Bone substitutes: a review of their characteristics, clinical use, and perspectives for large bone defects management

Gabriel Fernandez de Grado, Laetitia Keller, Ysia Idoux-Gillet, Quentin Wagner, Anne-Marie Musset, Nadia Benkirane-Jessel, Fabien Bornert, Damien Offner, Gabriel Fernandez de Grado, Laetitia Keller, Ysia Idoux-Gillet, Quentin Wagner, Anne-Marie Musset, Nadia Benkirane-Jessel, Fabien Bornert, Damien Offner

Abstract

Bone replacement might have been practiced for centuries with various materials of natural origin, but had rarely met success until the late 19th century. Nowadays, many different bone substitutes can be used. They can be either derived from biological products such as demineralized bone matrix, platelet-rich plasma, hydroxyapatite, adjunction of growth factors (like bone morphogenetic protein) or synthetic such as calcium sulfate, tri-calcium phosphate ceramics, bioactive glasses, or polymer-based substitutes. All these substitutes are not suitable for every clinical use, and they have to be chosen selectively depending on their purpose. Thus, this review aims to highlight the principal characteristics of the most commonly used bone substitutes and to give some directions concerning their clinical use, as spine fusion, open-wedge tibial osteotomy, long bone fracture, oral and maxillofacial surgery, or periodontal treatments. However, the main limitations to bone substitutes use remain the management of large defects and the lack of vascularization in their central part, which is likely to appear following their utilization. In the field of bone tissue engineering, developing porous synthetic substitutes able to support a faster and a wider vascularization within their structure seems to be a promising way of research.

Keywords: Synthetic; cyst; dentistry; orthopedics; porosity; spine; vascularization.

Conflict of interest statement

Declaration of conflicting interests: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Figures

Figure 1.
Figure 1.
Various origins of bone defects: (a) Panoramic X-ray. Bone defect of the mandible right body corresponding to an osteonecrosis of the jaw in relation to denosumab taking. (b) 3D-reconstructed view of upper jaw. Bilateral bone defect of premolar regions associated to tooth agenesis in a young adult presenting a WNT10A gene mutation. (c) Panoramic X-ray. Bone defect (radiolucency, *) of the mandible right ramus corresponding to an ameloblastoma, an odontogenic aggressive benign tumor. (d) Panoramic X-ray. Bone defect (radiolucency, arrows) of upper and lower jaws corresponding to a trauma. (e) Panoramic X-ray. Bone defect (arrow) of upper jaw after resection surgery of a gingival squamous cell carcinoma (clinical view, left corner). (f) Reconstruction of the mandible by autogenous bone (fibula) following an invasive squamous cell carcinoma of the gingiva.
Figure 2.
Figure 2.
(a) Radiographical view of a right fibula bone loss, after a road traffic accident in a 24 year-old woman, with an external fixator. (b) Surgical procedure with the use of allogeneic bone chips. (c) Radiographical view 4 months later (courtesy of Dr D. Brinkert).
Figure 3.
Figure 3.
Use of DBM in oral procedures: (a, b) DBM used to fill buccal bone defect (arrow) after implant placement. (c, d) Panoramic X-rays of a maxillary right sinus before (c) and after sinus floor elevation (d) filled with DBM and dental implants placement.

References

    1. Poirier J, Ribadeau Dumas JL, Catala M, et al. Histologie: les tissus. Médecine 1ère année. 2ème éd Paris: Masson, 2002.
    1. Urist MR, O’Conner BT, Burwell RG. Bone graft, derivatives and substitutes. Cambridge: Butterworth-Heinemann, 1994.
    1. Donati D, Zolezzi C, Tomba P, et al. Bone grafting: historical and conceptual review, starting with an old manuscript by Vittorio Putti. Acta Orthop 2007; 78: 19–25.
    1. Mainard D, Delagoutte J-P. Les substituts osseux. In: Mainard D, Merle M, Delagoutte J-P, et al. (eds) Actualités en biomatériaux. Paris Romilliat, 1990, pp. 128–176.
    1. Dreesman H. Über knochenplombierung. Beitr Klin Chir 1892; 9: 804–810.
    1. Pietrzak WS. Musculoskeletal tissue regeneration: biological materials and methods. Human Press, Totowa, 2008, pp. 163–166.
    1. Peltier LF, Bickel EY. The use of plaster of Paris to fill defects in bone. Ann Surg 1957; 146(1): 161–169.
    1. Campana V, Milano G, Pagano E, et al. Bone substitutes in orthopaedic surgery: from basic science to clinical practice. J Mater Sci: Mater Med 2014; 25: 2445–2461.
    1. Faour O, Dimitriou R, Cousins CA, et al. The use of bone graft substitutes in large cancellous voids: any specific needs? Injury 2011; 42: S87–S90.
    1. Greenwald AS, Boden SD, Goldberg VM, et al. Bone-graft substitutes: facts, fictions and applications. J Bone Joint Surg Am 2001; 83: 98–103.
    1. Schlickewie W, Schlickewie C. The use of bone substitutes in the treatment of bone defects—the clinical view and history. Macromol Symp 2007; 253: 10–23.
    1. Pryor LS, Gage E, Langevin CJ, et al. Review of bone substitutes. Craniomaxillofac Trauma Reconstr 2009; 2(3): 151–160.
    1. Giannoudis PV, Dinopoulos H, Tsiridis E. Bone substitutes: an update. Injury 2008; 36(Suppl. 3): S20–S27.
    1. Bloemers FW, Blokhuis TJ, Patka P, et al. Autologous bone versus calcium-phosphate ceramics in treatment of experimental bone defects. J Biomed Mater Res B Appl Biomater 2003; 66(2): 526–531.
    1. Gunzburg R, Szpalski M, Passuti N, et al. The use of bone substitutes in spine surgery: a state of the art review. Springer Science+Business Media, Berlin Heidelberg, 2002, 129 pp.
    1. Hung YW, Ko WS, Liu WH, et al. Local review of treatment of hand enchondroma (artificial bone substitute versus autologous bone graft) in a tertiary referral centre: 13 years’ experience. Hong Kong Med J 2015; 21(3): 217–223.
    1. Liodaki E, Kraemer R, Mailaender P, et al. The use of bone graft substitute in hand surgery: a prospective observational study. Medicine 2016; 95(24): e3631.
    1. Delloye C. Is there still a place for bone allografts in orthopedic surgery in 2011? Bull Mem Acad R Med Belg 2011; 166: 317–326.
    1. Pieske O, Wittmann A, Zaspel J, et al. Autologous bone graft versus demineralized bone matrix in internal fixation of ununited long bones. J Trauma Manag Outcomes 2009; 3: 11.
    1. Drosos GI, Kazakos KI, Kouzoumpasis P, et al. Safety and efficacy of commercially available demineralized bone matrix preparations: a critical review of clinical studies. Injury 2007; 4: S13–S21.
    1. Finkemeier CG. Bone-grafting and bone-graft substitutes. J Bone Joint Surg Am 2002; 84-A: 454–464.
    1. Keating JF, McQueen MM. Substitutes for autologous bone graft in orthopaedic trauma. J Bone Joint Surg Br 2001; 83: 3–8.
    1. Saikia KC, Bhattacharya TD, Bhuyan SK, et al. Calcium phosphate ceramics as bone graft substitutes in filling bone tumor defects. Indian J Orthop 2008; 42(2): 169–172.
    1. Tilkeridis K, Touzopoulos P, Ververidis A, et al. Use of demineralized bone matrix in spinal fusion. World J Orthop 2014; 5(1): 30–37.
    1. Haute Autorité de Santé (HAS). Substituts osseux. Révision de catégories homogènes de dispositifs médicaux. Saint-Denis La Plaine: HAS, 2013.
    1. Offner D, Wagner Q, Keller L, et al. Complications d’une autogreffe osseuse, et comparaison avec une allogreffe osseuse ou l’utilisation de BMPs (Bone Morphogenetic Proteins): une revue systématique de la littérature. Le Journal de l’Orthopédie 2017; 18(65): 3032–3043.
    1. Younger EM, Chapman MW. Morbidity at bone graft donor sites. J Orthop Trauma 1989; 3(3): 192–195.
    1. Zimmermann G, Moghaddam A. Allograft bone matrix versus synthetic bone graft substitutes. Injury 2011; 42(Suppl. 2): S16–S21.
    1. Khan SN, Cammisa FPJ, Sandhu HS, et al. The biology of bone grafting. J Am Acad Orthop Surg 2005; 13(1): 77–86.
    1. Delloye C, van Cauter M, Dufrane D, et al. Local complications of massive bone allografts: an appraisal of their prevalence in 128 patients. Acta Orthop Belg 2014; 80: 196–204.
    1. Mroz TE, Joyce MJ, Steinmetz MP, et al. Musculoskeletal allograft risks and recalls in the United States. J Am Acad Orthop Surg 2008; 16(10): 559–565.
    1. Laurencin CT, El-Amin SF. Xenotransplantation in orthopaedic surgery. J Am Acad Orthop Surg 2008; 16(1): 4–8.
    1. De Vries RBM, Oerlemans A, Trommelmans L, et al. Ethical aspects of tissue engineering: a review. Tissue Eng Part B Rev 2008; 14(4): 367–375.
    1. Evaniew N, Tan V, Parasu N, et al. Use of a calcium sulfate-calcium phosphate synthetic bone graft composite in the surgical management of primary bone tumors. Orthopedics 2013; 36(2): e216–e222.
    1. Kirkpatrick JS, Cornell CN, Hoang BH, et al. Bone void fillers. J Am Acad Orthop Surg 2010; 18(9): 576–579.
    1. Jones CB. Biological basis of fracture healing. J Orthop Trauma 2005; 19: S1–S3.
    1. Chung HJ, Hur JW, Ryu KS, et al. Surgical outcomes of anterior cervical fusion using deminaralized bone matrix as stand-alone graft material: single arm, pilot study. Korean J Spine 2016; 13(3): 114–119.
    1. Han B, Tang B, Nimni ME. Combined effects of phosphatidylcholine and demineralized bone matrix on bone induction. Connect Tissue Res 2003; 44: 160–166.
    1. Roberts TT, Rosenbaum AJ. Bone grafts, bone substitutes and orthobiologics: the bridge between basic science and clinical advancements in fracture healing. Organogenesis 2012; 8(4): 114–124.
    1. Flynn JM. Fracture repair and bone grafting. OKU 10: orthopaedic knowledge update. Rosemont, IL: American Academy of Orthopaedic Surgeons, 2011, pp. 11–21.
    1. Wang JC, Alanay A, Mark D, et al. A comparison of commercially available demineralized bone matrix for spinal fusion. Eur Spine J 2007; 16: 1233–1240.
    1. Urist M. Bone: formation by autoinduction. Science 1965; 150: 893–899.
    1. Urist M, Mikulski A, Boyd S. A chemosterilized antigen-extracted autodigest alloimplant for bone banks. Arch Surg 1975; 110(4): 416–428.
    1. De Long WG, Jr, Einhorn TA, Koval K, et al. Bone grafts and bone graft substitutes in orthopaedic trauma surgery. J Bone Joint Surg Am 2007; 89: 649–658.
    1. Tuli SM, Singh AD. The osteoninductive property of decalcified bone matrix. An experimental study. J Bone Joint Surg Br 1978; 60: 116–123.
    1. Kinney RC, Ziran BH, Hirshorn K, et al. Demineralized bone matrix for fracture healing: fact or fiction? J Orthop Trauma 2010; 24(Suppl. 1): S52–S55.
    1. Albanese A, Licata ME, Polizzi B, et al. Platelet-rich plasma (PRP) in dental and oral surgery: from the wound healing to bone regeneration. Immun Ageing 2013; 10: 23.
    1. Nikolidakis D, Jansen JA. The biology of platelet-rich plasma and its application in oral surgery: literature review. Tissue Eng Part B Rev 2008; 14: 249–258.
    1. El-Sharkawy H, Kantarci A, Deady J, et al. Platelet rich plasma: growth factors and pro- and anti-inflammatory properties. J Periodontol 2007; 78: 661–669.
    1. Anitua E, Andia I, Ardanza B, et al. Autologous platelets as a source of proteins for healing and tissue regeneration. Thromb Haemost 2004; 91: 4–15.
    1. Rickert D, Huddleston Slater JJR, Meijer HJA, et al. Maxillary sinus lift with solely autogenous bone compared to a combination of autogenous bone and growth factors or (solely) bone substitutes. A systematic review. Int J Oral Maxillofac Surg 2012; 41: 160–167.
    1. Sanchez AR, Sheridan PJ, Kupp LI. Is platelet-rich plasma the perfect enhancement factor? A current review. Int J Oral Maxillofac Implants 2003; 18: 93–103.
    1. Ozdemir B, Okte E. Treatment of intrabony defects with betatricalciumphosphate alone and in combination with platelet-rich plasma. J Biomed Mater Res B Appl Biomater 2012; 100: 976–983.
    1. Cabbar F, Güler N, Kürkcü M, et al. The effect of bovine bone graft with or without platelet-rich plasma on maxillary sinus floor augmentation. J Oral Maxillofac Surg 2011; 69: 2537–2547.
    1. Arenaz-Búa J, Luaces-Rey R, Sironvalle-Soliva S, et al. A comparative study of platelet-rich plasma, hydroxyapatite, demineralized bone matrix and autologous bone to promote bone regeneration after mandibular impacted third molar extraction. Med Oral Patol Oral Cir Bucal 2010; 15: 483–489.
    1. Wu X, Shi W, Cao X. Multiplicity of BMP signaling in skeletal development. Ann N Y Acad Sci 2007; 1116: 29–49.
    1. Cochran DL, Schenk R, Buser D, et al. Recombinant human bone morphogenetic protein-2 stimulation of bone formation around endosseous dental implants. J Periodontol 1999; 70(2): 139–150.
    1. Chai F, Raoul G, Wiss A, et al. Bone substitutes: classification and concerns. Rev Stomatol Chir Maxillofac 2011; 112(4): 212–221.
    1. Porter JR, Ruckh TT, Popat KC. Bone tissue engineering: a review in bone biomimetics and drug delivery strategies. Biotechnol Prog 2009; 25(6): 1539–1560.
    1. Burks MV, Nair L. Long term effects of bone morphogenetic protein-based treatments in humans. J Long Term Eff Med Implants 2010; 20(4): 277–293.
    1. Agarwal R, Williams K, Umscheid CA, et al. Osteoinductive bone graft substitutes for lumbar fusion: a systematic review. J Neurosurg Spine 2009; 11(6): 729–740.
    1. Carragee EJ, Hurwitz EL, Weiner BK. A critical review of recombinant human bone morphogenetic protein-2 trials in spinal surgery: emerging safety concerns and lessons learned. Spine J 2011; 11(6): 471–491.
    1. Epstein NE. Complications due to the use of BMP/INFUSE in spine surgery: the evidence continues to mount. Surg Neurol Int 2013; 4(Suppl. 5): S343–S352.
    1. Castro FPJ. Role of activated growth factors in lumbar spinal fusions. J Spinal Disord Tech 2004; 17(5): 380–384.
    1. Tressler MA, Richards JE, Sofianos D, et al. Bone morphogenetic protein-2 compared to autologous iliac crest bone graft in the treatment of long bone nonunion. Orthopedics 2011; 34(12): e877–e884.
    1. Friedlaender GE, Perry CR, Cole JD, et al. Osteogenic Protein-1 (Bone Morphogenetic Protein-7) in the treatment of tibial nonunions: a prospective, randomized clinical trial comparing rhOP-1 with fresh bone autograft. J Bone Joint Surg Am 2001; 83-A(Suppl. 1 Pt2): S151–S158.
    1. Ghosh SK, Nandi SK, Kundu B, et al. In vivo response of porous hydroxyapatite and beta tricalcium phosphate prepared by aqueous solution combustion method and comparison with bioglass scaffolds. J Biomed Mater Res B Appl Biomater 2008; 86: 217–227.
    1. Nandi SK, Kundu B, Ghosh SK, et al. Efficacy of nano-hydroxyapatite prepared by an aqueous solution combustion technique in healing bone defects of goat. J Vet Sci 2008; 9: 183–191.
    1. Koshino T, Murase T, Takagi T, et al. New bone formation around porous hydroxyapatite wedge implanted in opening wedge high tibial osteotomy in patients with osteoarthritis. Biomaterials 2001; 22: 1579–1582.
    1. Okazaki A, Koshino T, Saito T, et al. Osseous tissue reaction around hydroxyapatite block implanted into proximal metaphysis of tibia of rat with collagen-induced arthritis. Biomaterials 2000; 21: 483–487.
    1. Daculsi G. Biphasic calcium phosphate concept applied to artificial bone, implant coating and injectable bone substitute. Biomaterials 1998; 19: 1473–1478.
    1. Spivak JM, Hasharoni A. Use of hydroxyapatite in spine surgery. Eur Spine J 2001; 10: S197–S204.
    1. Johnson KD, Frierson KE, Keller TS, et al. Porous ceramics as bone graft substitutes in long bone defects: a biomechanical, histological, and radiographic analysis. J Orthop Res 1996; 14: 351–369.
    1. Xie J, Baumann MJ, McCabe LR. Osteoblasts respond to hydroxyapatite surfaces with immediate changes in gene expression. J Biomed Mater Res A 2004; 71(1): 108–117.
    1. Chiroff RT, White EW, Weber KN, et al. Tissue ingrowth of replamineform implants. J Biomed Mater 1975; 9: 29–45.
    1. Korovessis P, Koureas G, Zacharatos S, et al. Correlative radiological, self-assessment and clinical analysis of evolution in instrumented dorsal and lateral fusion for degenerative lumbar spine disease. Autograft versus coralline hydroxyapatite. Eur Spine J 2005; 14: 630–638.
    1. Bucholz MP, Carlton A, Holmes RE. Interporous hydroxyapatite as a bone graft substitute in tibial plateau fractures. Clin Orthop 1989; 240: 53–62.
    1. Khan SN, Tomin E, Lane JM. Clinical applications of bone graft substitutes. Orthop Clin North Am 2000; 31: 389–398.
    1. Beuerlein MJS, McKee MD. Calcium sulfates: what is the evidence? J Orthop Trauma 2010; 24: S46–S51.
    1. Blaha JD. Evolving technologies: new answers or new problems? Calcium sulfate bone void filler. Orthopedics 1998; 21: 1017–1019.
    1. Urban RM, Turner TM, Hall DJ, et al. Increased bone formation using calcium sulfate-calcium phosphate composite graft. Clin Orthop Relat Res 2007; 459: 110–117.
    1. Hak DJ. The use of osteoconductive bone graft substitutes in orthopaedic trauma. J Am Acad Orthop Surg 2007; 15: 525–536.
    1. Podaropoulos L, Veis AA, Papadimitriou S, et al. Bone regeneration using beta-tricalcium phosphate in a calcium sulfate matrix. J Oral Implantol 2009; 35(1): 28–36.
    1. Ostermann PA, Seligson D, Henry SL. Local antibiotic therapy for severe open fractures. A review of 1085 consecutive cases. J Bone Joint Surg B 1995; 77: 93–97.
    1. Keating JF, Blachut PA, O’Brien PJ, et al. Reamed nailing of open tibial fractures: does the antibiotic bead pouch reduce the deep infection rate? J Orthop Trauma 1996; 10: 298–303.
    1. Ferguson JY, Dudareva M, Riley ND, et al. The use of a biodegradable antibiotic-loaded calcium sulphate carrier containing tobramycin for the treatment of chronic osteomyelitis: a series of 195 cases. Bone Joint J 2014; 96-B(6): 829–836.
    1. Thomas MV, Puleo DA, Al-Sabbagh M. Calcium sulfate: a review. J Long Term Eff Med Implants 2005; 15(6): 599–607.
    1. Kelly CM, Wilkins RM, Gitelis S, et al. The use of a surgical grade calcium sulfate as a bone graft substitute. Results of a multicenter trial. Clin Orthop Relat Res 2001; 382: 42–50.
    1. Ziran BH, Smith WR, Morgan SJ. Use of calcium-based demineralized bone matrix/allograft for nonunions and posttraumatic reconstruction of the appendicular skeleton. J Trauma 2006; 63: 1324–1328.
    1. Brown WE, Chow LC. A new calcium phosphate water-setting cement, In: Brown WE. Ed., Cements Research Progress, Westerville, 1986, pp. 352–379.
    1. Russell TA, Leighton RK; on behalf of the Alpha-BSM Tibial Plateau Fracture Study Group. Comparison of autogenous bone graft and endothermic calcium phosphate cement for defect augmentation in tibial plateau fractures. A multicenter, prospective, randomized study. J Bone Joint Surg Am 2008; 90: 2057–2061.
    1. Burguera EF, Xu HHK, Weir MD. Injectable and rapid-setting calcium phosphate bone cement with dicalcium phosphate dihydrate. J Biomed Mater Res B Appl Biomater 2006; 77(1): 126–134.
    1. Afifi AM, Gordon CR, Pryor LS, et al. Calcium phosphate cements in skull reconstruction: a meta-analysis. Plast Reconstr Surg 2010; 126(4): 1300–1309.
    1. Galois L, Mainard D. Bone ingrowth into two porous ceramics with different pore sizes: an experimental study. Acta Orthop Belg 2004; 70: 598–603.
    1. Galois L, Mainard D, Delagoutte JP. Beta-tricalcium phosphate ceramic as a bone substitute in orthopaedic surgery. Int Orthop 2002; 26: 109–115.
    1. Malhotra A, Habibovic P. Calcium phosphates and angiogenesis: implications and advances for bone regeneration. Trends Biotechnol 2016; 34(12): 983–992.
    1. Shigaku S, Katsuyuki F. Beta-tricalcium phosphate as a bone graft substitute. Jikeikai Med J 2005; 52: 47–54.
    1. Cheung HS, Haak MH. Growth of osteoblasts on porous calcium phosphate ceramic: an in vitro model for biocompatibility study. Biomaterials 1989; 10: 63–67.
    1. Daculsi G, Passuti N. Effect of the macroporosity for osseous substitution of calcium phosphate ceramics. Biomaterials 1990; 11: 86–87.
    1. Gaasbeck RDA, Toonen HG, van Heerwaarden RJ, et al. Mechanism of bone incorporation of β-TCP bone substitute in open wedge tibial osteotomy in patients. Biomaterials 2005; 26: 6713–6719.
    1. Koerten HK, van der Meulen J. Degradation of calcium phosphate ceramics. J Biomed Mater Res 1999; 44: 78–86.
    1. Dehoux E, Madi K, Fourati E, et al. High tibial open-wedge osteotomy using a tricalcium phosphate substitute: 70 cases with 18 months mean follow-up. Rev Chir Orthop Reparatrice Appar Mot 2005; 91: 143–148.
    1. Bohner M. Calcium orthophosphates in medicine: from ceramics to calcium phosphate cements. Injury 2000; 31(Suppl. 4): 37–47.
    1. Frayssinet P, Mathon D, Lerch A, et al. Osseointegration of composite calcium phosphate bioceramics. J Biomed Mater Res 2000; 50: 125–130.
    1. Nery EB, LeGeros RZ, Lynch KL, et al. Tissue response to biphasic calcium phosphate ceramic with different ratios of HA/βTCP in periodontal osseous defects. J Periodontol 1992; 63: 729–735.
    1. Geiger F, Beverungen M, Lorenz H, et al. Bone substitute effect on vascularization and bone remodeling after application of phVEGF165 transfected BMSC. J Funct Biomater 2012; 3: 313–326.
    1. Daculsi G, LeGeros RZ, Heughebaert M, et al. Formation of carbonate-apatite crystals after implantation of calcium-phosphate ceramics. Calcif Tissue Int 1990; 46: 20–27.
    1. LeGeros RZ, Parsons JR, Daculsi G, et al. Significance of the porosity and physical chemistry of calcium phosphate ceramics. Biodegradation-bioresorption. Ann NY Acad Sci 1988; 523: 268–271.
    1. Chazono M, Tanaka T, Komaki H, et al. Bone formation and bioresorption after implantation of injectable beta-tricalcium phosphate granules-hyaluronate complex in rabbit bone defects. J Biomed Mater Res A 2004; 70(4): 542–549.
    1. Eggli PS, Muller W, Schenk RK. Porous hydroxyapatite and tricalcium phosphate cylinders with two different pore size ranges implanted in the cancellous bone of rabbits. A comparative histomorphometric and histologic study of bony ingrowth and implant substitution. Clin Orthop Relat Res 1988; 232: 127–138.
    1. Buser D, Hoffmann B, Bernard JP, et al. Evaluation of filling materials in membrane—protected bone defects. A comparative histomorphometric study in the mandible of miniature pigs. Clin Oral Implants Res 1998; 9(3): 137–150.
    1. Gouin F, Yaouanc F, Waast D, et al. Open wedge high tibial osteotomies: calcium-phosphate ceramic spacer versus autologous bone graft. Orthop Traumatol Surg Res 2010; 96(6): 637–645.
    1. Bansal S, Chauhan V, Sharma S, et al. Evaluation of hydroxyapatite and beta-tricalcium phosphate mixed with bone marrow aspirate as a bone graft substitute for posterolateral spinal fusionIndian. J Orthop 2009; 43(3): 234–239.
    1. Bansal R, Patil S, Chaubey KK, et al. Clinical evaluation of hydroxyapatite and β-tricalcium phosphate composite graft in the treatment of intrabony periodontal defect: a clinico-radiographic study. J Indian Soc Periodontol 2014; 18(5): 610–617.
    1. Matsumine A, Myoui A, Kusuzaki K, et al. Calcium hydroxyapatite implants in bone tumour surgery: a long term follow up study. J Bone Joint Surg Br 2004; 86: 719–725.
    1. Reddy R, Swamy MK. The use of hydroxyapatite as a bone graft substitute in orthopedic conditions. Indian J Orthop 2005; 39: 52–54.
    1. Oh KJ, Ko YB, Jaiswal S, et al. Comparison of osteoconductivity and absorbability of beta-tricalcium phosphate and hydroxyapatite in clinical scenario of opening wedge high tibial osteotomy. J Mater Sci Mater Med 2016; 12: 179.
    1. Rojbani H, Nyam M, Ohya K, et al. Evaluation of the osteoconductivity of α-tricalcium phosphate, β-tricalcium phosphate, and hydroxyapatite combined with or without simvastatin in rat calvarial defect. J Biomed Mater Res A 2011; 98(4): 488–498.
    1. Lee KS, Chang JS, Kim JH, et al. The role of osteoclast in resorption of hydroxyapatite and β-tricalcium phosphate coating layer. Key Eng Mater 2009; 396–398: 81–84.
    1. Schwarz F, Herten M, Ferrari D, et al. Guided bone regeneration at dehiscence-type defects using biphasic hydroxyapatite + beta tricalcium phosphate or a collagen coated natural bone mineral: as immunohistochemical study in dogs. Int J Oral Maxillofac Surg 2007; 36: 1198–1206.
    1. Muschik M, Ludwig R, Halbhubner S, et al. B-tricalcium phosphate as a bone substitute for dorsal spinal fusion in adolescent idiopathic scoliosis: preliminary results of a prospective clinical study. Eur Spine J 2001; 10: S178–S184.
    1. Jarcho M. Calcium phosphate ceramics as hard tissue prosthetics. Clin Orthop Relat Res 1981; 157: 259–278.
    1. Fillingham YA, Lenart BA, Gitelis S. Function after injection of benign bone lesions with a bioceramic. Clin Orthop Relat Res 2012; 470(7): 2014–2020.
    1. Hench LL, Splinter RJ, Allen WC, et al. Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res 1971; 5: 117–141.
    1. Krishnan V, Lakshmi T. Bioglass: a novel biocompatible innovation. J Adv Pharm Technol Res 2013; 4(2): 78–83.
    1. Hench LL, Wilson J. Surface-active biomaterials. Science 1984; 226: 630–636.
    1. Wallace KE, Hill RG, Pembroke JT, et al. Influence of sodium oxide content on bioactive glass properties. J Mater Sci Mater Med 1999; 10: 697–701.
    1. Neo M, Nakamura T, Ohtsuki C, et al. Ultrastructural study of the A-W GC-bone interface after long-term implantation in rat and human bone. J Biomed Mater Res 1994; 28: 365–372.
    1. Zhang H, Ye XJ, Li JS. Preparation and biocompatibility evaluation of apatite/wollastonite-derived porous bioactive glass ceramic scaffolds. Biomed Mater 2009; 4(4): 045007.
    1. De Aza PN, Luklinska ZB, Santos C, et al. Mechanism of bone-like formation on a bioactive implant in vivo. Biomaterials 2003; 24: 1437–1445.
    1. Moimas L, Biasotto M, Di LR, et al. Rabbit pilot study on the resorbability of three-dimensional bioactive glass fibre scaffolds. Acta Biomater 2006; 2: 191–199.
    1. Rahaman MN, Day DE, Bal BS, et al. Bioactive glass in tissue engineering. Acta Biomater 2011; 7(6): 2355–2373.
    1. Knowles J. Phosphate based glasses for medical application. J Mater Chem 2003; 13: 2395–2401.
    1. Hench LL, Paschall HA. Histochemical responses at a materials interface. J Biomed Mater Res 1974; 5: 49–54.
    1. Nandi SK, Roy S, Mukherjee P, et al. Orthopaedic applications of bone graft and graft substitutes: a review. Indian J Med Res 2010; 132: 15–30.
    1. Wagner Q, Offner D, Idoux-Gillet Y, et al. Nanostructured implant combining mesenchymal cells and VEGF nanoparticles for enhanced engineered tissue vascularization. Nanomedicine 2016; 11: 2419–2430.
    1. Eap S, Ferrand A, Palomares CM, et al. Electrospun nanofibrous 3D scaffold for bone tissue engineering. Biomed Mater Eng 2012; 22(1–3): 137–141.
    1. Eap S, Keller L, Schiavi J, et al. A living thick nanofibrous implant bifunctionalized with active growth factor and stem cells for bone regeneration. Int J Nanomedicine 2015; 10: 1061–1075.
    1. Ferrand A, Eap S, Richert L, et al. Osteogenetic properties of electrospun nanofibrous PCL scaffolds equipped with chitosan-based nanoreservoirs of growth factors. Macromol Biosci 2014; 14(1): 45–55.
    1. Porter JR, Henson A, Popat KC. Biodegradable poly(epsilon-caprolactone) nanowires for bone tissue engineering applications. Biomaterials 2009; 30(5): 780–788.
    1. Hernigou P, Ma W. Open wedge tibial osteotomy with acrylic bone cement as bone substitute. Knee 2001; 8: 103–110.
    1. Laurencin C, Khan Y, El-Amin SF. Bone graft substitutes. Expert Rev Med Devices 2006; 3(1): 49–57.
    1. Handoll HHG, Watts AC. Bone grafts and bone substitutes for treating distal radial fractures in adults. Cochrane Database Syst Rev 2008; 2: CD006836.
    1. Carson JS, Bostrom MP. Synthetic bone scaffolds and fracture repair. Injury 2007; 38(Suppl. 1): S33–S37.
    1. Rajaee SS, Bae HW, Kanim LE, et al. Spinal fusion in the United States: analysis of trends from 1998 to 2008. Spine 2012; 37: 67–76.
    1. Gupta A, Kukkar N, Sharif K, et al. Bone graft substitutes for spine fusion: a brief review. World J Orthop 2015; 6(6): 449–456.
    1. Vaccaro AR, Stubbs HA, Block JE. Demineralized bone matrix composite grafting for posterolateral spinal fusion. Orthopedics 2007; 30: 567–570.
    1. Kang J, An H, Hilibrand A, et al. Grafton and local bone have comparable outcomes to iliac crest bone in instrumented single-level lumbar fusions. Spine 2012, 37: 1083–1091.
    1. Cammisa FP, Lowery G, Garfin SR, et al. Two-year fusion rate equivalency between Grafton DBM gel and autograft in posterolateral spine fusion: a prospective controlled trial employing a side-by-side comparison in the same patient. Spine 2004; 29: 660–666.
    1. Schizas C, Triantafyllopoulos D, Kosmopoulos V, et al. Posterolateral lumbar spine fusion using a novel demineralized bone matrix: a controlled case pilot study. Arch Orthop Trauma Surg 2008; 128: 621–625.
    1. An HS, Simpson JM, Glover JM, et al. Comparison between allograft plus demineralized bone matrix versus autograft in anterior cervical fusion. A prospective multicenter study. Spine 1995; 20: 2211–2216.
    1. Mashoof AA, Siddiqui SA, Otero M, et al. Supplementation of autogenous bone graft with coralline hydroxyapatite in posterior spine fusion for idiopathic adolescent scoliosis. Orthopaedics 2002; 25: 1073–1076.
    1. Vaz K, Verma K, Protopsaltis T, et al. Bone grafting options for lumbar spine surgery: a review examining clinical efficacy and complications. SAS J 2010; 4(3): 75–86.
    1. Epstein NE. A preliminary study of the efficacy of Beta Tricalcium Phosphate as a bone expander for instrumented posterolateral lumbar fusions. J Spinal Disord Tech 2006; 19: 424–429.
    1. Brouwer R, Jakma T, Bierma-Zeinstra S, et al. Osteotomy for treating knee osteoarthritis. Cochrane Database Syst Rev 2005; 1: CD004019.
    1. Meynet JC. Ostéotomie tibiale de valgisation par ouverture interne: place des substituts osseux. Ann Orthop Ouest 1998; 30: 171–174.
    1. Romanet JP, Benoit J, Nordin JY. Utilisation de céramique d’hydroxyapatite de calcium comme substitut de greffe osseuse (Endobon*). Résultats sur 62 cas revus à 1 an. Rev Chir Orthop 1996; 87(Suppl. II): 17.
    1. Van Hemert WLW, Willemms K, Anderson PG, et al. Tricalcium phosphate granules or rigid wedge preforms in open wedge high tibial osteotomy: a radiological study with a new evaluation system. Knee 2004; 11: 451–456.
    1. Holmes RE, Bucholz RW, Mooney V. Porous hydroxyapatite as a bone graft substitute in metaphyseal defects. J Bone Joint Surg 1986; 68-A: 904–911.
    1. Giuseffi SA, Replogle WH, Shelton WR. Opening-wedge high tibial osteotomy: review of 100 consecutive cases. Arthroscopy 2015; 31(11): 2128–2137.
    1. Yu B, Han K, Ma H, et al. Treatment of tibial plateau fractures with high strength injectable calcium sulphate. Int Orthop 2009; 33(4): 1127–1133.
    1. Mik G, Arkader A, Manteghi A, et al. Results of a minimally invasive technique for treatment of unicameral bone cysts. Clin Orthop Relat Res 2009; 467(11): 2949–2954.
    1. Mirzayan R, Panossian V, Avedian R, et al. The use of calcium sulfate in the treatment of benign bone lesions. A preliminary report. J Bone Joint Surg Am 2001; 83(3): 355–358.
    1. Kim JH, Oh JH, Han I, et al. Grafting using injectable calcium sulfate in bone tumor surgery: comparison with demineralized bone matrix-based grafting. Clin Orthop Surg 2011; 3: 191–201.
    1. Werier JM. Bone graft substitutes in oncology, paediatrics, and hip arthroplasty. Canadian Orthopaedic Association’s COA Bulletin, Ottawa: 2011, p. 95.
    1. Joeris A, Ondrus S, Planka L, et al. ChronOS inject in children with benign bone lesions: does it increase the healing rate? Eur J Pediatr Surg 2010; 20: 24–28.
    1. Hou HY, Wu K, Wang CT, et al. Treatment of unicameral bone cyst: a comparative study of selected techniques. J Bone Joint Surg Am 2010; 92: 855–862.
    1. Campanacci M, Capanna R, Fabbri N, et al. Curettage of giant cell tumor of bone, reconstruction with subchondral grafts and cement. Chir Organi Mov 1990; 75(1 Suppl.): 212–213.
    1. Roffi A, Di Matteo B, Krishnakumar GS, et al. Platelet-rich plasma for the treatment of bone defects: from pre-clinical rational to evidence in the clinical practice. A systematic review. Int Orthop 2017; 41(2): 221–237.
    1. Subramaniam P, Kumar K, Ramakrishna T, et al. Bone regeneration with plasma-rich-protein following enucleation of traumatic bone cyst. Eur J Dent 2013; 7(3): 377–381.
    1. MacDonald KM, Swanstrom MM, McCarthy JJ, et al. Exaggerated inflammatory response after use of recombinant bone morphogenetic protein in recurrent unicameral bone cysts. J Pediatr Orthop 2010; 30(2): 199–205.
    1. El-Adl G, Mostafa MF, Enan A, et al. Biphasic ceramic bone substitute mixed with autogenous bone marrow in the treatment of cavitary benign bone lesions. Acta Orthop Belg 2009; 75: 110–118.
    1. Siegel HJ, Baird RC, 3rd, Hall J, et al. The outcome of composite bone graft substitute used to treat cavitary bone defects. Orthopedics 2008; 31(8): 754.
    1. Payne WT, Merrell G. Benign bony and soft tissue tumors of the hand. J Hand Surg 2010; 35: 1901–1910.
    1. Schaller P, Baer W. Operative treatment of enchondromas of the hand: is cancellous bone grafting necessary? Scand J Plast Reconstr Surg Hand Surg 2009; 43: 279–285.
    1. Bachoura A, Rice IS, Lubahn AR, et al. The surgical management of hand enchondroma without postcurettage void augmentation: authors’ experience and a systematic review. Hand 2015; 10(3): 461–471.
    1. Jakubietz MG, Gruenert JG, Jakubietz RG. The use of beta-tricalcium phosphate bone graft substitute in dorsally plated, comminuted distal radius fractures. J Orthop Surg Res 2011; 6: 24.
    1. Fayaz HC, Giannoudis PV, Vrahas MS, et al. The role of stem cells in fracture healing and nonunion. Int Orthop 2011; 35: 1587–1597.
    1. Russell AT, Taylor CJ, Lavelle DG. Fractures of tibia and fibula. In: Bucholz RW, Heckman JD, Court-Brown CM. (eds) Rockwood and Green’s: Fractures in adults, Lippincott Williams & Wilkins, Philadelphia: vol. 3, 1991, pp. 1915–1982.
    1. Einhorn TA: Enhancement of fracture-healing. J Bone Joint Surg Am 1995; 77: 940–956.
    1. Borrelli J, Prickett WD, Ricci WM. Treatment of nonunions and On the contrary, allogenic osseous defects with bone graft and calcium sulfate. Clin Orthop Relat Res 2003; 411: 245–254.
    1. Gómez-Barrena E, Rosset P, Gebhard F, et al. Feasibility and safety of treating non-unions in tibia, femur and humerus with autologous, expanded, bone marrow-derived mesenchymal stromal cells associated with biphasic calcium phosphate biomaterials in a multicentric, non-comparative trial. Biomaterials. Epub ahead of print 19 March 2018. DOI: 10.1016/j.biomaterials.2018.03.033.
    1. Bourgeois D, Bouchard P, Mattout C. Epidemiology of periodontal status in dentate adults in France, 2002–2003. J Periodontal Res 2007; 42(3): 219–227.
    1. Reynolds MA, Aichelmann-Reidy ME, Branch-Mays GL, et al. The efficacy of bone replacement grafts in the treatment of periodontal osseous defects. A systematic review. Ann Periodontol 2003; 8(1): 227–265.
    1. Bayerlein T, Mundt T, Mack F, et al. Bone graft substitutes in periodontal and peri-implant bone regeneration. Folia Morphol 2006; 65(1): 66–69.
    1. Froum SJ, Weinberg MA, Tarnow D. Comparison of bioactive glass synthetic bone graft particles and open debridement in the treatment of human periodontal defects. A clinical study. J Periodontol 1998; 69: 698–709.
    1. Del Fabbro M, Bortolin M, Taschieri S, et al. Is platelet concentrate advantageous for the surgical treatment of periodontal diseases? A systematic review and meta-analysis. J Periodontol 2011; 82: 1100–1111.
    1. Piemontese M, Aspriello SD, Rubini C, et al. Treatment of periodontal intrabony defects with demineralized freeze-dried bone allograft in combination with platelet-rich plasma: a comparative clinical trial. J Periodontol 2008; 79: 802–810.
    1. Keceli HG, Sengun D, Berberoğlu A, et al. Use of platelet gel with connective tissue grafts for root coverage: a randomized-controlled trial. J Clin Periodontol 2008; 35: 255–262.
    1. Hanes PJ. Bone replacement grafts for the treatment of periodontal intrabony defects. Oral Maxillofac Surg Clin North Am 2007; 19(4): 499–512.
    1. Poeschl PW, Ziya-Ghazvini F, Schicho K, et al. Application of platelet-rich plasma for enhanced bone regeneration in grafted sinus. J Oral Maxillofac Surg 2012; 70: 657–664.
    1. Khairy NM, Shendy EE, Askar NA, et al. Effect of platelet rich plasma on bone regeneration in maxillary sinus augmentation (randomized clinical trial). J Oral Maxillofac Surg 2013; 42(2): 249–255.
    1. Esposito M, Grusovin MG, Rees J, et al. Interventions for replacing missing teeth: augmentation procedures of the maxillary sinus. Cochrane Database Syst Rev 2010; 17: CD008397.
    1. Irinakis T. Efficacy of injectable demineralized bone matrix as graft material during sinus elevation surgery with simultaneous implant placement in the posterior maxilla: clinical evaluation of 49 sinuses. J Oral Maxillofac Surg 2011; 69: 134–141.
    1. Sohn DS, Bae MS, Choi BJ, et al. Efficacy of demineralized bone matrix paste for maxillary sinus augmentation: a histologic and clinical study in humans. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009; 108: e30–e35.
    1. Aly LAA, Hammouda NI. Evaluation of implant stability simultaneously placed with sinus lift augmented with putty versus powder form of demineralized bone matrix in atrophied posterior maxilla. Future Dental Journal 2017; 3: 28–34.
    1. Nkenke E, Stelzle F. Clinical outcomes of sinus floor augmentation for implant placement using autogenous bone or bone substitutes: a systematic review. Clin Oral Impl Res 2009; 20(Suppl. 4): 124–133.
    1. Bocanegra-Perez S, Vicente-Barrero M, Knezevic M, et al. Use of platelet-rich plasma in the treatment of bisphosphonate-related osteonecrosis of the jaw. Int J Oral Maxillofac Surg 2012; 41: 1410–1415.
    1. Mozzati M, Gallesio G, Arata V, et al. Platelet-rich therapies in the treatment of intravenous bisphosphonate-related osteonecrosis of the jaw: a report of 32 cases. Oral Oncol 2012; 48(5): 469–474.
    1. Coviello V, Peluso F, Dehkhargani SZ, et al. Platelet-rich plasma improves wound healing in multiple myeloma bisphosphonate-associated osteonecrosis of the jaw patients. J Biol Regul Homeost Agents 2012; 26: 151–155.
    1. Geurts J, Chris Arts JJ, Walenkamp GH. Bone graft substitutes in active or suspected infection. Contra-indicated or not? Injury 2011; 42(Suppl. 2): S82–S86.
    1. Lalidou F, Kolios G, Drosos GI. Bone infections and bone graft substitutes for local antibiotic therapy. Surg Technol Int 2014; 24: 353–362.
    1. Silverman LD, Lukashova L, Herman OT, et al. Release of gentamicin from a tricalcium phosphate bone implant. J Orthop Res 2007; 25(1): 23–29.
    1. Takigami I, Ito Y, Ishimaru D, et al. Two-stage revision surgery for hip prosthesis infection using antibiotic-loaded porous hydroxyapatite blocks. Arch Orthop Trauma Surg 2010; 130(10): 1221–1226.
    1. Mousset B, Benoit MA, Bouillet R, et al. Biodegradable implants for potential use in bone infection. Int Orthop 1995; 19: 157–161.
    1. Ginebra MP, Canal C, Espanol M, et al. Calcium phosphate cements as drug delivery materials. Adv Drug Deliv Rev 2012; 64(12): 1090–1110.
    1. Espanol M, Perez RA, Montufar EB, et al. Intrinsic porosity of calcium phosphate cements and its significance for drug delivery and tissue engineering applications. Acta Biomater 2009; 5: 2752–2762.
    1. Lindfors NC, Hyvönen P, Nyyssönen M, et al. Bioactive glass S53P4 as bone graft substitute in treatment of osteomyelitis. Bone 2010; 47(2): 212–218.
    1. Aydin S, Kucukyuruk B, Abuzayed B, et al. Cranioplasty: review of materials and techniques. J Neurosci Rural Pract 2011; 2(2): 162–167.
    1. Cho YJ, Kang SH. Review of cranioplasty after decompressive craniectomy. Korean J Neurotrauma 2017; 13(1): 9–14.
    1. Piitulainen JM, Kauko T, Aitasolo KM, et al. Outcomes of cranioplasty with synthetic materials and autologous bone grafts. World Neurosurg 2015; 83: 708–714.
    1. Gosain AK. Hydroxyapatite cement paste cranioplasty for the treatment of temporal hollowing after cranial vault remodeling in a growing child. J Craniofac Surg 1997; 8: 506–511.
    1. Plum AW, Tatum SA. A comparison between autograft alone, bone cement, and demineralized bone matrix in cranioplasty. Laryngoscope 2015; 125: 1322–1327.
    1. Gladstone HB, McDermott MW, Cooke DD. Implants for cranioplasty. Otolaryngol Clin North Am 1995; 28: 381–400.
    1. Lieberman IH, Togawa D, Kayanja MM. Vertebroplasty and kyphoplasty: filler materials. Spine J 2005; 5: 305S–316S.
    1. Gangi A, Kastler BA, Dietemann JL. Percutaneous vertebroplasty guided by a combination of CT and fluoroscopy. AJNR Am J Neuroradiol 1994; 15: 83–86.
    1. He Z, Zhai Q, Hu M, et al. Bone cements for percutaneous vertebroplasty and balloon kyphoplasty: current status and future developments. J Orthop Translat 2015; 3: 1–11.
    1. Phillips FM, Ho E, Campbell-Hupp M, et al. Early radiographic and clinical results of balloon kyphoplasty for the treatment of osteoporotic vertebral compression fractures. Spine 2003; 28: 2260–2265.
    1. Garfin SR, Yuan HA, Reily MA. New technologies in spine: kyphoplasty and vertebroplasty for the treatment of painful osteoporotic compression fractures. Spine 2001; 26: 1511–1515.
    1. Khairoun I, Magne D, Gauthier O, et al. In vitro characterization and in vivo properties of a carbonated apatite bone cement. J Biomed Mater Res 2002; 60: 633–642.
    1. Low KL, Tan SH, Zein SH, et al. Calcium phosphate-based composites as injectable bone substitute materials. J Biomed Mater Res B Appl Biomater 2010; 94: 273–286.
    1. Turner TM, Urban RM, Singh K, et al. Vertebroplasty comparing injectable calcium phosphate cement compared with polymethylmethacrylate in a unique canine vertebral body large defect model. Spine J 2008; 8(3): 482–487.
    1. Vlad MD, Sindilar EV, Marinoso ML, et al. Osteogenic biphasic calcium sulphate dihydrate/iron-modified alpha-tricalcium phosphate bone cement for spinal applications: in vivo study. Acta Biomater 2010; 6: 607–616.
    1. Blom AW, Wylde V, Livesey C, et al. Impaction bone grafting of the acetabulum at hip revision using a mix of bone chips and a biphasic porous ceramic bone graft substitute. Acta Orthop 2009; 80: 150–154.
    1. McNamara IR. Impaction bone grafting in revision hip surgery: past, present and future. Cell Tissue Bank 2010; 11: 57–73.
    1. Suzuki K, Park BJ, Adusumilli PS, et al. Chest wall reconstruction using a methyl methacrylate neo-rib and mesh. Ann Thorac Surg 2015; 100(2): 744–747.
    1. Kujala S, Raatikainen T, Ryhanen J, et al. Composite implant of native bovine bone morphogenetic protein (BMP) and biocoral in the treatment of scaphoid nonunions—a preliminary study. Scand J Surg 2002; 91: 186–190.
    1. Koo KT, Polimeni G, Qahash M, et al. Periodontal repair in dogs: guided tissue regeneration enhances bone formation in sites implanted with a coral-derived calcium carbonate biomaterial. J Clin Periodontol 2005; 32: 104–110.
    1. Fondi C, Franchi A. Definition of bone necrosis by the pathologist. Clin Cases Miner Bone Metab 2007; 4(1): 21–26.
    1. Glowacki J. Angiogenesis in fracture repair. Clin Orthop Relat Res 1998; 355: S82–S89.
    1. Gotz W, Reichert C, Canullo L, et al. Coupling of osteogenesis and angiogenesis in bone substitute healing—a brief overview. Ann Anat 2012; 194: 171–173.
    1. LeGeros RZ. Properties of osteoconductive biomaterials: calcium phosphates. Clin Orthop Relat Res 2002; 395: 81–98.
    1. Axelrad TW, Kakar S, Einhorn TA. New technologies for the enhancement of skeletal repair. Injury 2007; 38: S49–S62.
    1. Muschler GF, Nitto H, Boehm CA, et al. Age- and gender-related changes in the cellularity of human bone marrow and the prevalence of osteoblastic progenitors. J Orthop Res 2001; 19: 117–125.
    1. Schmidt-Bleek K, Schell H, Schulz N, et al. Inflammatory phase of bone healing initiates the regenerative healing cascade. Cell Tissue Res 2012; 347: 567–573.
    1. Giannoudis PV, Einhorn TA, Schmidmaier G, et al. The diamond concept—open questions. Injury 2008; 39(Suppl. 2): S5–S8.
    1. Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 2005; 26: 5474–5491.
    1. Hulbert SF, Cooke FW, Klawitter JJ, et al. Attachment of prostheses to the musculoskeletal system by tissue in growth and mechanical inter locking. J Biomed Mater 1973; 7: 1–23.
    1. Yuan H, Kurashina K, de Bruijn JD, et al. A preliminary study on osteoinduction of two kinds of calcium phosphate ceramics. Biomaterials 1999; 20(19): 1799–1806.
    1. Lu JX. Role of interconnections in porous bioceramics on bone recolonization in vitro and in vivo. J Mater Sci Mater Med 1999; 10: 111–120.
    1. Tsuruga E, Takita H, Itoh H, et al. Pore size of porous hydroxyapatite as the cell-substratum controls BMPinduced osteogenesis. J Biochem 1997; 121(2): 317–324.
    1. Le Huec JC, Schaeverbeke T, Clement D, et al. Influence of porosity on the mechanical resistance of hydroxyapatite ceramics under compressive stress. Biomaterials 1995; 16: 113–118.
    1. Guerrero J, Catros S, Derkaoui SM, et al. Cell interactions between human progenitor-derived endothelial cells and human mesenchymal stem cells in a three-dimensional macroporous plysaccharide-based scaffold promote osteogenesis. Acta Biomater 2013; 9: 8200–8213.
    1. Offner D, Wagner Q, Idoux-Gillet Y, et al. Hybrid collagen sponge and stem cells as a new combined scaffold able to induce the re-organization of endothelial cells into clustered networks. Biomed Mater Eng 2017; 28(S1): S185–S192.

Source: PubMed

3
Iratkozz fel