Neurotoxic Impact of Individual Anesthetic Agents on the Developing Brain

Dabin Ji, Joelle Karlik, Dabin Ji, Joelle Karlik

Abstract

Concerns about the safety of anesthetic agents in children arose after animal studies revealed disruptions in neurodevelopment after exposure to commonly used anesthetic drugs. These animal studies revealed that volatile inhalational agents, propofol, ketamine, and thiopental may have detrimental effects on neurodevelopment and cognitive function, but dexmedetomidine and xenon have been shown to have neuroprotective properties. The neurocognitive effects of benzodiazepines have not been extensively studied, so their effects on neurodevelopment are undetermined. However, experimental animal models may not truly represent the pathophysiological processes in children. Multiple landmark studies, including the MASK, PANDA, and GAS studies have provided reassurance that brief exposure to anesthesia is not associated with adverse neurocognitive outcomes in infants and children, regardless of the type of anesthetic agent used.

Keywords: benzodiazepines; dexmedetomidine; ketamine; neonatal anesthesia; neurodevelopment; neurotoxicity; pediatric anesthesia; propofol; thiopental; volatile anesthetics; xenon.

Conflict of interest statement

The authors declare no conflict of interest.

References

    1. Jevtovic-Todorovic V., Hartman R.E., Izumi Y., Benshoff N.D., Dikranian K., Zorumski C.F., Olney J.W., Wozniak D.F. Early exposure to common anesthetic agents causes widespread neurodegeneration in the developing rat brain and persistent learning deficits. J. Neurosci. 2003;23:876–882. doi: 10.1523/JNEUROSCI.23-03-00876.2003.
    1. Flick R.P., Katusic S.K., Colligan R.C., Wilder R.T., Voigt R.G., Olson M.D., Sprung J., Weaver A.L., Schroeder D.R., Warner D.O. Cognitive and behavioral outcomes after early exposure to anesthesia and surgery. Pediatrics. 2011;128:e1053–e1061. doi: 10.1542/peds.2011-0351.
    1. Vutskits L., Davidson A. Update on developmental anesthesia neurotoxicity. Curr. Opin. Anaesthesiol. 2017;30:337–342. doi: 10.1097/ACO.0000000000000461.
    1. Walters J.L., Paule M.G. Review of preclinical studies on pediatric general anesthesia-induced developmental neurotoxicity. Neurotoxicol. Teratol. 2017;60:2–23. doi: 10.1016/j.ntt.2016.11.005.
    1. FDA Drug Safety Communication: FDA Review Results in New Warnings about Using General Anesthetics and Sedation Drugs in Young Children and Pregnant Women. [(accessed on 10 September 2022)];2016 Available online: .
    1. Andropoulos D.B., Greene M.F. Anesthesia and Developing Brains—Implications of the FDA Warning. N. Engl. J. Med. 2017;376:905–907. doi: 10.1056/NEJMp1700196.
    1. FDA Drug Safety Communication: FDA Approves Label Changes for Use of General Anesthetic and Sedation Drugs in Young Children. [(accessed on 20 August 2022)];2017 Available online: .
    1. Davidson A.J., Disma N., de Graaff J.C., Withington D.E., Dorris L., Bell G., Stargatt R., Bellinger D.C., Schuster T., Arnup S.J., et al. Neurodevelopmental outcome at 2 years of age after general anaesthesia and awake-regional anaesthesia in infancy (GAS): An international multicentre, randomised controlled trial. Lancet. 2016;387:239–250. doi: 10.1016/S0140-6736(15)00608-X.
    1. McCann M.E., de Graaff J.C., Dorris L., Disma N., Withington D., Bell G., Grobler A., Stargatt R., Hunt R.W., Sheppard S.J., et al. Neurodevelopmental outcome at 5 years of age after general anaesthesia or awake-regional anaesthesia in infancy (GAS): An international, multicentre, randomised, controlled equivalence trial. Lancet. 2019;393:664–677. doi: 10.1016/S0140-6736(18)32485-1.
    1. Sun L.S., Li G., Miller T.L.K., Salorio C., Byrne M.W., Bellinger D.C., Ing C., Park R., Radcliffe J., Hays S., et al. Association Between a Single General Anesthesia Exposure before Age 36 Months and Neurocognitive Outcomes in Later Childhood. JAMA. 2016;315:2312–2320. doi: 10.1001/jama.2016.6967.
    1. Warner D.O., Zaccariello M.J., Katusic S.K., Schroeder D.R., Hanson A.C., Schulte P.J., Buenvenida S.L., Gleich S.J., Wilder R.T., Sprung J., et al. Neuropsychological and Behavioral Outcomes after Exposure of Young Children to Procedures Requiring General Anesthesia: The Mayo Anesthesia Safety in Kids (MASK) Study. Anesthesiology. 2018;129:89–105. doi: 10.1097/ALN.0000000000002232.
    1. Creeley C.E., Dikranian K.T., Dissen G.A., Back S.A., Olney J.W., Brambrink A.M. Isoflurane-induced apoptosis of neurons and oligodendrocytes in the fetal rhesus macaque brain. Anesthesiology. 2014;120:626–638. doi: 10.1097/ALN.0000000000000037.
    1. Head B.P., Patel H.H., Niesman I.R., Drummond J.C., Roth D.M., Patel P.M. Inhibition of p75 neurotrophin receptor attenuates isoflurane-mediated neuronal apoptosis in the neonatal central nervous system. Anesthesiology. 2009;110:813–825. doi: 10.1097/ALN.0b013e31819b602b.
    1. Lunardi N., Ori C., Erisir A., Jevtovic-Todorovic V. General anesthesia causes long-lasting disturbances in the ultrastructural properties of developing synapses in young rats. Neurotox. Res. 2010;17:179–188. doi: 10.1007/s12640-009-9088-z.
    1. Briner A., De Roo M., Dayer A., Muller D., Habre W., Vutskits L. Volatile anesthetics rapidly increase dendritic spine density in the rat medial prefrontal cortex during synaptogenesis. Anesthesiology. 2010;112:546–556. doi: 10.1097/ALN.0b013e3181cd7942.
    1. Briner A., Nikonenko I., De Roo M., Dayer A., Muller D., Vutskits L. Developmental Stage-dependent persistent impact of propofol anesthesia on dendritic spines in the rat medial prefrontal cortex. Anesthesiology. 2011;115:282–293. doi: 10.1097/ALN.0b013e318221fbbd.
    1. Nie H., Peng Z., Lao N., Dong H., Xiong L. Effects of sevoflurane on self-renewal capacity and differentiation of cultured neural stem cells. Neurochem. Res. 2013;38:1758–1767. doi: 10.1007/s11064-013-1074-4.
    1. Qiu J., Shi P., Mao W., Zhao Y., Liu W., Wang Y. Effect of apoptosis in neural stem cells treated with sevoflurane. BMC Anesthesiol. 2015;15:25. doi: 10.1186/s12871-015-0018-8.
    1. Raper J., De Biasio J.C., Murphy K.L., Alvarado M.C., Baxter M.G. Persistent alteration in behavioural reactivity to a mild social stressor in rhesus monkeys repeatedly exposed to sevoflurane in infancy. Br. J. Anaesth. 2018;120:761–767. doi: 10.1016/j.bja.2018.01.014.
    1. Shen X., Dong Y., Xu Z., Wang H., Miao C., Soriano S.G., Sun D., Baxter M.G., Zhang Y., Xie Z. Selective anesthesia-induced neuroinflammation in developing mouse brain and cognitive impairment. Anesthesiology. 2013;118:502–515. doi: 10.1097/ALN.0b013e3182834d77.
    1. Folino T.B., Muco E., Safadi A.O., Parks L.J. Propofol. StatPearls; Treasure Island, FL, USA: 2022.
    1. Chidambaran V., Costandi A., D’Mello A. Propofol: A review of its role in pediatric anesthesia and sedation. CNS Drugs. 2015;29:543–563. doi: 10.1007/s40263-015-0259-6.
    1. Bercker S., Bert B., Bittigau P., Felderhoff-Müser U., Bührer C., Ikonomidou C., Weise M., Kaisers U.X., Kerner T. Neurodegeneration in newborn rats following propofol and sevoflurane anesthesia. Neurotox. Res. 2009;16:140–147. doi: 10.1007/s12640-009-9063-8.
    1. Creeley C., Dikranian K., Dissen G., Martin L., Olney J., Brambrink A. Propofol-induced apoptosis of neurones and oligodendrocytes in fetal and neonatal rhesus macaque brain. Br. J. Anaesth. 2013;110((Suppl. S1)):i29–i38. doi: 10.1093/bja/aet173.
    1. De Roo M., Klauser P., Briner A., Nikonenko I., Mendez P., Dayer A., Kiss J.Z., Muller D., Vutskits L. Anesthetics rapidly promote synaptogenesis during a critical period of brain development. PLoS ONE. 2009;4:e7043. doi: 10.1371/journal.pone.0007043.
    1. Engelhard K., Werner C., Eberspacher E., Pape M., Stegemann U., Kellermann K., Hollweck R., Hutzler P., Kochs E. Influence of propofol on neuronal damage and apoptotic factors after incomplete cerebral ischemia and reperfusion in rats: A long-term observation. Anesthesiology. 2004;101:912–917. doi: 10.1097/00000542-200410000-00016.
    1. Ergun R., Akdemir G., Sen S., Tasci A., Ergungor F. Neuroprotective effects of propofol following global cerebral ischemia in rats. Neurosurg. Rev. 2002;25:95–98. doi: 10.1007/s101430100171.
    1. Pearn M.L., Hu Y., Niesman I.R., Patel H.H., Drummond J.C., Roth D.M., Akassoglou K., Patel P.M., Head B.P. Propofol neurotoxicity is mediated by p75 neurotrophin receptor activation. Anesthesiology. 2012;116:352–361. doi: 10.1097/ALN.0b013e318242a48c.
    1. Bosnjak Z.J., Logan S., Liu Y., Bai X. Recent Insights into Molecular Mechanisms of Propofol-Induced Developmental Neurotoxicity: Implications for the Protective Strategies. Anesth. Analg. 2016;123:1286–1296. doi: 10.1213/ANE.0000000000001544.
    1. Gao J., Peng S., Xiang S., Huang J., Chen P. Repeated exposure to propofol impairs spatial learning, inhibits LTP and reduces CaMKIIalpha in young rats. Neurosci. Lett. 2014;560:62–66. doi: 10.1016/j.neulet.2013.11.061.
    1. Choudhury D., Autry A.E., Tolias K.F., Krishnan V. Ketamine: Neuroprotective or Neurotoxic? Front. Neurosci. 2021;15:672526. doi: 10.3389/fnins.2021.672526.
    1. Jin J., Gong K., Zou X., Wang R., Lin Q., Chen J. The blockade of NMDA receptor ion channels by ketamine is enhanced in developing rat cortical neurons. Neurosci. Lett. 2013;539:11–15. doi: 10.1016/j.neulet.2013.01.034.
    1. Ikonomidou C., Bosch F., Miksa M., Bittigau P., Vöckler J., Dikranian K., Tenkova T.I., Stefovska V., Turski L., Olney J.W. Blockade of NMDA receptors and apoptotic neurodegeneration in the developing brain. Science. 1999;283:70–74. doi: 10.1126/science.283.5398.70.
    1. Brambrink A.M., Evers A.S., Avidan M.S., Farber N.B., Smith D.J., Martin L.D., Dissen G.A., Creeley C.E., Olney J.W. Ketamine-induced neuroapoptosis in the fetal and neonatal rhesus macaque brain. Anesthesiology. 2012;116:372–384. doi: 10.1097/ALN.0b013e318242b2cd.
    1. Huang L., Liu Y., Jin W., Ji X., Dong Z. Ketamine potentiates hippocampal neurodegeneration and persistent learning and memory impairment through the PKCgamma-ERK signaling pathway in the developing brain. Brain Res. 2012;1476:164–171. doi: 10.1016/j.brainres.2012.07.059.
    1. Zhao T., Li C., Wei W., Zhang H., Ma D., Song X., Zhou L. Prenatal ketamine exposure causes abnormal development of prefrontal cortex in rat. Sci. Rep. 2016;6:26865. doi: 10.1038/srep26865.
    1. Ghosh A., Greenberg M.E. Calcium signaling in neurons: Molecular mechanisms and cellular consequences. Science. 1995;268:239–247. doi: 10.1126/science.7716515.
    1. Bhutta A.T., Schmitz M.L., Swearingen C., James L.P., Wardbegnoche W.L., Lindquist D.M., Glasier C.M., Tuzcu V., Prodhan P., Dyamenahalli U., et al. Ketamine as a neuroprotective and anti-inflammatory agent in children undergoing surgery on cardiopulmonary bypass: A pilot randomized, double-blind, placebo-controlled trial. Pediatr. Crit. Care Med. 2012;13:328–337. doi: 10.1097/PCC.0b013e31822f18f9.
    1. Iqbal O’Meara A.M., Miller Ferguson N., Zven S.E., Karam O.L., Meyer L.C., Bigbee J.W., Sato-Bigbee C. Potential Neurodevelopmental Effects of Pediatric Intensive Care Sedation and Analgesia: Repetitive Benzodiazepine and Opioid Exposure Alters Expression of Glial and Synaptic Proteins in Juvenile Rats. Crit. Care Explor. 2020;2:e0105. doi: 10.1097/CCE.0000000000000105.
    1. Guerra G.G., Robertson C.M., Alton G.Y., Joffe A.R., Cave D.A., Yasmin F., Dinu I.A., Creighton D.E., Ross D.B., Rebeyka I.M., et al. Neurotoxicity of sedative and analgesia drugs in young infants with congenital heart disease: 4-year follow-up. Paediatr. Anaesth. 2014;24:257–265. doi: 10.1111/pan.12257.
    1. Naseri M., Parham A., Moghimi A. The effect of sodium thiopental as a GABA mimetic drug in neonatal period on expression of GAD65 and GAD67 genes in hippocampus of newborn and adult male rats. Iran J. Basic Med. Sci. 2017;20:996–1001.
    1. So E.C., Chang Y.T., Hsing C.H., Poon P.W., Leu S.F., Huang B.M. The effect of midazolam on mouse Leydig cell steroidogenesis and apoptosis. Toxicol. Lett. 2010;192:169–178. doi: 10.1016/j.toxlet.2009.10.017.
    1. Soyalp C., Oksuz E., Gorgisen G., Gulacar I.M., Yasar S., Tuncdemir Y.E., Delen L.A. Role of Sedative-Hypnotic Agents in Neurodegeneration: Effects of Midazolam and Thiopental on Apoptosis and Oxidative Stress Expression in Neonatal and Adult Rat Brains. Turk. Neurosurg. 2022;32:378–385. doi: 10.5137/1019-5149.JTN.32324-20.2.
    1. Tagawa T., Sakuraba S., Kimura K., Mizoguchi A. Sevoflurane in combination with propofol, not thiopental, induces a more robust neuroapoptosis than sevoflurane alone in the neonatal mouse brain. J. Anesth. 2014;28:815–820. doi: 10.1007/s00540-014-1822-x.
    1. Engelhard K., Werner C., Eberspacher E., Bachl M., Blobner M., Hildt E., Hutzler P., Kochs E. The effect of the alpha 2-agonist dexmedetomidine and the N-methyl-D-aspartate antagonist S(+)-ketamine on the expression of apoptosis-regulating proteins after incomplete cerebral ischemia and reperfusion in rats. Anesth. Analg. 2003;96:524–531.
    1. Ma D., Rajakumaraswamy N., Maze M. Alpha2-Adrenoceptor agonists: Shedding light on neuroprotection? Br. Med. Bull. 2004;71:77–92. doi: 10.1093/bmb/ldh036.
    1. Lee J.R., Joseph B., Hofacer R.D., Upton B., Lee S.Y., Ewing L., Zhang B., Danzer S.C., Loepke A.W. Effect of dexmedetomidine on sevoflurane-induced neurodegeneration in neonatal rats. Br. J. Anaesth. 2021;126:1009–1021. doi: 10.1016/j.bja.2021.01.033.
    1. Perez-Zoghbi J.F., Zhu W., Grafe M.R., Brambrink A.M. Dexmedetomidine-mediated neuroprotection against sevoflurane-induced neurotoxicity extends to several brain regions in neonatal rats. Br. J. Anaesth. 2017;119:506–516. doi: 10.1093/bja/aex222.
    1. Perez-Zoghbi J.F., Zhu W., Neudecker V., Grafe M.R., Brambrink A.M. Neurotoxicity of sub-anesthetic doses of sevoflurane and dexmedetomidine co-administration in neonatal rats. Neurotoxicology. 2020;79:75–83. doi: 10.1016/j.neuro.2020.03.014.
    1. Sanders R.D., Xu J., Shu Y., Januszewski A., Halder S., Fidalgo A., Sun P., Hossain M., Ma D., Maze M. Dexmedetomidine attenuates isoflurane-induced neurocognitive impairment in neonatal rats. Anesthesiology. 2009;110:1077–1085. doi: 10.1097/ALN.0b013e31819daedd.
    1. Su F., Gastonguay M.R., Nicolson S.C., DiLiberto M., Ocampo-Pelland A., Zuppa A.F. Dexmedetomidine Pharmacology in Neonates and Infants After Open Heart Surgery. Anesth. Analg. 2016;122:1556–1566. doi: 10.1213/ANE.0000000000000869.
    1. Su F., Hammer G.B. Dexmedetomidine: Pediatric pharmacology, clinical uses and safety. Expert Opin. Drug Saf. 2011;10:55–66. doi: 10.1517/14740338.2010.512609.
    1. Su F., Nicolson S.C., Gastonguay M.R., Barrett J.S., Adamson P.C., Kang D.S., Godinez R.I., Zuppa A.F. Population pharmacokinetics of dexmedetomidine in infants after open heart surgery. Anesth. Analg. 2010;110:1383–1392. doi: 10.1213/ANE.0b013e3181d783c8.
    1. Su F., Nicolson S.C., Zuppa A.F. A dose-response study of dexmedetomidine administered as the primary sedative in infants following open heart surgery. Pediatr. Crit. Care Med. 2013;14:499–507. doi: 10.1097/PCC.0b013e31828a8800.
    1. Wilhelm S., Ma D., Maze M., Franks N.P. Effects of xenon on in vitro and in vivo models of neuronal injury. Anesthesiology. 2002;96:1485–1491. doi: 10.1097/00000542-200206000-00031.
    1. Alam A., Suen K.C., Hana Z., Sanders R.D., Maze M., Ma D. Neuroprotection and neurotoxicity in the developing brain: An update on the effects of dexmedetomidine and xenon. Neurotoxicol. Teratol. 2017;60:102–116. doi: 10.1016/j.ntt.2017.01.001.
    1. Maze M., Laitio T. Neuroprotective Properties of Xenon. Mol. Neurobiol. 2020;57:118–124. doi: 10.1007/s12035-019-01761-z.
    1. Ma D., Williamson P., Januszewski A., Nogaro M.-C., Hossain M., Ong L.P., Shu Y., Franks N., Maze M. Xenon mitigates isoflurane-induced neuronal apoptosis in the developing rodent brain. Anesthesiology. 2007;106:746–753. doi: 10.1097/01.anes.0000264762.48920.80.
    1. Shu Y., Patel S.M., Pac-Soo C., Fidalgo A.R., Wan Y., Maze M., Ma D. Xenon pretreatment attenuates anesthetic-induced apoptosis in the developing brain in comparison with nitrous oxide and hypoxia. Anesthesiology. 2010;113:360–368. doi: 10.1097/ALN.0b013e3181d960d7.
    1. McCann M.E., Soriano S.G. Does general anesthesia affect neurodevelopment in infants and children? BMJ. 2019;367:l6459. doi: 10.1136/bmj.l6459.
    1. Wilder R.T., Flick R.P., Sprung J., Katusic S.K., Barbaresi W.J., Mickelson C., Gleich S.J., Schroeder D.R., Weaver A.L., Warner D.O. Early exposure to anesthesia and learning disabilities in a population-based birth cohort. Anesthesiology. 2009;110:796–804. doi: 10.1097/01.anes.0000344728.34332.5d.
    1. Avramescu S., Wang D.S., Lecker I., To W.T.H., Penna A., Whissell P.D., Mesbah-Oskui L., Horner R.L., Orser B.A. Inflammation Increases Neuronal Sensitivity to General Anesthetics. Anesthesiology. 2016;124:417–427. doi: 10.1097/ALN.0000000000000943.
    1. Stratmann G., Lee J., Sall J.W., Lee B.H., Alvi R.S., Shih J., Rowe A.M., Ramage T.M., Chang F.L., Alexander T.G., et al. Effect of general anesthesia in infancy on long-term recognition memory in humans and rats. Neuropsychopharmacology. 2014;39:2275–2287. doi: 10.1038/npp.2014.134.
    1. SmartTots. [(accessed on 8 September 2022)]. Available online:

Source: PubMed

3
Iratkozz fel