Musical Agency during Physical Exercise Decreases Pain

Thomas H Fritz, Daniel L Bowling, Oliver Contier, Joshua Grant, Lydia Schneider, Annette Lederer, Felicia Höer, Eric Busch, Arno Villringer, Thomas H Fritz, Daniel L Bowling, Oliver Contier, Joshua Grant, Lydia Schneider, Annette Lederer, Felicia Höer, Eric Busch, Arno Villringer

Abstract

Objectives: When physical exercise is systematically coupled to music production, exercisers experience improvements in mood, reductions in perceived effort, and enhanced muscular efficiency. The physiology underlying these positive effects remains unknown. Here we approached the investigation of how such musical agency may stimulate the release of endogenous opioids indirectly with a pain threshold paradigm. Design: In a cross-over design we tested the opioid-hypothesis with an indirect measure, comparing the pain tolerance of 22 participants following exercise with or without musical agency. Method: Physical exercise was coupled to music by integrating weight-training machines with sensors that control music-synthesis in real time. Pain tolerance was measured as withdrawal time in a cold pressor test. Results: On average, participants tolerated cold pain for ~5 s longer following exercise sessions with musical agency. Musical agency explained 25% of the variance in cold pressor test withdrawal times after factoring out individual differences in general pain sensitivity. Conclusions: This result demonstrates a substantial pain reducing effect of musical agency in combination with physical exercise, probably due to stimulation of endogenous opioid mechanisms. This has implications for exercise endurance, both in sports and a multitude of rehabilitative therapies in which physical exercise is effective but painful.

Keywords: cold pressor test; endorphin; endurance; musical agency; pain; sport.

Figures

Figure 1
Figure 1
Schematic illustration of experimental setup.
Figure 2
Figure 2
Pain tolerance following exercise with and without musical agency. Mean withdrawal times following exercise with and without musical agency (error bars represent ± SE). Statistical significance was assessed by the ANCOVA described in the main text. In the final sample, 13 out of the 19 participants started with the musical agency condition.

References

    1. Bandura A., O'Leary A., Taylor C. B., Gauthier J., Gossard D. (1987). Perceived self-efficacy and pain control: opioid and nonopioid mechanisms. J. Pers. Soc. Psychol. 53:563. 10.1037/0022-3514.53.3.563
    1. Boecker H., Sprenger T., Spilker M. E., Henriksen G., Koppenhoefer M., Wagner K. J., et al. . (2008). The runner's high: opioidergic mechanisms in the human brain. Cereb. Cortex 18, 2523–2531. 10.1093/cercor/bhn013
    1. Brown S., Jordania J. (2013). Universals in the world's musics. Psychol. Music 41, 229–248.
    1. Busch A. J., Webber S. C., Brachaniec M., Bidonde J., Bello-Haas V. D., Danyliw A. D., et al. . (2011). Exercise therapy for fibromyalgia. Curr. Pain Head. Rep. 15, 358–367. 10.1007/s11916-011-0214-2
    1. Cohen E. E., Ejsmond-Frey R., Knight N., Dunbar R. I. (2010). Rowers' high: behavioural synchrony is correlated with elevated pain thresholds. Biol. Lett. 6, 106–108. 10.1098/rsbl.2009.0670
    1. Crombie I. K., Irvine L., Williams B., McGinnis A. R., Slane P. W., Alder E. M., et al. (2004). Why older people do not participate in leisure time physical activity: a survey of activity levels, beliefs and deterrents. Age Ageing 33, 287–292. 10.1093/ageing/afh089
    1. Dearman J., Francis K. T. (1983). Plasma levels of catecholamines, cortisol, and beta-endorphins in male athletes after running 26.2, 6, and 2 miles. J. Sports Med. Phys. Fit. 23, 30–38.
    1. Deci E. L., Ryan R. M. (1985). The general causality orientations scale: self-determination in personality. J. Res. Pers. 19, 109–134. 10.1016/0092-6566(85)90023-6
    1. Depue R. A., Morrone-Strupinsky J. V. (2005). A neurobehavioral model of affiliative bonding: implications for conceptualizing a human trait of affiliation. Behav. Brain Sci. 28, 313–349. 10.1017/S0140525X05000063
    1. Dionne R. A., Bartoshuk L., Mogil J., Witter J. (2005). Individual responder analyses for pain: does one pain scale fit all? Trends Pharmacol. Sci. 26, 125–130. 10.1016/j.tips.2005.01.009
    1. Droste C., Greenlee M. W., Schreck M., Roskamm H. (1991). Experimental pain thresholds and plasma beta-endorphin levels during exercise. Med. Sci. Sports Exerc. 23, 334–342. 10.1249/00005768-199103000-00012
    1. Dunbar R. I., Baron R., Frangou A., Pearce E., van Leeuwen E. J., Stow J., et al. . (2011). Social laughter is correlated with an elevated pain threshold. Proc. Biol. Sci. 279, 1161–1167. 10.1098/rspb.2011.1373
    1. Dunbar R. I., Kaskatis K., MacDonald I., Barra V. (2012). Performance of music elevates pain threshold and positive affect: implications for the evolutionary function of music. Evol. Psychol. 10, 688–702. 10.1177/147470491201000403
    1. Edgar D., Brereton M. (2004). Rehabilitation after burn injury. BMJ. 329, 343–345. 10.1136/bmj.329.7461.343
    1. Fields H. (2000). Pain modulation: expectation, opioid analgesia and virtual pain, in The Biological Basis for Mind Body Interactions, eds Mayer E., Saper C. (Amsterdam: Elsevier; ), 245–253.
    1. Fillingim R. B. (2005). Individual differences in pain responses. Curr. Rheumatol. Rep. 7, 342–347. 10.1007/s11926-005-0018-7
    1. Fritz T. (2017). Jymmin–The medical potential of musical euphoria, in The Routledge Companion to embodied Music Interaction, eds Lesaffre M., Maes P. J., Leman M. (London: Taylor and Francis group; ), 278–283.
    1. Fritz T. H., Halfpaap J., Grahl S., Kirkland A., Villringer A. (2013b). Musical feedback during exercise machine workout enhances mood. Front. Cogn. Sci. 4:921. 10.3389/fpsyg.2013.00921
    1. Fritz T. H., Hardikar S., Demoucron M., Niessen M., Demey M., Giot O., et al. . (2013a). Musical agency reduces perceived exertion during strenuous physical performance. Proc. Natl. Acad. Sci. U.S.A. 110, 17784–17789. 10.1073/pnas.1217252110
    1. Fritz T. H., Vogt M., Lederer A., Schneider L., Fomicheva E., Schneider M., et al. . (2015). Benefits of listening to a recording of euphoric joint music making in polydrug abusers. Front. Hum. Neurosci. 9:300. 10.3389/fnhum.2015.00300
    1. Fritz T., Schneider L., Villringer A. (2016). The band effect – physically strenuous music making increases aesthetic appreciation of music. Front. Neurosci. 10:448 10.3389/fnins.2016.00448
    1. Geisser M. E., Haig A. J., Theisen M. E. (2000). Activity avoidance and function in persons with chronic back pain. J. Occup. Rehabil. 10, 215–227. 10.1023/A:1026666403039
    1. Goldfarb A. H., Jamurtas A. Z. (1997). β-endorphin response to exercise. Sports Med. 24, 8–16. 10.2165/00007256-199724010-00002
    1. Hebbes C., Lambert D. G. (2013). Non-opioid analgesics. Anaesthesia Intens. Care Med. 14, 510–513. 10.1016/j.mpaic.2013.08.011
    1. Hosobuchi Y., Rossier J., Bloom F. E., Guillemin R. (1979). Stimulation of human periaqueductal gray for pain relief increases immunoreactive beta-endorphin in ventricular fluid. Science 203, 279–281. 10.1126/science.83674
    1. Houglum P. A. (2010). Therapeutic Exercise for Musculoskeletal Injuries. Champaign, IL: Human Kinetics Publishers.
    1. Hsieh A. Y., Tripp D. A., Ji L. J., Sullivan M. J. (2010). Comparisons of catastrophizing, pain attitudes, and cold-pressor pain experience between Chinese and European Canadian young adults. J. Pain 11, 1187–1194. 10.1016/j.jpain.2010.02.015
    1. Hsu D. T., Sanford B. J., Meyers K. K., Love T. M., Hazlett K. E., Wang H., et al. . (2013). Response of the μ-opioid system to social rejection and acceptance. Mol. Psychiatry 18, 1211–1217. 10.1038/mp.2013.96
    1. Jack K., McLean S. M., Moffett J. K., Gardiner E. (2010). Barriers to treatment adherence in physiotherapy outpatient clinics: a systematic review. Manual Ther. 15, 220–228. 10.1016/j.math.2009.12.004
    1. Jacobs P. L., Nash M. S. (2004). Exercise recommendations for individuals with spinal cord injury. Sports Med. 34, 727–751. 10.2165/00007256-200434110-00003
    1. Kalin N. H., Loevinger B. L. (1983). The central and peripheral opioid peptides: their relationships and functions. Psychiatr. Clin. North Am. 6, 415–428.
    1. Keller P. E., Knoblich G., Repp B. H. (2007). Pianists duet better when they play with themselves: on the possible role of action simulation in synchronization. Conscious. Cogn. 16, 102–111. 10.1016/j.concog.2005.12.004
    1. Kroll H. R. (2015). Exercise Therapy for chronic pain. Phys. Med. Rehabil. Clin. North Am. 26, 263–281. 10.1016/j.pmr.2014.12.007
    1. Kwakkel G., van Peppen R., Wagenaar R. C., Wood Dauphinee S., Richards C., Ashburn A., et al. . (2004). Effects of augmented exercise therapy time after stroke a meta-analysis. Stroke. 35, 2529–2539. 10.1161/01.STR.0000143153.76460.7d
    1. Mannerkorpi K., Iversen M. D. (2003). Physical exercise in fibromyalgia and related syndromes. Best Pract. Res. Clin. Rheumatol. 17, 629–647. 10.1016/S1521-6942(03)00038-X
    1. Mannion A. F., Balagué F., Pellisé F., Cedraschi C. (2007). Pain measurement in patients with low back pain. Nat. Clin. Pract. Rheumatol. 3, 610–618. 10.1038/ncprheum0646
    1. Mayer D. J., Hayes R. L. (1975). Stimulation-produced analgesia: development of tolerance and cross-tolerance to morphine. Science 188, 941–943. 10.1126/science.1094537
    1. McNeill W. H. (1997). Keeping Together in Time. Cambridge, MA: Harvard University Press.
    1. Mior S. (2001). Exercise in the treatment of chronic pain. Clin. J. Pain 17, S77–S85. 10.1097/00002508-200112001-00016
    1. Mitchell L. A., MacDonald R. A., Brodie E. E. (2004). Temperature and the cold pressor test. J. Pain 5, 233–237. 10.1016/j.jpain.2004.03.004
    1. Naugle K. M., Fillingim R. B., Riley J. L. (2012). A meta-analytic review of the hypoalgesic effects of exercise. J. Pain 13, 1139–1150. 10.1016/j.jpain.2012.09.006
    1. North A. C., Hargreaves D. J. (1995). Subjective complexity, familiarity, and liking for popular music. Psychomusicology 14, 77–93. 10.1037/h0094090
    1. Rainville P. (2002). Brain mechanisms of pain affect and pain modulation. Curr. Opin. Neurobiol. 12, 195–204. 10.1016/S0959-4388(02)00313-6
    1. Repp B. H., Keller P. E. (2010). Self versus other in piano performance: detectability of timing perturbations depends on personal playing style. Exp. Brain Res. 202, 101–110. 10.1007/s00221-009-2115-8
    1. Repp B. H., Knoblich G. (2004). Perceiving action identity: how pianists recognize their own performances. Psychol.Sci. 15, 604–609. 10.1111/j.0956-7976.2004.00727.x
    1. Roy M., Lebuis A., Hugueville L., Peretz I., Rainville P. (2012). Spinal modulation of nociception by music. Eur. J. Pain 16, 870–877. 10.1002/j.1532-2149.2011.00030.x
    1. Ruscheweyh R., Marziniak M., Stumpenhorst F., Reinholz J., Knecht S. (2009). Pain sensitivity can be assessed by self-rating: development and validation of the Pain Sensitivity Questionnaire. Pain 146, 65–74. 10.1016/j.pain.2009.06.020
    1. Ruscheweyh R., Verneuer B., Dany K., Marziniak M., Wolowski A., Colak-Ekici R., et al. . (2012). Validation of the pain sensitivity Questionnaire in chronic pain patients. Pain 153, 1210–1218. 10.1016/j.pain.2012.02.025
    1. Ryan R. M., Deci E. L. (2000). Self-determination theory and the facilitation of intrinsic motivation, social development, and well-being. Am. Psychol. 55, 68–78. 10.1037/0003-066X.55.1.68
    1. Sevdalis V., Keller P. E. (2014). Know thy sound: perceiving self and others in musical contexts. Acta Psychol. 152, 67–74. 10.1016/j.actpsy.2014.07.002
    1. Sforzo G. (1989). Opioids and exercise. Sports Med. 7, 109–124. 10.2165/00007256-198907020-00003
    1. Sprouse-Blum A. S., Smith G., Sugai D., Parsa F. D. (2010). Understanding endorphins and their importance in pain management. Hawaii Med. J. 69, 70–71.
    1. Steyer R., Schwenkmezger P., Notz P., Eid M. (1997). Der Mehrdimensionale Befindlichkeitsfragebogen (MDBF; the Multidimensional Mood State Questionnaire, MDMQ). Handanweisung Göttingen: Hogrefe.
    1. Turk D., Meichenbaum D., Genest M., Berntzen D. (1984). Pain and behavioral medicine: a cognitive-behavioral perspective. Cogn. Behav. Ther. 13, 243–244. 10.1080/16506078409455719
    1. Västfjäll D. (2001). Emotion induction through music: a review of the musical mood induction procedure. Mus. Sci. 5(1 Suppl), 173–211. 10.1177/10298649020050S107
    1. Weinstein D., Launay J., Pearce E., Dunbar R. I., Stewart L. (2016). Singing and social bonding: changes in connectivity and pain threshold as a function of group size. Evol. Hum. Behav. 37, 152–158. 10.1016/j.evolhumbehav.2015.10.002
    1. Wiech K., Ploner M., Tracey I. (2008). Neurocognitive aspects of pain perception. Trends Cogn. Sci. 12, 306–313. 10.1016/j.tics.2008.05.005
    1. Zillmann D., Rockwell S., Schweitzer K., Sundar S. S. (1993). Does humor facilitate coping with physical discomfort? Motiv. Emot. 17, 1–21. 10.1007/BF00995204
    1. Zubieta J. K., Smith Y. R., Bueller J. A., Xu Y., Kilbourn M. R., Jewett D. M., et al. . (2001). Regional mu opioid receptor regulation of sensory and affective dimensions of pain. Science 293, 311–315. 10.1126/science.1060952
    1. Zubieta J.-K., Ketter T. A., Bueller J. A., Xu Y., Kilbourn M. R., Young E. A., et al. . (2003). Regulation of human affective responses by anterior cingulate and limbic μ-opioid neurotransmission. Arch. Gen. Psychiatry 60, 1145–1153. 10.1001/archpsyc.60.11.1145

Source: PubMed

3
Iratkozz fel