:693–703. 10.1016/j.bja.2020.07.017
    1. Asano S, Kato E, Yamauchi M, Ozawa Y, Iwasa M. The mechanism of acidosis caused by infusion of saline solution. Lancet. (1966) 1:1245–6. 10.1016/s0140-6736(66)90248-0
    1. Liskaser FJ, Bellomo R, Hayhoe M, Story D, Poustie S, Smith B, et al. . Role of pump prime in the etiology and pathogenesis of cardiopulmonary bypass-associated acidosis. Anesthesiology. (2000) 93:1170–3. 10.1097/00000542-200011000-00006
    1. Bevan DR. Osmometry. 1. Terminology and principles of measurement. Anaesthesia. (1978) 33:794–800. 10.1111/j.1365-2044.1978.tb08496.x
    1. Reddy S, Weinberg L, Young P. Crystalloid fluid therapy. Critical Care. (2016) 20:59–68. 10.1186/s13054-016-1217-5
    1. Kuwahara T, Asanami S, Kubo S. Experimental infusion phlebitis: tolerance osmolality of peripheral venous endothelial cells. Nutrition. (1998) 14:496–501. 10.1016/S0899-9007(98)00037-9
    1. Kuwahara T, Asanami S, Tamura T, Kubo S. Dilution is effective in reducing infusion phlebitis in peripheral parenteral nutrition: an experimental study in rabbits. Nutrition. (1998) 14:186–90. 10.1016/S0899-9007(97)00440-1
    1. Chandler ML, Payne-James JJ. Prospective evaluation of a peripherally administered three-in-one parenteral nutrition product in dogs. J Sm Anim Pract. (2006) 47:518–23. 10.1111/j.1748-5827.2006.00173.x
    1. Hage CA. Plasmalyte as a cause of false-positive results for aspergillus galactomannan in bronchoalveolar lavage fluid. J Clin Microbiol. (2007) 45:676–7. 10.1128/JCM.01940-06
    1. Vallée M, Barthélémy I, Friciu M, Pelletier E, Forest J-M, Benoit F, et al. . Compatibility of lactated ringer's injection with 94 selected intravenous drugs during simulated Y-site administration. Hosp Pharm. (2019). 10.1177/0018578719888913

Source: PubMed

3
Iratkozz fel