Circumcision status at HIV infection is not associated with plasma viral load in men: analysis of specimens from a randomized controlled trial

Stephanie M Davis, Sherri Pals, Chunfu Yang, Elijah Odoyo-June, Joy Chang, Maroya Spalding Walters, Walter Jaoko, Naomi Bock, Larry Westerman, Carlos Toledo, Robert C Bailey, Stephanie M Davis, Sherri Pals, Chunfu Yang, Elijah Odoyo-June, Joy Chang, Maroya Spalding Walters, Walter Jaoko, Naomi Bock, Larry Westerman, Carlos Toledo, Robert C Bailey

Abstract

Background: Male circumcision provides men with approximately 60% protection from acquiring HIV infection via heterosexual sex, and has become a key component of HIV prevention efforts in sub-Saharan Africa. Possible mechanisms for this protection include removal of the inflammatory anaerobic sub-preputial environment and the high concentration of Langerhans cells on the inside of the foreskin, both believed to promote local vulnerability to HIV infection. In people who do acquire HIV, viral load is partially determined by infecting partner viral load, potentially mediated by size of infecting inoculum. By removing a portal for virion entry, prior male circumcision could decrease infecting inoculum and thus viral load in men who become HIV-infected, conferring the known associated benefits of slower progression to disease and decreased infectiousness.

Methods: We performed an as-treated analysis of plasma samples collected under a randomized controlled trial of male circumcision for HIV prevention, comparing men based on their circumcision status at the time of HIV acquisition, to determine whether circumcision is associated with lower viral load. Eligible men were seroconverters who had at least one plasma sample available drawn at least 6 months after infection, reported no potential exposures other than vaginal sex and, for those who were circumcised, were infected more than 6 weeks after circumcision, to eliminate the open wound as a confounder. Initial viral load testing indicated that quality of pre-2007 samples might have been compromised during storage and they were excluded, as were those with undetectable or unquantifiable results. Log viral loads were compared between groups using univariable and multivariable linear regression, adjusting for sample age and sexually transmitted infection diagnosis with 3.5 months of seroconversion, with a random effect for intra-individual clustering for samples from the same man. A per-protocol analysis was also performed.

Results: There were no viral load differences between men who were circumcised and uncircumcised at the time of HIV infection (means 4.00 and 4.03 log10 copies/mL respectively, p = .88) in any analysis.

Conclusion: Circumcision status at the time of HIV infection does not affect viral load in men.

Trial registration: The original RCT which provided the samples was ClinicalTrials.gov trial NCT00059371 .

Keywords: Circumcision; Clinical trials; HIV prevention; Intervention; Viral load.

Conflict of interest statement

Ethics approval and consent to participate

This secondary analysis obtained IRB approval from the Kenyatta National Hospital ethics and research committee, and exemption determinations from CDC Human Subjects Review and a University of Illinois IRB.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Potential relationship between circumcision status at HIV infection and viral load
Fig. 2
Fig. 2
Relationship between age of sample and log10 viral load
Fig. 3
Fig. 3
Relationship between time since seroconversion and Log10 viral load

References

    1. Auvert B, Taljaard D, Lagarde E, Sobngwi-Tambekou J, Sitta R, Puren A. Randomized, controlled intervention trial of male circumcision for reduction of HIV infection risk: the ANRS 1265 Trial. PLoS Med. 2005;2(11):e298. doi: 10.1371/journal.pmed.0020298.
    1. Bailey RC, Moses S, Parker CB, Agot K, Maclean I, Krieger JN. Male circumcision for HIV prevention in young men in Kisumu, Kenya: a randomised controlled trial. Lancet. 2007;369(9562):643–656. doi: 10.1016/S0140-6736(07)60312-2.
    1. Gray RH, Kigozi G, Serwadda D, Makumbi F, Watya S, Nalugoda F. Male circumcision for HIV prevention in men in Rakai, Uganda: a randomised trial. Lancet. 2007;369(9562):657–666. doi: 10.1016/S0140-6736(07)60313-4.
    1. World Health Organization. Voluntary medical male circumcision for HIV prevention in 14 Priority Countries In Eastern And Southern Africa: July 2017 Progress Brief. Accessed online Feb 2, 2017 at .
    1. Morris BJ, Wamai RG. Biological basis for the protective effect conferred by male circumcision against HIV infection. Int J STD AIDS. 2012;23(3):153–159. doi: 10.1258/ijsa.2011.011228.
    1. Saathoff E, Pritsch M, Geldmacher C, Hoffmann O, Koehler RN, Maboko L, et al. Viral and host factors associated with the HIV-1 viral load set point in adults from Mbeya region. Tanzania J Acquir Immune Defic Syndr. 2010;54(3):324–330. doi: 10.1097/QAI.0b013e3181cf30ba.
    1. Hodcroft E, Hadfield JD, Fearnhill E, Phillips A, Dunn D, O'Shea D, et al, on behalf of the UK HIV Drug Resistance Database and the UK CHIC Study. The contribution of viral genotype to plasma viral set-point in HIV infection. PLoS Pathog. 2014 10(5): e1004112. doi: 10.1371/journal.ppat.1004112
    1. Hollingsworth TD, Laeyendecker O, Shirreff G, Donnelly CA, Serwadda D, et al. HIV-1 transmitting couples have similar viral load set-points in Rakai. Uganda PLoS Pathology. 2010;6(5):e1000876. doi: 10.1371/journal.ppat.1000876.
    1. Tang J, Tang S, Lobashevsky E, Zulu I, Aldrovandi G, Allen S, et al. HLA allele sharing and HIV type 1 viremia in seroconverting Zambians with known transmitting partners. AIDS Res Hum Retrovir. 2004;20(1):19–25. doi: 10.1089/088922204322749468.
    1. Hecht FM, Hartogensis W, Bragg L, Bacchetti P, Atchison R, Grant R, et al. HIV RNA level in early infection is predicted by viral load in the transmission source. AIDS. 2010;24(7):941–945. doi: 10.1097/QAD.0b013e328337b12e.
    1. Shaw GM, Hunter E. HIV transmission. Cold Spring Harb Perspect Med. 2012;2(11):pii: a006965. doi: 10.1101/cshperspect.a006965.
    1. Lingappa JR, Thomas KK, Hughes JP, Baeten JM, Wald A, Farquhar C, et al. On behalf of Partners in Prevention HSV/HIV transmission study team. Partner characteristics predicting HIV-1 set point in sexually acquired HIV-1 among African seroconverters. AIDS Res Hum Retrovir. 2013;29(1):164–171. doi: 10.1089/aid.2012.0206.
    1. Keele BF, Giorgi EE, Salazar-Gonzalez JF, Decker JM, Pham KT, Salazar MG, et al. Identification and characterization of transmitted and early founder virus envelopes in primary HIV-1 infection. Proc Natl Acad Sci U S A. 2008;105(21):7552–7557. doi: 10.1073/pnas.0802203105.
    1. Mellors JW, Rinaldo CR, Jr, Gupta P, White RM, Todd JA, Kingsley LA. Prognosis in HIV-1 infection predicted by the quantity of virus in plasma. Science. 1996;272:1167–1170. doi: 10.1126/science.272.5265.1167.
    1. Mackelprang RD, Carrington M, Thomas KK, Hughes JP, Baeten JM, Wald A, et al. Host genetic and viral determinants of HIV-1 RNA set point among HIV-1 seroconverters from sub-saharan Africa. J Virol. 2015;89(4):2104–2111. doi: 10.1128/JVI.01573-14.
    1. Randomized Control Trial of Male Circumcision to Reduce HIV Incidence in Kisumu, Kenya. Accession number PB2012500016. National Technical Reports Library:
    1. Eller MA, Opollo MS, Liu M, Redd AD, Eller LA, Kityo C, et al. HIV type 1 disease progression to AIDS and death in a rural Ugandan cohort is primarily dependent on viral load despite variable subtype and T-cell immune activation levels. J Inf Dis. 2014;211(10):1574–1584. doi: 10.1093/infdis/jiu646.
    1. Fraser C, Hollingsworth D, Chapman R, de Wolf F, Hange WP, et al. Variation in HIV-1 set-point viral load: epidemiological analysis and an evolutionary hypothesis. PNAS. 2007;104(44):17441–17446. doi: 10.1073/pnas.0708559104.
    1. Ganor Y, Zhou Z, Bodo J, Tudor D, Leibowitch J, Mathez D, et al. The adult penile urethra is a novel entry site for HIV-1 that preferentially targets resident urethral macrophages. Nature. 2013;6:4.
    1. Patel P, Borkowf CB, Brooks JT, Lasry A, Lansky A, Mermin J. Estimating per-act HIV transmission risk: a systematic review. AIDS. 2014;28(10):1509–1519. doi: 10.1097/QAD.0000000000000298.
    1. Boily M-C, Baggaley RF, Wang L, Masse B, White RG, Hayes R, et al. Heterosexual risk of HIV-1 infection per sexual act: a systematic review and meta-analysis of observational studies. Lancet Infect Dis. 2009;9(2):118–129. doi: 10.1016/S1473-3099(09)70021-0.
    1. Odoyo-June E, Rogers JH, Jaoko W, Bailey RC. Changes in plasma viral load and penile viral shedding after circumcision among HIV-positive men in Kisumu, Kenya. J Acquir Immune Defic Syndr. 2013;64(5):511–517. doi: 10.1097/QAI.0b013e3182a7ef05.
    1. Mehta SD, Green SJ, Maclean I, Hu H, Bailey RC, Gillevet PM, Spear GT. Microbial diversity of genital ulcer disease in men enrolled in a randomized trial of male circumcision in Kisumu, Kenya. PLoS One. 2012;7(7):e38991. doi: 10.1371/journal.pone.0038991.
    1. Sebire K, McGavin K, Land S, Middleton T, Birch C. Stability of human immunodeficiency virus RNA in blood specimens as measured by a commercial PCR-based assay. J Clin Microbiol. 1998;36(2):493–498.

Source: PubMed

3
Iratkozz fel