Estimation of Walking Speed and Its Spatiotemporal Determinants Using a Single Inertial Sensor Worn on the Thigh: From Healthy to Hemiparetic Walking

Dheepak Arumukhom Revi, Stefano M M De Rossi, Conor J Walsh, Louis N Awad, Dheepak Arumukhom Revi, Stefano M M De Rossi, Conor J Walsh, Louis N Awad

Abstract

We present the use of a single inertial measurement unit (IMU) worn on the thigh to produce stride-by-stride estimates of walking speed and its spatiotemporal determinants (i.e., stride time and stride length). Ten healthy and eight post-stroke individuals completed a 6-min walk test with an 18-camera motion capture system used for ground truth measurements. Subject-specific estimation models were trained to estimate walking speed using the polar radius extracted from phase portraits produced from the IMU-measured thigh angular position and velocity. Consecutive flexion peaks in the thigh angular position data were used to define each stride and compute stride times. Stride-by-stride estimates of walking speed and stride time were then used to compute stride length. In both the healthy and post-stroke cohorts, low error and high consistency were observed for the IMU estimates of walking speed (MAE < 0.035 m/s; ICC > 0.98), stride time (MAE < 30 ms; ICC > 0.97), and stride length (MAE < 0.037 m; ICC > 0.96). This study advances the use of a single wearable sensor to accurately estimate walking speed and its spatiotemporal determinants during both healthy and hemiparetic walking.

Keywords: phase portrait; thigh; walking speed estimation; wearable sensors.

Conflict of interest statement

C.J.W. is a paid consultant for ReWalk Robotics. L.N.A. is a paid consultant for MedRhythms. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Figures

Figure 1
Figure 1
Study Overview: (A) Optical motion capture provided ground truth measurements. (B) A thigh inertial measurement unit (IMU) provided all data used for the IMU-based estimation. (C) Example motion capture (Mocap) and IMU measured data collected and used in the study. Abbreviations: IMU—inertial measurement unit, COM—center of mass; w.r.t—with respect to.
Figure 2
Figure 2
Thigh phase portrait and walking speed and stride length estimation accuracy: (A) Angular position and velocity measured by a thigh IMU (after filtering and normalization of the thigh angle) for one healthy study participant and the paretic and nonparetic limbs of a person post-stroke. (B) Exemplar phase portraits generated using data plotted in (A). (C) Accuracy of walking speed estimation within and across subjects. (D) Accuracy of stride length estimation within and across subjects.
Figure 3
Figure 3
Distance-induced changes in speed, stride length, and cadence in healthy individuals. Reported Δs are the difference in the average from the last 30 s of walking and the first 30 s of walking. Regions highlighted in gray are missing data.
Figure 4
Figure 4
Distance-induced changes in speed, stride length, and cadence in post-stroke individuals. Reported Δs are the difference in the average from the last 30 s of walking and the first 30 s of walking. Regions highlighted in gray are missing data.
Figure 5
Figure 5
Thigh phase portraits used for speed estimation. The transparent lines in each panel are data from individual participants. The thick line in each panel is the average across participants. Subpanel: Comparison of the phase portrait roundness across groups. ** statistical significance (p < 0.001), * statistical significance (p = 0.038).

References

    1. Schmid A.A., Van Puymbroeck M., Altenburger P.A., Dierks T.A., Miller K.K., Damush T.M., Williams L.S. Balance and balance self-efficacy are associated with activity and participation after stroke: A cross-sectional study in people with chronic stroke. Arch. Phys. Med. Rehabil. 2012;93:1101–1107. doi: 10.1016/j.apmr.2012.01.020.
    1. Fulk G.D., Reynolds C., Mondal S., Deutsch J.E. Predicting Home and Community Walking Activity in People with Stroke. Arch. Phys. Med. Rehabil. 2010;91:1582–1586. doi: 10.1016/j.apmr.2010.07.005.
    1. Pohl P.S., Duncan P.W., Perera S., Liu W., Lai S.M., Studenski S., Long J. Influence of stroke-related impairments on performance in 6-minute walk test. J. Rehabil. Res. Dev. 2002;39:439–444.
    1. Awad L., Reisman D., Binder-Macleod S. Distance-Induced Changes in Walking Speed after Stroke: Relationship to Community Walking Activity. J. Neurol. Phys. Ther. 2019;43:220–223. doi: 10.1097/NPT.0000000000000293.
    1. Schinkel-Ivy A., Inness E.L., Mansfield A. Relationships between fear of falling, balance confidence, and control of balance, gait, and reactive stepping in individuals with sub-acute stroke. Gait Posture. 2016;43:154–159. doi: 10.1016/j.gaitpost.2015.09.015.
    1. Schinkel-Ivy A., Wong J.S., Mansfield A. Balance Confidence Is Related to Features of Balance and Gait in Individuals with Chronic Stroke. J. Stroke Cerebrovasc. Dis. 2017;26:237–245. doi: 10.1016/j.jstrokecerebrovasdis.2016.07.022.
    1. Lin S.J., Winston K.D., Mitchell J., Girlinghouse J., Crochet K. Physical activity, functional capacity, and step variability during walking in people with lower-limb amputation. Gait Posture. 2014;40:140–144. doi: 10.1016/j.gaitpost.2014.03.012.
    1. Zukowski L.A., Feld J.A., Giuliani C.A., Plummer P. Relationships between gait variability and ambulatory activity post stroke. Top. Stroke Rehabil. 2019;26:255–260. doi: 10.1080/10749357.2019.1591038.
    1. Mansfield A., Wong J., McIlroy W., Biasin L., Brunton K., Bayley M., Inness E. Do measures of reactive balance control predict falls in people with stroke returning to the community? Physiotherapy. 2015;101:373–380. doi: 10.1016/j.physio.2015.01.009.
    1. Moore S.A., Hickey A., Lord S., Del Din S., Godfrey A., Rochester L. Comprehensive measurement of stroke gait characteristics with a single accelerometer in the laboratory and community: A feasibility, validity and reliability study. J. Neuroeng. Rehabil. 2017;14:130. doi: 10.1186/s12984-017-0341-z.
    1. Chen S., Lach J., Lo B., Yang G.Z. Toward Pervasive Gait Analysis With Wearable Sensors: A Systematic Review. IEEE J. Biomed. Health Inform. 2016;20:1521–1537. doi: 10.1109/JBHI.2016.2608720.
    1. Winter D.A. Biomechanics and Motor Control of Human Movement. John Wiley & Sons; Hoboken, NJ, USA: 2009. pp. 1–367.
    1. Prasanth H., Caban M., Keller U., Courtine G., Ijspeert A., Vallery H., von Zitzewitz J. Wearable Sensor-Based Real-Time Gait Detection: A Systematic Review. Sensors. 2021;21:2727. doi: 10.3390/s21082727.
    1. Yang S., Li Q. Inertial sensor-based methods in walking speed estimation: A systematic review. Sensors. 2012;12:6102–6116. doi: 10.3390/s120506102.
    1. Barker S., Craik R., Freedman W., Herrmann N., Hillstrom H. Accuracy, reliability, and validity of a spatiotemporal gait analysis system. Med. Eng. Phys. 2006;28:460–467. doi: 10.1016/j.medengphy.2005.07.017.
    1. MejiaCruz Y., Franco J., Hainline G., Fritz S., Jiang Z., Caicedo J.M., Davis B., Hirth V. Walking Speed Measurement Technology: A Review. Curr. Geriatr. Rep. 2021;10:32–41. doi: 10.1007/s13670-020-00349-z.
    1. Arumukhom Revi D., Alvarez A.M., Walsh C.J., De Rossi S.M., Awad L.N. Indirect measurement of anterior-posterior ground reaction forces using a minimal set of wearable inertial sensors: From healthy to hemiparetic walking. J. Neuroeng. Rehabil. 2020;17:82. doi: 10.1186/s12984-020-00700-7.
    1. Dobkin B.H., Dorsch A.K. The Evolution of Personalized Behavioral Intervention Technology. Stroke. 2017;48:2329–2334. doi: 10.1161/STROKEAHA.117.016620.
    1. Steinhubl S.R., Muse E.D., Topol E.J. The emerging field of mobile health. Sci. Transl. Med. 2015;7:283rv3. doi: 10.1126/scitranslmed.aaa3487.
    1. Fritz S., Lusardi M. White Paper: “Walking Speed: The Sixth Vital Sign”. J. Geriatr. Phys. Ther. 2009;32:2–5. doi: 10.1519/00139143-200932020-00002.
    1. Sabatini A.M. Quaternion-based strap-down integration method for applications of inertial sensing to gait analysis. Med. Biol. Eng. Comput. 2005;43:94–101. doi: 10.1007/BF02345128.
    1. Yang S., Zhang J.T., Novak A.C., Brouwer B., Li Q. Estimation of spatio-temporal parameters for post-stroke hemiparetic gait using inertial sensors. Gait Posture. 2013;37:354–358. doi: 10.1016/j.gaitpost.2012.07.032.
    1. Li Q., Young M., Naing V., Donelan J.M. Walking speed estimation using a shank-mounted inertial measurement unit. J. Biomech. 2010;43:1640–1643. doi: 10.1016/j.jbiomech.2010.01.031.
    1. Laudanski A., Yang S., Li Q. A concurrent comparison of inertia sensor-based walking speed estimation methods; Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS; Boston, MA, USA. 30 August–3 September 2011; pp. 3484–3487.
    1. Zijlstra W., Hof A.L. Assessment of spatio-temporal gait parameters from trunk accelerations during human walking. Gait Posture. 2003;18:1–10. doi: 10.1016/S0966-6362(02)00190-X.
    1. Quintero D., Lambert D.J., Villarreal D.J., Gregg R.D. Real-Time continuous gait phase and speed estimation from a single sensor; Proceedings of the 1st Annual IEEE Conference on Control Technology and Applications, CCTA 2017; Kohala, HI, USA. 27–30 August 2017; pp. 847–852.
    1. Wang Y., Xu J., Xu X., Wu X., Pottie G., Kasier W. Inertial Sensor Based Motion Trajectory Visualization and Quantitative Quality Assessment of Hemiparetic Gait; Proceedings of the 8th International Conference on Body Area Networks, ACM; Boston, MA, USA. 30 September–2 October 2013; pp. 169–172.
    1. Arens P., Siviy C., Bae J., Choe D.K., Karavas N., Baker T.C., Ellis T.D., Awad L.N., Walsh C.J. Real-time Gait Metric Estimation for Everyday Gait Training with Wearable Devices in People Poststroke Philipp. Wearable Technol. 2020;2:1–14. doi: 10.1017/wtc.2020.11.
    1. Trojaniello D., Cereatti A., Pelosin E., Avanzino L., Mirelman A., Hausdorff J.M., Della Croce U. Estimation of step-by-step spazio-temporal parameters of normal and impaired gait using shank-mounted magneto-inertial sensors. J. Neuroeng. Rehabil. 2014;11:152. doi: 10.1186/1743-0003-11-152.
    1. Woolley S.M. Characteristics of Gait in Hemiplegia. Top. Stroke Rehabil. 2001;7:1–18. doi: 10.1310/JB16-V04F-JAL5-H1UV.
    1. Titianova E.B., Pitkänen K., Pääkkönen A., Sivenius J., Tarkka I.M. Gait Characteristics and Functional Ambulation Profile in Patients with Chronic Unilateral Stroke. Am. J. Phys. Med. Rehabil. 2003;82:778–786. doi: 10.1097/01.PHM.0000087490.74582.E0.
    1. Papagelopoulos P.J., Sim F.H. Limited Range of Motion After Total Knee Arthroplasty: Etiology, Treatment, and Prognosis. Orthopedics. 1997;20:1061–1065. doi: 10.3928/0147-7447-19971101-11.
    1. Amstutz H.C., Lodwig R.M., Schurman D.J., Hodgson A.G. Range of motion studies for total hip replacements. A comparative study with a new experimental apparatus. Clin. Orthop. Relat. Res. 1975;111:124–130. doi: 10.1097/00003086-197509000-00016.
    1. Kramert De Quervain I.A., Simon S.R., Leurgans S., Pease W.S., McAllister D. Gait Pattern in the Early Recovery Period after Stroke*. J. Bone Jt. Surg. 1996;78:1506–1514. doi: 10.2106/00004623-199610000-00008.
    1. Porciuncula F., Nuckols R., Karavas N., Chang C.K., Baker T.C., Orzel D., Perry D., Ellis T., Awad L., Walsh C. Assisting Limb Advancement during Walking after Stroke Using a Wearable Soft Hip Exosuit: A Proof-of-Concept. In: Masia L., Micera S., Akay M., Pons J.L., editors. Converging Clinical and Engineering Research on Neurorehabilitation III. Springer International Publishing; Cham, Switzerland: 2019. pp. 312–316.
    1. Kim J., Lee G., Heimgartner R., Arumukhom Revi D., Karavas N., Nathanson D., Galiana I., Eckert-Erdheim A., Murphy P., Perry D., et al. Reducing the metabolic rate of walking and running with a versatile, portable exosuit. Science. 2019;365:668–672. doi: 10.1126/science.aav7536.
    1. Daley M.A., Felix G., Biewener A.A. Running stability is enhanced by a proximo-distal gradient in joint neuromechanical control. J. Exp. Biol. 2007;210:383–394. doi: 10.1242/jeb.02668.
    1. Villarreal D.J., Poonawala H.A., Gregg R.D. A Robust Parameterization of Human Gait Patterns Across Phase-Shifting Perturbations. IEEE Trans. Neural Syst. Rehabil. Eng. 2017;25:265–278. doi: 10.1109/TNSRE.2016.2569019.
    1. Xsens Technologies B . MTi User Manual. Xsens; Enschede, The Netherlands: 2019. Technical Report.
    1. Liu T., Inoue Y., Shibata K. Development of a wearable sensor system for quantitative gait analysis. Measurement. 2009;42:978–988. doi: 10.1016/j.measurement.2009.02.002.
    1. Takeda R., Lisco G., Fujisawa T., Gastaldi L., Tohyama H., Tadano S. Drift Removal for Improving the Accuracy of Gait Parameters Using Wearable Sensor Systems. Sensors. 2014;14:23230–23247. doi: 10.3390/s141223230.
    1. Hamilton W., Hamilton W. Elements of Quaternions. Longmans, Green, & Company; London, UK: 1866.
    1. Henderson M.D. Euler Angles, Quaternions, and Transformation Matrics for Space Shuttle Analysis. McDonnell-Douglas Technical Services Co., Inc., Astronautics Div; Houston, TX, USA: 1977. Technical Report.
    1. Zeni J.A., Richards J.G., Higginson J.S. Two simple methods for determining gait events during treadmill and overground walking using kinematic data. Gait Posture. 2008;27:710–714. doi: 10.1016/j.gaitpost.2007.07.007.
    1. Chiu S.L., Chou L.S. Variability in inter-joint coordination during walking of elderly adults and its association with clinical balance measures. Clin. Biomech. 2013;28:454–458. doi: 10.1016/j.clinbiomech.2013.03.001.
    1. Quintero D., Villarreal D.J., Lambert D.J., Kapp S., Gregg R.D. Continuous-Phase Control of a Powered Knee–Ankle Prosthesis: Amputee Experiments Across Speeds and Inclines. IEEE Trans. Robot. 2018;34:686–701. doi: 10.1109/TRO.2018.2794536.
    1. José J.V., Saletan E.J., Mayer M.E. Classical Dynamics: A Contemporary Approach. Am. J. Phys. 1999;52:66. doi: 10.1063/1.882668.
    1. DIN EN ISO . Geometrical Product Specifications (GPS)—Geometrical Tolerancing—Tolerances of Form, Orientation, Location and Run-Out. Standard, International Organization for Standardization; Geneva, Switzerland: 2017.
    1. Koo T.K., Li M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016;15:155–163. doi: 10.1016/j.jcm.2016.02.012.
    1. McGraw K.O., Wong S.P. “Forming inferences about some intraclass correlations coefficients”: Correction. Psychol. Methods. 1996;1:390. doi: 10.1037/1082-989X.1.4.390.
    1. Soumaré A., Tavernier B., Alpérovitch A., Tzourio C., Elbaz A. A cross-sectional and longitudinal study of the relationship between walking speed and cognitive function in community-dwelling elderly people. J. Gerontol. Ser. Biol. Sci. Med. Sci. 2009;64:1058–1065. doi: 10.1093/gerona/glp077.
    1. Middleton A., Braun C.H., Lewek M.D., Fritz S.L. Balance impairment limits ability to increase walking speed in individuals with chronic stroke. Disabil. Rehabil. 2017;39:497–502. doi: 10.3109/09638288.2016.1152603.
    1. Grau-Pellicer M., Chamarro-Lusar A., Medina-Casanovas J., Serdà Ferrer B.C. Walking speed as a predictor of community mobility and quality of life after stroke. Top. Stroke Rehabil. 2019;26:349–358. doi: 10.1080/10749357.2019.1605751.
    1. Fulk G.D., He Y., Boyne P., Dunning K. Predicting Home and Community Walking Activity Poststroke. Stroke. 2017;48:406–411. doi: 10.1161/STROKEAHA.116.015309.
    1. Middleton A., Fritz S.L., Lusardi M. Walking speed: The functional vital sign. J. Aging Phys. Act. 2015;23:314–322. doi: 10.1123/japa.2013-0236.
    1. Hollman J.H., Watkins M.K., Imhoff A.C., Braun C.E., Akervik K.A., Ness D.K. A comparison of variability in spatiotemporal gait parameters between treadmill and overground walking conditions. Gait Posture. 2016;43:204–209. doi: 10.1016/j.gaitpost.2015.09.024.
    1. Balasubramanian C.K., Neptune R.R., Kautz S.A. Variability in spatiotemporal step characteristics and its relationship to walking performance post-stroke. Gait Posture. 2009;29:408–414. doi: 10.1016/j.gaitpost.2008.10.061.
    1. Alexander R.M. Walking and running: Legs and leg movements are subtly adapted to minimize the energy costs of locomotion. Am. Sci. 1984;72:348–354.
    1. O’Connor S.M., Xu H.Z., Kuo A.D. Energetic cost of walking with increased step variability. Gait Posture. 2012;36:102–107. doi: 10.1016/j.gaitpost.2012.01.014.
    1. Olney S.J., Richards C.L. Hemiparetic gait following stroke. Part I: Characteristics. Gait Posture. 1996;4:136–148. doi: 10.1016/0966-6362(96)01063-6.
    1. Combs S.A., Van Puymbroeck M., Altenburger P.A., Miller K.K., Dierks T.A., Schmid A.A. Is walking faster or walking farther more important to persons with chronic stroke? Disabil. Rehabil. 2013;35:860–867. doi: 10.3109/09638288.2012.717575.
    1. Farris D., Hampton A., Lewek M.D., Sawicki G.S. Revisiting the mechanics and energetics of walking in individuals with chronic hemiparesis following stroke: From individual limbs to lower limb joints. J. Neuroeng. Rehabil. 2015;12:24. doi: 10.1186/s12984-015-0012-x.
    1. Roemmich R.T., Leech K.A., Gonzalez A.J., Bastian A.J. Trading Symmetry for Energy Cost During Walking in Healthy Adults and Persons Poststroke. Neurorehabilit. Neural Repair. 2019;33:602–613. doi: 10.1177/1545968319855028.
    1. Ferraris F. Procedure for effortless in-field calibration of three-axis rate gyros and accelerometers. Sens. Mater. 1995;7:311–330.

Source: PubMed

3
Iratkozz fel