Ketogenic diet uncovers differential metabolic plasticity of brain cells

Tim Düking, Lena Spieth, Stefan A Berghoff, Lars Piepkorn, Annika M Schmidke, Miso Mitkovski, Nirmal Kannaiyan, Leon Hosang, Patricia Scholz, Ali H Shaib, Lennart V Schneider, Dörte Hesse, Torben Ruhwedel, Ting Sun, Lisa Linhoff, Andrea Trevisiol, Susanne Köhler, Adrian Marti Pastor, Thomas Misgeld, Michael Sereda, Imam Hassouna, Moritz J Rossner, Francesca Odoardi, Till Ischebeck, Livia de Hoz, Johannes Hirrlinger, Olaf Jahn, Gesine Saher, Tim Düking, Lena Spieth, Stefan A Berghoff, Lars Piepkorn, Annika M Schmidke, Miso Mitkovski, Nirmal Kannaiyan, Leon Hosang, Patricia Scholz, Ali H Shaib, Lennart V Schneider, Dörte Hesse, Torben Ruhwedel, Ting Sun, Lisa Linhoff, Andrea Trevisiol, Susanne Köhler, Adrian Marti Pastor, Thomas Misgeld, Michael Sereda, Imam Hassouna, Moritz J Rossner, Francesca Odoardi, Till Ischebeck, Livia de Hoz, Johannes Hirrlinger, Olaf Jahn, Gesine Saher

Abstract

To maintain homeostasis, the body, including the brain, reprograms its metabolism in response to altered nutrition or disease. However, the consequences of these challenges for the energy metabolism of the different brain cell types remain unknown. Here, we generated a proteome atlas of the major central nervous system (CNS) cell types from young and adult mice, after feeding the therapeutically relevant low-carbohydrate, high-fat ketogenic diet (KD) and during neuroinflammation. Under steady-state conditions, CNS cell types prefer distinct modes of energy metabolism. Unexpectedly, the comparison with KD revealed distinct cell type-specific strategies to manage the altered availability of energy metabolites. Astrocytes and neurons but not oligodendrocytes demonstrated metabolic plasticity. Moreover, inflammatory demyelinating disease changed the neuronal metabolic signature in a similar direction as KD. Together, these findings highlight the importance of the metabolic cross-talk between CNS cells and between the periphery and the brain to manage altered nutrition and neurological disease.

Figures

Fig. 1.. Preferred metabolic pathways in cortical…
Fig. 1.. Preferred metabolic pathways in cortical cell types.
(A) Scheme of the experimental approach. Cell types were isolated from the cortex (Ctx) of individual P42 mice (n = 4) using magnetic beads and analyzed by proteomic profiling. m/z, mass/charge ratio. (B) Pearson correlation of cell type–specific proteome datasets as in (A). (C) PCA of cell type–specific proteomes calculated from 722 complete cases of a total of 3541 proteins. (D) Normalized enrichment score (NES) of the gene sets “metabolic pathways” by gene set enrichment analysis (GSEA), comparing z scores of cell type–specific proteomes from P42 mice (AA, amino acid; FA, fatty acid; FDR, false discovery rate; OXPHOS, oxidative phosphorylation; PPP, pentose phosphate pathway; TCA, tricarboxylic acid cycle). (E) Heatmaps showing the mean cell type–specific abundance of proteins related to metabolic pathways (n = 4). (F) Cell type–specific abundance of mitochondrial proteins plotted as the relative abundance of each of the 274 identified mitochondrial proteins. (G) Violin plot of the density of mitochondria per cell soma volume, by quantification of SCOT+ mitochondria colabeled with cellular markers [n = 10 to 20 visual fields with 20 to 28 cells from four animals; one-way analysis of variance (ANOVA) with Tukey’s posttest showing significant differences to astrocytes, **P < 0.01 and ***P < 0.001]. (H) Violin plot of the relative mitochondrial volume (calculated from genetically labeled GFP fluorescence in the outer mitochondrial membrane) per cell soma volume in astrocytes (GFAP-Cre*MitoTag) and neurons (Rbp4-Cre*MitoTag) colabeled with cellular markers (n = 18 to 34 visual fields with 27 to 52 cells from three animals; Mann-Whitney test, ***P < 0.001). (I) Top five GO term processes of the 67 mitochondrial proteins found exclusively in astrocytes by overrepresentation analysis.
Fig. 2.. Metabolic changes during postnatal brain…
Fig. 2.. Metabolic changes during postnatal brain maturation.
(A) Pearson correlation of cell type–specific proteome datasets from P14 mice comprising a total of 3787 proteins, ranging from 1770 proteins in oligodendrocytes to 2664 proteins in neurons. (B) PCA of cell type–specific proteomes from P14 mice calculated from 1144 complete cases. (C) NES of the gene sets “metabolic pathways” by GSEA, shown as log2 fold changes (LFC) of cell type–specific proteomes from P42 versus P14 mice. (D) NES of gene set “cell function” by GSEA, comparing LFC of cell type–specific proteomes from P42 versus P14 mice. (E) Bubble plot of proteins related to glycolysis showing percent z scores at P42 (size), LFC of P42 versus P14 (color) with significant differences marked by the outline (q-mod values from moderated t statistics with FDR-based correction for multiple comparisons). (F) Bubble plot of proteins related to ketolysis in isolated cell types showing the percent z scores, LFC with significant differences marked by the outline as in (E).
Fig. 3.. Cortical changes in mice weaned…
Fig. 3.. Cortical changes in mice weaned to a KD.
(A) Experimental setup. At P14, SD or KD was administered in boxes with small holes rendering this food only accessible for pups. Mice were weaned at P17 (arrow) and kept on the respective diet. (B) Blood 3HB and glucose in mice treated as in (A) (n = 20, two-way ANOVA with Sidak’s posttest, ***P < 0.001). (C) Schematic of the Audiobox test (top left) and the learning paradigm (top right) (n = 5). Mean total number of visits ± SEM shows comparable activity of mice in both treatments (bottom left). Mean percentage of visits without nose poke ± SEM under safe (circle) and conditioned (square) conditions of mice fed KD or SD at 5 weeks of age reveal similar neurocognitive abilities (bottom right). (D) Mean levels of glycolysis metabolites with individual data points, by GC-MS in cortex of KD-fed P42 mice normalized to SD-fed controls (Gluc, glucose; G6P, glucose-6-phosphate; F6P, fructose-6-phosphate; Pyr, pyruvate; Lac, lactate; t statistics with Benjamini-Hochberg correction, ***Padj < 0.001). (E) Representative immunoblot for MCT1 in P42 cortex of mice fed SD or KD with quantification normalized to reprobed actin signals (unpaired Student’s t test, *P < 0.05). (F) Representative immunolabeling of MCT1 (green), S100b (red, astrocyte marker), and 4′,6-diamidino-2-phenylindole (DAPI) (blue, nuclei) in cortex of SD and KD-fed P42 mice. Scale bar, 10 μm. (G) Representative immunoblot for SCOT in cortex of P21 to P42 mice fed SD or KD with quantification normalized to reprobed actin signals relative to P21 SD values (two-way ANOVA with Sidak’s posttest, *P < 0.05, **P < 0.005, and ***P < 0.001). (H) Mean cortical 3HB levels with individual data points measured by GC-MS (t statistics with Benjamini-Hochberg correction, ***Padj < 0.001). (D to H) Each ring represents an individual data point (one mouse).
Fig. 4.. Cell type–specific strategies of metabolic…
Fig. 4.. Cell type–specific strategies of metabolic adaptations to feeding a KD.
(A) Experimental paradigm. (B) PCA of cell type–specific proteomes from mice fed SD or KD, calculated from 546 complete cases from a total of 3621 detected proteins. (C) Bubble plot of proteins related to ketolysis in isolated cell types from KD- versus SD-fed mice. (D) Maximum intensity projection (1-μm optical section in all dimensions) of SCOT (red) and enhanced green fluorescent protein (EGFP) (green) colabeling of brain sections from ALDH1L1-EGFP transgenes fed KD or SD with quantification of the density and relative fluorescence intensity (Fi) of SCOT+ mitochondria per volume in soma and processes (Mann-Whitney test, ***P < 0.001). ALDH1L1-EGFP mice express EGFP under the astrocyte Aldh1l1 promotor. Scale bar, 5 μm. (E) LFC of proteins related to glycolysis in astrocytes from mice fed KD versus SD (n = 4). (F) Median intracellular lactate levels (Laconic nanosensor) with 5 to 95 percentiles in astrocytes that had been exposed to SD-mimicking (5 mM glucose, Ctrl) or KD-mimicking (0.4 mM glucose and 4 mM 3HB, Keto) conditions for 1 week before measuring in 2 mM glucose, showing baseline lactate levels and the rate of lactate production after inhibiting MCT transporters (AR-C 155858) (n = 41 to 60 cells from three independent experiments; Mann-Whitney test, *P < 0.05 and **P < 0.01). (G) Mean intracellular ATP relative light units (RLU) with individual values in acutely isolated astrocytes from KD- and SD-fed animals, measured in 2 mM glucose with or without inhibition of glycolysis [2-deoxyglucose (2-DG)] or OXPHOS by oligomycin (Oligo) (n = 3 measurements pooled from two mice per group). (H) Bubble plot of proteins related to intermediary metabolism in cell types isolated from mice fed KD versus SD. (C, E, and F) Significant changes in protein abundance were determined by moderated t statistics with FDR-based correction for multiple comparisons (*q mod < 0.05, **q-mod < 0.005, and ***q-mod < 0.001).
Fig. 5.. Feeding KD alters synapse remodeling.
Fig. 5.. Feeding KD alters synapse remodeling.
(A) Maximum intensity projection (1 μm) of SCOT (red) and NeuN (green) colabeling with quantification of the density and relative fluorescence intensity of SCOT+ mitochondria per soma volume (Mann-Whitney test, ***P < 0.001; scale bar, 5 μm). (B) Mean TCA intermediates by GC-MS (n = 6; Cit, citrate; aKG, α-ketoglutarate; Succ, succinate; Fum, fumarate; Mal, malate). (C) LFC of neuronal TCA proteins (n = 4). (D) LFC of proteins related to neuronal glycolysis (n = 4). (E) Heatmap of proteins related to synaptic transmission in neurons (n = 4 mice). (F) Maximum intensity projection of Shank2 (magenta) and VGluT1 (yellow) colabeling (scale bars, 5 μm) with fluorescence intensity scan of the dashed line. Global or synaptic (colocalized with the postsynaptic marker Shank2) VGluT1 immunofluorescence with median and interquartile ranges (n = 20 images of four mice; Mann Whitney test, *P > 0.05). (G) Representative image and quantification of synapse density on electron microscopic images (n = 3 mice; scale bars, 100 nm). (H) Mean cortical neurotransmitter levels measured by GC-MS (n = 5 to 6 mice). (I) Steady-state axonal ATP levels in optic nerves from Thy1-ATeam ATP sensor mice fed KD or SD, showing the F/C intensity ratio, the sensor lifetime, and the mean normalized fluorescence decay time ± SEM [n = 6 (KD) and n = 8 (SD) nerves from three to four mice]. (J) Open-field test. Representative traces of P42 mice fed SD and KD with quantification shown as mean with individual values (n = 12 to 15 mice; two-way ANOVA with Sidak’s posttest, ***P < 0.001). (C to E) Moderated t statistics with FDR-based correction for multiple comparisons (*q mod < 0.05, **q mod < 0.005, and ***q mod < 0.001). (B and H) T statistics with Benjamini-Hochberg correction; *Padj < 0.05, **Padj < 0.01, and ***Padj < 0.001. ns, not significant. n.d., not detected.
Fig. 6.. Feeding KD supports neuronal metabolism…
Fig. 6.. Feeding KD supports neuronal metabolism in EAE.
(A) Mean blood glucose and 3HB with individual values of EAE mice fed SD or KD (n = 8 to 16 mice; one-way ANOVA with Dunnet’s posttest compared to control mice). (B) Bubble plot of ketolysis and glycolysis proteins in neurons from EAE mice and controls. (C) Representative immunolabeling of SCOT and NeuN in cortex of EAE mice and controls with quantification (n = 5 mice, one-way ANOVA with Tukey’s posttest; scale bars, 20 μm). (D) Mean clinical score ± SEM of EAE mice. KD was applied therapeutically starting with disease onset (n = 8 SD, n = 16 KD mice). (E) Mean lesion size ± SEM in lumbar spinal cord of EAE mice (n = 6 to 8 mice; unpaired two-sided Student’s t test). (F) Mean density of inflammatory cells ± SEM in spinal cord of EAE mice fed KD or SD analyzed by flow cytometry (n = 6 mice; unpaired two-sided Student’s t test). (G) Bubble plot of disease defense and homeostatic markers in cortical neurons from EAE mice and controls. *P < 0.05, **P < 0.01, and ***P < 0.001.

References

    1. Dienel G. A., Brain glucose metabolism: Integration of energetics with function. Physiol. Rev. 99, 949–1045 (2019).
    1. Bonvento G., Bolanos J. P., Astrocyte-neuron metabolic cooperation shapes brain activity. Cell Metab. 33, 1546–1564 (2021).
    1. Hui S., Cowan A. J., Zeng X., Yang L., TeSlaa T., Li X., Bartman C., Zhang Z., Jang C., Wang L., Lu W., Rojas J., Baur J., Rabinowitz J. D., Quantitative fluxomics of circulating metabolites. Cell Metab. 32, 676–688.e4 (2020).
    1. Puchalska P., Crawford P. A., Metabolic and signaling roles of ketone bodies in health and disease. Annu. Rev. Nutr. 41, 49–77 (2021).
    1. Mächler P., Wyss M. T., Elsayed M., Stobart J., Gutierrez R., von Faber-Castell A., Kaelin V., Zuend M., San Martin A., Romero-Gomez I., Baeza-Lehnert F., Lengacher S., Schneider B. L., Aebischer P., Magistretti P. J., Barros L. F., Weber B., In vivo evidence for a lactate gradient from astrocytes to neurons. Cell Metab. 23, 94–102 (2016).
    1. Pellerin L., Pellegri G., Martin J. L., Magistretti P. J., Expression of monocarboxylate transporter mRNAs in mouse brain: Support for a distinct role of lactate as an energy substrate for the neonatal vs. adult brain. Proc. Natl. Acad. Sci. U.S.A. 95, 3990–3995 (1998).
    1. Fünfschilling U., Supplie L. M., Mahad D., Boretius S., Saab A. S., Edgar J., Brinkmann B. G., Kassmann C. M., Tzvetanova I. D., Möbius W., Diaz F., Meijer D., Suter U., Hamprecht B., Sereda M. W., Moraes C. T., Frahm J., Goebbels S., Nave K. A., Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity. Nature 485, 517–521 (2012).
    1. Edmond J., Robbins R. A., Bergstrom J. D., Cole R. A., de Vellis J., Capacity for substrate utilization in oxidative metabolism by neurons, astrocytes, and oligodendrocytes from developing brain in primary culture. J. Neurosci. Res. 18, 551–561 (1987).
    1. Supplie L. M., Duking T., Campbell G., Diaz F., Moraes C. T., Gotz M., Hamprecht B., Boretius S., Mahad D., Nave K. A., Respiration-deficient astrocytes survive as glycolytic cells in vivo. J. Neurosci. 37, 4231–4242 (2017).
    1. Diaz F., Garcia S., Padgett K. R., Moraes C. T., A defect in the mitochondrial complex III, but not complex IV, triggers early ROS-dependent damage in defined brain regions. Hum. Mol. Genet. 21, 5066–5077 (2012).
    1. Fecher C., Trovo L., Muller S. A., Snaidero N., Wettmarshausen J., Heink S., Ortiz O., Wagner I., Kuhn R., Hartmann J., Karl R. M., Konnerth A., Korn T., Wurst W., Merkler D., Lichtenthaler S. F., Perocchi F., Misgeld T., Cell-type-specific profiling of brain mitochondria reveals functional and molecular diversity. Nat. Neurosci. 22, 1731–1742 (2019).
    1. Lopez-Fabuel I., Le Douce J., Logan A., James A. M., Bonvento G., Murphy M. P., Almeida A., Bolanos J. P., Complex I assembly into supercomplexes determines differential mitochondrial ROS production in neurons and astrocytes. Proc. Natl. Acad. Sci. U.S.A. 113, 13063–13068 (2016).
    1. Bayraktar O. A., Bartels T., Holmqvist S., Kleshchevnikov V., Martirosyan A., Polioudakis D., Ben Haim L., Young A. M. H., Batiuk M. Y., Prakash K., Brown A., Roberts K., Paredes M. F., Kawaguchi R., Stockley J. H., Sabeur K., Chang S. M., Huang E., Hutchinson P., Ullian E. M., Hemberg M., Coppola G., Holt M. G., Geschwind D. H., Rowitch D. H., Astrocyte layers in the mammalian cerebral cortex revealed by a single-cell in situ transcriptomic map. Nat. Neurosci. 23, 500–509 (2020).
    1. Wheeler M. A., Clark I. C., Tjon E. C., Li Z., Zandee S. E. J., Couturier C. P., Watson B. R., Scalisi G., Alkwai S., Rothhammer V., Rotem A., Heyman J. A., Thaploo S., Sanmarco L. M., Ragoussis J., Weitz D. A., Petrecca K., Moffitt J. R., Becher B., Antel J. P., Prat A., Quintana F. J., MAFG-driven astrocytes promote CNS inflammation. Nature 578, 593–599 (2020).
    1. Fiebig C., Keiner S., Ebert B., Schaffner I., Jagasia R., Lie D. C., Beckervordersandforth R., Mitochondrial dysfunction in astrocytes impairs the generation of reactive astrocytes and enhances neuronal cell death in the cortex upon photothrombotic lesion. Front. Mol. Neurosci. 12, 40 (2019).
    1. Misgeld T., Schwarz T. L., Mitostasis in neurons: Maintaining mitochondria in an extended cellular architecture. Neuron 96, 651–666 (2017).
    1. Aten S., Kiyoshi C. M., Arzola E. P., Patterson J. A., Taylor A. T., Du Y., Guiher A. M., Philip M., Camacho E. G., Mediratta D., Collins K., Boni K., Garcia S. A., Kumar R., Drake A. N., Hegazi A., Trank L., Benson E., Kidd G., Terman D., Zhou M., Ultrastructural view of astrocyte arborization, astrocyte-astrocyte and astrocyte-synapse contacts, intracellular vesicle-like structures, and mitochondrial network. Prog. Neurobiol. 213, 102264 (2022).
    1. Li Q., Cheng Z., Zhou L., Darmanis S., Neff N. F., Okamoto J., Gulati G., Bennett M. L., Sun L. O., Clarke L. E., Marschallinger J., Yu G., Quake S. R., Wyss-Coray T., Barres B. A., Developmental heterogeneity of microglia and brain myeloid cells revealed by deep single-cell RNA sequencing. Neuron 101, 207–223.e10 (2019).
    1. Cotter D. G., d’Avignon D. A., Wentz A. E., Weber M. L., Crawford P. A., Obligate role for ketone body oxidation in neonatal metabolic homeostasis. J. Biol. Chem. 286, 6902–6910 (2011).
    1. Nehlig A., Age-dependent pathways of brain energy metabolism: The suckling rat, a natural model of the ketogenic diet. Epilepsy Res. 37, 211–221 (1999).
    1. Vining E. P., Pyzik P., McGrogan J., Hladky H., Anand A., Kriegler S., Freeman J. M., Growth of children on the ketogenic diet. Dev. Med. Child Neurol. 44, 796–802 (2002).
    1. Chen C., Krueger-Burg D., de Hoz L., Wide sensory filters underlie performance in memory-based discrimination and generalization. PLOS ONE 14, e0214817 (2019).
    1. Puchalska P., Crawford P. A., Multi-dimensional roles of ketone bodies in fuel metabolism, signaling, and therapeutics. Cell Metab. 25, 262–284 (2017).
    1. Koper J. W., Lopes-Cardozo M., Van Golde L. M., Preferential utilization of ketone bodies for the synthesis of myelin cholesterol in vivo. Biochim. Biophys. Acta 666, 411–417 (1981).
    1. Saher G., Brügger B., Lappe-Siefke C., Möbius W., Tozawa R., Wehr M. C., Wieland F., Ishibashi S., Nave K. A., High cholesterol level is essential for myelin membrane growth. Nat. Neurosci. 8, 468–475 (2005).
    1. Pifferi F., Laurent B., Plourde M., Lipid transport and metabolism at the blood-brain interface: Implications in health and disease. Front. Physiol. 12, 645646 (2021).
    1. Valdebenito R., Ruminot I., Garrido-Gerter P., Fernandez-Moncada I., Forero-Quintero L., Alegria K., Becker H. M., Deitmer J. W., Barros L. F., Targeting of astrocytic glucose metabolism by beta-hydroxybutyrate. J. Cereb. Blood Flow Metab. 36, 1813–1822 (2016).
    1. Roy M., Beauvieux M.-C., Naulin J., El Hamrani D., Gallis J.-L., Cunnane S. C., Bouzier-Sore A.-K., Rapid adaptation of rat brain and liver metabolism to a ketogenic diet: An integrated study using 1H- and 13C-NMR spectroscopy. J. Cereb. Blood Flow Metab. 35, 1154–1162 (2015).
    1. Liang H., Bourdon A. K., Chen L. Y., Phelix C. F., Perry G., Gibbs free-energy gradient along the path of glucose transport through human glucose transporter 3. ACS Chem. Nerosci. 9, 2815–2823 (2018).
    1. Ruskin D. N., Kawamura M., Masino S. A., Adenosine and ketogenic treatments. J. Caffeine Adenosine Res. 10, 104–109 (2020).
    1. Trevisiol A., Saab A. S., Winkler U., Marx G., Imamura H., Mobius W., Kusch K., Nave K. A., Hirrlinger J., Monitoring ATP dynamics in electrically active white matter tracts. eLife 6, e24241 (2017).
    1. Neishabouri A., Faisal A. A., Saltatory conduction in unmyelinated axons: Clustering of Na+ channels on lipid rafts enables micro-saltatory conduction in C-fibers. Front. Neuroanat. 8, (2014).
    1. Cunnane S. C., Trushina E., Morland C., Prigione A., Casadesus G., Andrews Z. B., Beal M. F., Bergersen L. H., Brinton R. D., de la Monte S., Eckert A., Harvey J., Jeggo R., Jhamandas J. H., Kann O., la Cour C. M., Martin W. F., Mithieux G., Moreira P. I., Murphy M. P., Nave K. A., Nuriel T., Oliet S. H. R., Saudou F., Mattson M. P., Swerdlow R. H., Millan M. J., Brain energy rescue: An emerging therapeutic concept for neurodegenerative disorders of ageing. Nat. Rev. Drug Discov. 19, 609–633 (2020).
    1. de Candia P., Matarese G., Leptin and ghrelin: Sewing metabolism onto neurodegeneration. Neuropharmacology 136, 307–316 (2018).
    1. Schattling B., Engler J. B., Volkmann C., Rothammer N., Woo M. S., Petersen M., Winkler I., Kaufmann M., Rosenkranz S. C., Fejtova A., Thomas U., Bose A., Bauer S., Trager S., Miller K. K., Bruck W., Duncan K. E., Salinas G., Soba P., Gundelfinger E. D., Merkler D., Friese M. A., Bassoon proteinopathy drives neurodegeneration in multiple sclerosis. Nat. Neurosci. 22, 887–896 (2019).
    1. Bernardes D., Oliveira-Lima O. C., da Silva T. V., Juliano M. A., dos Santos D. M., Carvalho-Tavares J., Metabolic alterations in experimental autoimmune encephalomyelitis in mice: Effects of prior physical exercise. Neurophysiology 48, 117–121 (2016).
    1. Magistretti P. J., Allaman I., A cellular perspective on brain energy metabolism and functional imaging. Neuron 86, 883–901 (2015).
    1. Lovatt D., Sonnewald U., Waagepetersen H. S., Schousboe A., He W., Lin J. H., Han X., Takano T., Wang S., Sim F. J., Goldman S. A., Nedergaard M., The transcriptome and metabolic gene signature of protoplasmic astrocytes in the adult murine cortex. J. Neurosci. 27, 12255–12266 (2007).
    1. Butt U. J., Steixner-Kumar A. A., Depp C., Sun T., Hassouna I., Wustefeld L., Arinrad S., Zillmann M. R., Schopf N., Fernandez Garcia-Agudo L., Mohrmann L., Bode U., Ronnenberg A., Hindermann M., Goebbels S., Bonn S., Katschinski D. M., Miskowiak K. W., Nave K. A., Ehrenreich H., Hippocampal neurons respond to brain activity with functional hypoxia. Mol. Psychiatry 26, 1790–1807 (2021).
    1. Angelova P. R., Kasymov V., Christie I., Sheikhbahaei S., Turovsky E., Marina N., Korsak A., Zwicker J., Teschemacher A. G., Ackland G. L., Funk G. D., Kasparov S., Abramov A. Y., Gourine A. V., Functional oxygen sensitivity of astrocytes. J. Neurosci. 35, 10460–10473 (2015).
    1. Cahill G. F. Jr., Fuel metabolism in starvation. Annu. Rev. Nutr. 26, 1–22 (2006).
    1. Wang J., Cui Y., Yu Z., Wang W., Cheng X., Ji W., Guo S., Zhou Q., Wu N., Chen Y., Chen Y., Song X., Jiang H., Wang Y., Lan Y., Zhou B., Mao L., Li J., Yang H., Guo W., Yang X., Brain endothelial cells maintain lactate homeostasis and control adult hippocampal neurogenesis. Cell Stem Cell 25, 754–767.e9 (2019).
    1. Cox P. J., Kirk T., Ashmore T., Willerton K., Evans R., Smith A., Murray A. J., Stubbs B., West J., McLure S. W., King M. T., Dodd M. S., Holloway C., Neubauer S., Drawer S., Veech R. L., Griffin J. L., Clarke K., Nutritional ketosis alters fuel preference and thereby endurance performance in athletes. Cell Metab. 24, 256–268 (2016).
    1. Lopez D. A., Foxe J. J., Mao Y., Thompson W. K., Martin H. J., Freedman E. G., Breastfeeding duration is associated with domain-specific improvements in cognitive performance in 9-10-year-old children. Front. Public Health 9, 657422 (2021).
    1. R. D. Martin, The fundamental importance of breastfeeding for health and development, in Health in Transition: Translating Developmental Origins of Health and Disease Science to Improve Future Health in Africa, A. J. Macnab, A. Daar, C. Pauw, Eds. (Stellenbosch: SUN PReSS, 2020), chap. 6, pp. 67–101.
    1. Wens I., Dalgas U., Deckx N., Cools N., Eijnde B. O., Does multiple sclerosis affect glucose tolerance? Mult. Scler. 20, 1273–1276 (2014).
    1. Ruiz-Arguelles A., Mendez-Huerta M. A., Lozano C. D., Ruiz-Arguelles G. J., Metabolomic profile of insulin resistance in patients with multiple sclerosis is associated to the severity of the disease. Mult. Scler. Relat. Disord. 25, 316–321 (2018).
    1. Blinkenberg M., Rune K., Jensen C. V., Ravnborg M., Kyllingsbaek S., Holm S., Paulson O. B., Sørensen P. S., Cortical cerebral metabolism correlates with MRI lesion load and cognitive dysfunction in MS. Neurology 54, 558–564 (2000).
    1. Yang G., Parkhurst C. N., Hayes S., Gan W. B., Peripheral elevation of TNF-α leads to early synaptic abnormalities in the mouse somatosensory cortex in experimental autoimmune encephalomyelitis. Proc. Natl. Acad. Sci. U.S.A. 110, 10306–10311 (2013).
    1. Grabner G. F., Xie H., Schweiger M., Zechner R., Lipolysis: Cellular mechanisms for lipid mobilization from fat stores. Nat. Metab. 3, 1445–1465 (2021).
    1. Kim M. S., Yan J., Wu W., Zhang G., Zhang Y., Cai D., Rapid linkage of innate immunological signals to adaptive immunity by the brain-fat axis. Nat. Immunol. 16, 525–533 (2015).
    1. Sanna V., Di Giacomo A., La Cava A., Lechler R. I., Fontana S., Zappacosta S., Matarese G., Leptin surge precedes onset of autoimmune encephalomyelitis and correlates with development of pathogenic T cell responses. J. Clin. Invest. 111, 241–250 (2003).
    1. Burfeind K. G., Yadav V., Marks D. L., Hypothalamic dysfunction and multiple sclerosis: Implications for fatigue and weight dysregulation. Curr. Neurol. Neurosci. Rep. 16, 98 (2016).
    1. Stumpf S. K., Berghoff S. A., Trevisiol A., Spieth L., Duking T., Schneider L. V., Schlaphoff L., Dreha-Kulaczewski S., Bley A., Burfeind D., Kusch K., Mitkovski M., Ruhwedel T., Guder P., Rohse H., Denecke J., Gartner J., Mobius W., Nave K. A., Saher G., Ketogenic diet ameliorates axonal defects and promotes myelination in Pelizaeus-Merzbacher disease. Acta Neuropathol. 138, 147–161 (2019).
    1. Zhang D., Jin W., Wu R., Li J., Park S.-A., Tu E., Zanvit P., Xu J., Liu O., Cain A., Chen W., High glucose intake exacerbates autoimmunity through reactive-oxygen-species-mediated TGF-β cytokine activation. Immunity 51, 671–681.e5 (2019).
    1. Mannino A., Lithander F. E., Dunlop E., Hoare S., Shivappa N., Daly A., Phillips M., Pereira G., Sherriff J., Lucas R. M., Ponsonby A. L., Hebert J. R., van der Mei I., Black L. J.; Ausimmune Investigator Group , A proinflammatory diet is associated with an increased likelihood of first clinical diagnosis of central nervous system demyelination in women. Mult. Scler. Relat. Disord. 57, 103428 (2022).
    1. Bosch-Queralt M., Cantuti-Castelvetri L., Damkou A., Schifferer M., Schlepckow K., Alexopoulos I., Lutjohann D., Klose C., Vaculciakova L., Masuda T., Prinz M., Monroe K. M., Di Paolo G., Lewcock J. W., Haass C., Simons M., Diet-dependent regulation of TGFβ impairs reparative innate immune responses after demyelination. Nat. Metab. 3, 211–227 (2021).
    1. Han M. H., Hwang S. I., Roy D. B., Lundgren D. H., Price J. V., Ousman S. S., Fernald G. H., Gerlitz B., Robinson W. H., Baranzini S. E., Grinnell B. W., Raine C. S., Sobel R. A., Han D. K., Steinman L., Proteomic analysis of active multiple sclerosis lesions reveals therapeutic targets. Nature 451, 1076–1081 (2008).
    1. Choi I. Y., Piccio L., Childress P., Bollman B., Ghosh A., Brandhorst S., Suarez J., Michalsen A., Cross A. H., Morgan T. E., Wei M., Paul F., Bock M., Longo V. D., A diet mimicking fasting promotes regeneration and reduces autoimmunity and multiple sclerosis symptoms. Cell Rep. 15, 2136–2146 (2016).
    1. Bahr L. S., Bock M., Liebscher D., Bellmann-Strobl J., Franz L., Pruss A., Schumann D., Piper S. K., Kessler C. S., Steckhan N., Michalsen A., Paul F., Mahler A., Ketogenic diet and fasting diet as nutritional approaches in multiple sclerosis (NAMS): Protocol of a randomized controlled study. Trials 21, 3 (2020).
    1. Neumann B., Baror R., Zhao C., Segel M., Dietmann S., Rawji K. S., Foerster S., McClain C. R., Chalut K., van Wijngaarden P., Franklin R. J. M., Metformin restores CNS remyelination capacity by rejuvenating aged stem cells. Cell Stem Cell 25, 473–485.e8 (2019).
    1. Kim D. Y., Hao J., Liu R., Turner G., Shi F. D., Rho J. M., Inflammation-mediated memory dysfunction and effects of a ketogenic diet in a murine model of multiple sclerosis. PLOS ONE 7, e35476 (2012).
    1. Brenton J. N., Banwell B., Bergqvist A. G. C., Lehner-Gulotta D., Gampper L., Leytham E., Coleman R., Goldman M. D., Pilot study of a ketogenic diet in relapsing-remitting MS. Neurol. Neuroimmunol. Neuroinflamm. 6, e565 (2019).
    1. Bock M., Karber M., Kuhn H., Ketogenic diets attenuate cyclooxygenase and lipoxygenase gene expression in multiple sclerosis. EBioMedicine 36, 293–303 (2018).
    1. Newman J. C., Covarrubias A. J., Zhao M., Yu X., Gut P., Ng C. P., Huang Y., Haldar S., Verdin E., Ketogenic diet reduces midlife mortality and improves memory in aging mice. Cell Metab. 26, 547–557.e8 (2017).
    1. Simeone T. A., Simeone K. A., Stafstrom C. E., Rho J. M., Do ketone bodies mediate the anti-seizure effects of the ketogenic diet? Neuropharmacology 133, 233–241 (2018).
    1. Olson C. A., Vuong H. E., Yano J. M., Liang Q. Y., Nusbaum D. J., Hsiao E. Y., The gut microbiota mediates the anti-seizure effects of the ketogenic diet. Cell 173, 1728–1741.e13 (2018).
    1. Youm Y. H., Nguyen K. Y., Grant R. W., Goldberg E. L., Bodogai M., Kim D., D’Agostino D., Planavsky N., Lupfer C., Kanneganti T. D., Kang S., Horvath T. L., Fahmy T. M., Crawford P. A., Biragyn A., Alnemri E., Dixit V. D., The ketone metabolite β-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease. Nat. Med. 21, 263–269 (2015).
    1. Ambrozkiewicz M. C., Schwark M., Kishimoto-Suga M., Borisova E., Hori K., Salazar-Lazaro A., Rusanova A., Altas B., Piepkorn L., Bessa P., Schaub T., Zhang X., Rabe T., Ripamonti S., Rosario M., Akiyama H., Jahn O., Kobayashi T., Hoshino M., Tarabykin V., Kawabe H., Polarity acquisition in cortical neurons is driven by synergistic action of Sox9-regulated Wwp1 and Wwp2 E3 ubiquitin ligases and intronic miR-140. Neuron 100, 1097–1115.e15 (2018).
    1. Silva J. C., Gorenstein M. V., Li G. Z., Vissers J. P., Geromanos S. J., Absolute quantification of proteins by LCMSE: A virtue of parallel MS acquisition. Mol. Cell. Proteomics 5, 144–156 (2006).
    1. Distler U., Kuharev J., Navarro P., Tenzer S., Label-free quantification in ion mobility-enhanced data-independent acquisition proteomics. Nat. Protoc. 11, 795–812 (2016).
    1. Perez-Riverol Y., Csordas A., Bai J., Bernal-Llinares M., Hewapathirana S., Kundu D. J., Inuganti A., Griss J., Mayer G., Eisenacher M., Perez E., Uszkoreit J., Pfeuffer J., Sachsenberg T., Yilmaz S., Tiwary S., Cox J., Audain E., Walzer M., Jarnuczak A. F., Ternent T., Brazma A., Vizcaino J. A., The PRIDE database and related tools and resources in 2019: Improving support for quantification data. Nucleic Acids Res. 47, D442–D450 (2019).
    1. Berghoff S. A., Spieth L., Sun T., Hosang L., Schlaphoff L., Depp C., Duking T., Winchenbach J., Neuber J., Ewers D., Scholz P., van der Meer F., Cantuti-Castelvetri L., Sasmita A. O., Meschkat M., Ruhwedel T., Mobius W., Sankowski R., Prinz M., Huitinga I., Sereda M. W., Odoardi F., Ischebeck T., Simons M., Stadelmann-Nessler C., Edgar J. M., Nave K. A., Saher G., Microglia facilitate repair of demyelinated lesions via post-squalene sterol synthesis. Nat. Neurosci. 24, 47–60 (2021).
    1. Liao Y., Wang J., Jaehnig E. J., Shi Z., Zhang B., WebGestalt 2019: Gene set analysis toolkit with revamped UIs and APIs. Nucleic Acids Res. 47, W199–W205 (2019).
    1. Huang D. W., Sherman B. T., Lempicki R. A., Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).
    1. Rohn H., Junker A., Hartmann A., Grafahrend-Belau E., Treutler H., Klapperstuck M., Czauderna T., Klukas C., Schreiber F., VANTED v2: A framework for systems biology applications. BMC Syst. Biol. 6, 139 (2012).
    1. Berg S., Kutra D., Kroeger T., Straehle C. N., Kausler B. X., Haubold C., Schiegg M., Ales J., Beier T., Rudy M., Eren K., Cervantes J. I., Xu B., Beuttenmueller F., Wolny A., Zhang C., Koethe U., Hamprecht F. A., Kreshuk A., ilastik: Interactive machine learning for (bio)image analysis. Nat. Methods 16, 1226–1232 (2019).
    1. Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., Tinevez J. Y., White D. J., Hartenstein V., Eliceiri K., Tomancak P., Cardona A., Fiji: An open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).
    1. M. R. Berthold, N. Cebron, F. Dill, T. R. Gabriel, T. Kötter, T. Meinl, P. Ohl, C. Sieb, K. Thiel, B. Wiswedel. KNIME: The Konstanz Information Miner, in Data Analysis, Machine Learning and Applications - Proceedings of the 31st Annual Conference of the Gesellschaft für Klassifikation e.V (Springer Berlin Heidelberg, 2008), pp. 319–326.
    1. Babaev O., Botta P., Meyer E., Muller C., Ehrenreich H., Brose N., Luthi A., Krueger-Burg D., Neuroligin 2 deletion alters inhibitory synapse function and anxiety-associated neuronal activation in the amygdala. Neuropharmacology 100, 56–65 (2016).
    1. Köhler S., Winkler U., Sicker M., Hirrlinger J., NBCe1 mediates the regulation of the NADH/NAD+ redox state in cortical astrocytes by neuronal signals. Glia 66, 2233–2245 (2018).
    1. San Martin A., Ceballo S., Ruminot I., Lerchundi R., Frommer W. B., Barros L. F., A genetically encoded FRET lactate sensor and its use to detect the Warburg effect in single cancer cells. PLOS ONE 8, e57712 (2013).
    1. Trevisiol A., Kusch K., Steyer A. M., Gregor I., Nardis C., Winkler U., Köhler S., Restrepo A., Möbius W., Werner H. B., Nave K.-A., Hirrlinger J., Structural myelin defects are associated with low axonal ATP levels but rapid recovery from energy deprivation in a mouse model of spastic paraplegia. PLoS Biol. 18, e3000943 (2020).
    1. Ritchie M. E., Phipson B., Wu D., Hu Y., Law C. W., Shi W., Smyth G. K., limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).
    1. Storey J. D., Tibshirani R., Statistical significance for genomewide studies. Proc. Natl. Acad. Sci. U.S.A. 100, 9440–9445 (2003).
    1. Love M. I., Huber W., Anders S., Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
    1. Berghoff S. A., Düking T., Spieth L., Winchenbach J., Stumpf S. K., Gerndt N., Kusch K., Ruhwedel T., Möbius W., Saher G., Blood-brain barrier hyperpermeability precedes demyelination in the cuprizone model. Acta Neuropathol. Commun. 5, 94 (2017).
    1. Meschkat M., Steyer A. M., Weil M. T., Kusch K., Jahn O., Piepkorn L., Agui-Gonzalez P., Phan N. T. N., Ruhwedel T., Sadowski B., Rizzoli S. O., Werner H. B., Ehrenreich H., Nave K. A., Mobius W., White matter integrity in mice requires continuous myelin synthesis at the inner tongue. Nat. Commun. 13, 1163 (2022).

Source: PubMed

3
Iratkozz fel