Molecular Detection of Orthohantavirus puumalaense in Plasma and Urine Samples from Hospitalized Patients Presenting with a Serologically Confirmed Acute Hantavirus Infection in France

Jean-Marc Reynes, Laura Schaeffer, Pavlos Papadopoulos, Mohand Ait-Ahmed, Dieyenaba Siby-Diakite, Maryline Ripaux-Lefèvre, Tan-Phuc Buivan, Sylvie Lechat, Muriel Vray, Jean-Marc Galempoix, HANTADIAG Study Group, Jean-Marc Reynes, Laura Schaeffer, Pavlos Papadopoulos, Mohand Ait-Ahmed, Dieyenaba Siby-Diakite, Maryline Ripaux-Lefèvre, Tan-Phuc Buivan, Sylvie Lechat, Muriel Vray, Jean-Marc Galempoix, HANTADIAG Study Group

Abstract

Molecular detection of Orthohantavirus puumalaense (PUUV) RNA during the course of the disease has been studied in blood of patients in Sweden and Slovenia. The use of urine has been poorly investigated. The aims of this work were to study PUUV RNA detection in plasma from a cohort of patients in France where a different PUUV lineage circulates and to assess the use of urine instead of plasma. Matched plasma and urine samples were collected daily from hospitalized patients presenting with fever, pain, and thrombocytopenia within the last 8 days and testing positive for IgM and IgG against PUUV in serum collected at inclusion and/or approximately 1 month after release. RNA was extracted from samples, and PUUV RNA was detected using real-time reverse transcription-PCR for plasma and urine samples. Sixty-seven patients presented a serologically confirmed acute hantavirus infection. At inclusion, PUUV RNA was detected in plasma from 55 of 62 patients (88.7%) sampled within the first week after disease onset, whereas it was detected in 15 of 60 (25.0%) of matched urine samples. It was then detected from 33 (71.7%) and 2 (4.4%) of 46 patients discharged from the hospital during the second week after disease onset, in plasma and urine, respectively. When PUUV RNA was detected in urine it was also detected in plasma, and not vice versa. Detection of PUUV RNA in plasma from hospitalized patients in France is similar to that observed in Sweden and Slovenia. Urine is not an appropriate sample for this detection.

Keywords: France; Puumala hantavirus; hemorrhagic fever with renal syndrome; molecular diagnostic; nephropathia epidemica; orthohantavirus; plasma; urine.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

FIG 1
FIG 1
Flow diagram of patients enrolled in the HANTADIAG study.

References

    1. International Committee on Taxonomy of Viruses. 2022. Current ICTV taxonomy release. . Accessed 24 January 2023.
    1. Avšič-Županc T, Saksida A, Korva M. 2019. Hantavirus infections. Clin Microbiol Infect 21:e6–e16. doi:10.1111/1469-0691.12291.
    1. Reynes JM, Penalba C, Galempoix JM. 2022. Hantavirus. EMC Mal Infect [8-063-B-10].
    1. Reynes JM, Carli D, Thomas D, Castel G. 2019. Puumala hantavirus genotypes in humans, France, 2012-2016. Emerg Infect Dis 25:140–143. doi:10.3201/eid2501.180270.
    1. Krüger DH, Ulrich R, Lundkvist A. 2001. Hantavirus infections and their prevention. Microbes Infect 3:1129–1144. doi:10.1016/s1286-4579(01)01474-5.
    1. Evander M, Eriksson I, Pettersson L, Juto P, Ahlm C, Olsson GE, Bucht G, Allard A. 2007. Puumala hantavirus viremia diagnosed by real-time reverse transcriptase PCR using samples from patients with hemorrhagic fever and renal syndrome. J Clin Microbiol 45:2491–2497. doi:10.1128/JCM.01902-06.
    1. Korva M, Saksida A, Kejžar N, Schmaljohn C, Avšič-Županc T. 2013. Viral load and immune response dynamics in patients with haemorrhagic fever with renal syndrome. Clin Microbiol Infect 19:E358–E366. doi:10.1111/1469-0691.12218.
    1. Pettersson L, Thunberg T, Rocklöv J, Klingström J, Evander M, Ahlm C. 2014. Viral load and humoral immune response in association with disease severity in Puumala hantavirus-infected patients: implications for treatment. Clin Microbiol Infect 20:235–241. doi:10.1111/1469-0691.12259.
    1. Lagerqvist N, Hagström Å, Lundahl M, Nilsson E, Juremalm M, Larsson I, Alm E, Bucht G, Ahlm C, Klingström J. 2016. Molecular diagnosis of hemorrhagic fever with renal syndrome caused by Puumala virus. J Clin Microbiol 54:1335–1339. doi:10.1128/JCM.00113-16.
    1. Niedrig M, Patel P, El Wahed AA, Schädler R, Yactayo S. 2018. Find the right sample: a study on the versatility of saliva and urine samples for the diagnosis of emerging viruses. BMC Infect Dis 18:707. doi:10.1186/s12879-018-3611-x.
    1. Cho S, Kim WK, No JS, Lee SH, Jung J, Yi Y, Park HC, Lee GY, Park K, Kim JA, Kim J, Lee J, Lee D, Song DH, Gu SH, Jeong ST, Song JW. 2021. Urinary genome detection and tracking of Hantaan virus from hemorrhagic fever with renal syndrome patients using multiplex PCR-based next-generation sequencing. PLoS Negl Trop Dis 15:e0009707. doi:10.1371/journal.pntd.0009707.
    1. Godoy P, Marsac D, Stefas E, Ferrer P, Tischler ND, Pino K, Ramdohr P, Vial P, Valenzuela PD, Ferrés M, Veas F, López-Lastra M. 2009. Andes virus antigens are shed in urine of patients with acute hantavirus cardiopulmonary syndrome. J Virol 83:5046–5055. doi:10.1128/JVI.02409-08.
    1. Seo JW, Kim DY, Kim CM, Yun NR, Lee YM, Lawrence Panchali MJ, Kim DM. 2021. Utility of nested reverse-transcriptase polymerase chain reaction of clinical specimens for early diagnosis of hemorrhagic fever with renal syndrome. Am J Trop Med Hyg 105:1285–1289. doi:10.4269/ajtmh.21-0185.
    1. Xiao R, Yang S, Koster F, Ye C, Stidley C, Hjelle B. 2006. Sin Nombre viral RNA load in patients with hantavirus cardiopulmonary syndrome. J Infect Dis 194:1403–1409. doi:10.1086/508494.
    1. Hörling J, Lundkvist A, Persson K, Mullaart M, Dzagurova T, Dekonenko A, Tkachenko E, Niklasson B. 1995. Detection and subsequent sequencing of Puumala virus from human specimens by PCR. J Clin Microbiol 33:277–282. doi:10.1128/jcm.33.2.277-282.1995.
    1. Grankvist O, Juto P, Settergren B, Ahlm C, Bjermer L, Linderholm M, Tärnvik A, Wadell G. 1992. Detection of nephropathia epidemica virus RNA in patient samples using a nested primer-based polymerase chain reaction. J Infect Dis 165:934–937. doi:10.1093/infdis/165.5.934.
    1. Plyusnin A, Hörling J, Kanerva M, Mustonen J, Cheng Y, Partanen J, Vapalahti O, Kukkonen SK, Niemimaa J, Henttonen H, Niklasson B, Lundkvist A, Vaheri A. 1997. Puumala hantavirus genome in patients with nephropathia epidemica: correlation of PCR positivity with HLA haplotype and link to viral sequences in local rodents. J Clin Microbiol 35:1090–1096. doi:10.1128/jcm.35.5.1090-1096.1997.
    1. Vetter P, L'Huillier AG, Montalbano MF, Pigny F, Eckerle I, Torriani G, Rothenberger S, Laubscher F, Cordey S, Kaiser L, Schibler M. 2021. Puumala virus infection in family, Switzerland. Emerg Infect Dis 27:658–660. doi:10.3201/eid2702.203770.
    1. Rossi CA, Ksiazek TG. 1998. Enzyme linked immunosorbent assay, p 87–91. In Lee HW, Calisher C, Schmaljohn C (ed), Manual of hemorrhagic fever with renal syndrome and hantavirus pulmonary syndrome. Asan Institute for Life Sciences, Seoul, South Korea.
    1. Niklasson B, Lundkvist A. 1998. Indirect immunofluorescent antibody test (IFT), p 83–86. In Lee HW, Calisher C, Schmaljohn C (ed), Manual of hemorrhagic fever with renal syndrome and hantavirus pulmonary syndrome. Asan Institute for Life Sciences, Seoul, South Korea.
    1. Weidmann M, Faye O, Faye O, Abd El Wahed A, Patel P, Batejat C, Manugerra JC, Adjami A, Niedrig M, Hufert FT, Sall AA. 2018. Development of mobile laboratory for viral hemorrhagic fever detection in Africa. J Infect Dis 218:1622–1630. doi:10.1093/infdis/jiy362.
    1. Kramski M, Meisel H, Klempa B, Krüger DH, Pauli G, Nitsche A. 2007. Detection and typing of human pathogenic hantaviruses by real-time reverse transcription-PCR and pyrosequencing. Clin Chem 53:1899–1905. doi:10.1373/clinchem.2007.093245.
    1. KDIGO AKI Work Group. 2012. KDIGO clinical practice guideline for acute kidney injury. Kidney Int 2(Suppl 1):1–138. doi:10.1038/kisup.2012.1.
    1. Schubert J, Tollmann F, Weissbrich B. 2001. Evaluation of a pan-reactive hantavirus enzyme immunoassay and of a hantavirus immunoblot for the diagnosis of nephropathia epidemica. J Clin Virol 21:63–74. doi:10.1016/s1386-6532(00)00187-6.
    1. Terajima M, Vapalahti O, Van Epps HL, Vaheri A, Ennis FA. 2004. Immune responses to Puumala virus infection and the pathogenesis of nephropathia epidemica. Microbes Infect 6:238–245. doi:10.1016/j.micinf.2003.10.017.
    1. Mustonen J, Mäkelä S, Outinen T, Laine O, Jylhävä J, Arstila PT, Hurme M, Vaheri A. 2013. The pathogenesis of nephropathia epidemica: new knowledge and unanswered questions. Antiviral Res 100:589–604. doi:10.1016/j.antiviral.2013.10.001.
    1. Barzon L, Pacenti M, Palù G. 2013. West Nile virus and kidney disease. Expert Rev Anti Infect Ther 11:479–487. doi:10.1586/eri.13.34.
    1. Fraiture MA, Coucke W, Pol M, Rousset D, Gourinat AC, Biron A, Broeders S, Vandermassen E, Dupont-Rouzeyrol M, Roosens NHC. 2021. Non-invasive versus invasive samples for Zika virus surveillance: a comparative study in New Caledonia and French Guiana in 2015–2016. Microorganisms 9:1312. doi:10.3390/microorganisms9061312.
    1. Hirayama T, Mizuno Y, Takeshita N, Kotaki A, Tajima S, Omatsu T, Sano K, Kurane I, Takasaki T. 2012. Detection of dengue virus genome in urine by real-time reverse transcriptase PCR: a laboratory diagnostic method useful after disappearance of the genome in serum. J Clin Microbiol 50:2047–2052. doi:10.1128/JCM.06557-11.
    1. Permar SR, Moss WJ, Ryon JJ, Monze M, Cutts F, Quinn TC, Griffin DE. 2001. Prolonged measles virus shedding in human immunodeficiency virus-infected children, detected by reverse transcriptase-polymerase chain reaction. J Infect Dis 183:532–538. doi:10.1086/318533.
    1. Woo GK, Wong AH, Lee WY, Lau CS, Cheng PK, Leung PC, Lim WW. 2010. Comparison of laboratory diagnostic methods for measles infection and identification of measles virus genotypes in Hong Kong. J Med Virol 82:1773–1781. doi:10.1002/jmv.21888.

Source: PubMed

3
Iratkozz fel