Enhancing Visuospatial Working Memory Performance Using Intermittent Theta-Burst Stimulation Over the Right Dorsolateral Prefrontal Cortex

Ronald Ngetich, Donggang Jin, Wenjuan Li, Bian Song, Junjun Zhang, Zhenlan Jin, Ling Li, Ronald Ngetich, Donggang Jin, Wenjuan Li, Bian Song, Junjun Zhang, Zhenlan Jin, Ling Li

Abstract

Noninvasive brain stimulation provides a promising approach for the treatment of neuropsychiatric conditions. Despite the increasing research on the facilitatory effects of this kind of stimulation on the cognitive processes, the majority of the studies have used the standard stimulation approaches such as the transcranial direct current stimulation and the conventional repetitive transcranial magnetic stimulation (rTMS) which seem to be limited in robustness and the duration of the transient effects. However, a recent specialized type of rTMS, theta-burst stimulation (TBS), patterned to mimic the natural cross-frequency coupling of the human brain, may induce robust and longer-lasting effects on cortical activity. Here, we aimed to investigate the effects of the intermittent TBS (iTBS), a facilitatory form of TBS, over the right DLPFC (rDLPFC), a brain area implicated in higher-order cognitive processes, on visuospatial working memory (VSWM) performance. Therefore, iTBS was applied over either the rDLPFC or the vertex of 24 healthy participants, in two separate sessions. We assessed VSWM performance using 2-back and 4-back visuospatial tasks before iTBS (at the baseline (BL), and after the iTBS. Our results indicate that the iTBS over the rDLPFC significantly enhanced VSWM performance in the 2-back task, as measured by the discriminability index and the reaction time. However, the 4-back task performance was not significantly modulated by iTBS. These findings demonstrate that the rDLPFC plays a critical role in VSWM and that iTBS is a safe and effective approach for investigating the causal role of the specific brain areas.

Keywords: intermittent theta-burst stimulation (iTBS); n-back task; neuroplasticity; right dorsolateral prefrontal cortex (rDLPFC); working memory.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2022 Ngetich, Jin, Li, Song, Zhang, Jin and Li.

Figures

FIGURE 1
FIGURE 1
(A) Overview of the experimental paradigm. Our experiment consisted of three separate sessions. During the first session, the participants were screened on eligibility, had their T1-weighted images acquired, and AMT estimated. In the second session, participants performed the baseline n-back task followed by iTBS and then the post-stimulation n-back task. In the third session, the participants received iTBS and performed the post-stimulation n-back task. (B) The iTBS target brain areas, the vertex and the Rdlpfc, respectively.
FIGURE 2
FIGURE 2
Description of the visuospatial n-back task. The behavioral n-back task consisted of 2-back and 4-back tasks.
FIGURE 3
FIGURE 3
(A) Discriminability index for both 2-back and 4-back tasks under different stimulation conditions, namely: Baseline (BL), iTBS over the vertex, and iTBS over the rDLPFC. (B) The stimulation effect (δd’ scores). The stimulation effect was obtained by subtracting the BL scores from the post-stimulation scores. The yellow and the blue colors refer to the 2-back and 4-back tasks, respectively. The asterisks indicate the level of significance, with ** indicating p ≤ 0.01, and **** indicating p ≤ 0.0001. The errors bars indicate the standard mean error (SME).
FIGURE 4
FIGURE 4
The reaction time (RT) performance for both 2-back and 4-back tasks. The yellow and blue colors indicate 2-back and 4-back tasks, respectively. The asterisks indicate the level of significance, with *** indicating p ≤ 0.001. The errors bars indicate the standard mean error (SME).

References

    1. Alekseichuk I., Turi Z., de Lara G. A., Antal A., Paulus W. (2016). Spatial working memory in humans depends on theta and high gamma synchronization in the prefrontal cortex. Curr. Biol. 26 1513–1521. 10.1016/j.cub.2016.04.035
    1. Baddeley A. (2003). Working memory: looking back and looking forward. Nat. Rev. Neurosci. 4 829–839. 10.1038/nrn1201
    1. Baddeley A. (2010). Working memory- A Primer. Curr. Biol. 20 136–140. 10.1016/J.CUB.2009.12.014
    1. Bagherzadeh Y., Khorrami A., Zarrindast M. R., Shariat S. V., Pantazis D. (2016). Repetitive transcranial magnetic stimulation of the dorsolateral prefrontal cortex enhances working memory. Exp. Brain Res. 234 1807–1818. 10.1007/s00221-016-4580-1
    1. Blitzer R. D., Iyengar R., Landau E. M. (2005). Postsynaptic signaling networks: cellular cogwheels underlying long-term plasticity. Biol. Psychiatry 57 113–119. 10.1016/j.biopsych.2004.02.031
    1. Bruning A. L., Lewis-Peacock J. A. (2020). Long-term memory guides resource allocation in working memory. Sci. Rep. 10:22161. 10.1038/s41598-020-79108-1
    1. Brunoni A. R., Vanderhasselt M. A. (2014). Working memory improvement with non-invasive brain stimulation of the dorsolateral prefrontal cortex: a systematic review and meta-analysis. Brain Cogn. 86 1–9. 10.1016/j.bandc.2014.01.008
    1. Carlson S., Martinkauppi S., Rämä P., Salli E., Korvenoja A. (1998). Distribution of cortical activation during visuospatial n -back tasks as revealed by functional magnetic resonance imaging. Cereb. Cortex (New York, NY: 1991) 8 743–752. 10.1093/cercor/8.8.743
    1. Cheng C., Juan C., Chen M., Chang C., Jie H., Su T., et al. (2016). Different forms of prefrontal theta burst stimulation for executive function of medication- resistant depression: evidence from a randomized sham-controlled study. Prog. Neuropsychopharmacol. Biol. Psychiatry 66 35–40. 10.1016/j.pnpbp.2015.11.009
    1. Chistyakov A. v., Kreinin B., Marmor S., Kaplan B., Khatib A., Darawsheh N., et al. (2015). Preliminary assessment of the therapeutic efficacy of continuous theta-burst magnetic stimulation (cTBS) in major depression: a double-blind sham-controlled study. J. Affect. Disord. 170 225–259. 10.1016/j.jad.2014.08.035
    1. Cho S. S., Ko H., Pellecchia G., van Eimeren T., Cilia R., Strafella P. (2010). Continuous theta burst stimulation of right dorsolateral prefrontal cortex induces changes in impulsivity level. Brain Stimul. 3 170–176. 10.1016/j.brs.2009.10.002
    1. Chung S. W., Lewis B. P., Rogasch N. C., Saeki T., Thomson R. H., Hoy K. E., et al. (2017). Demonstration of short-term plasticity in the dorsolateral prefrontal cortex with theta burst stimulation: a TMS-EEG study. Clin. Neurophysiol. 128 1117–1126. 10.1016/j.clinph.2017.04.005
    1. Chung S. W., Rogasch N. C., Hoy K. E., Fitzgerald P. B. (2018a). The effect of single and repeated prefrontal intermittent theta burst stimulation on cortical reactivity and working memory. Brain Stimul. 11 566–574. 10.1016/j.brs.2018.01.002
    1. Chung S. W., Rogasch N. C., Hoy K. E., Sullivan C. M., Cash R. F. H., Fitzgerald P. B. (2018b). Impact of different intensities of intermittent theta burst stimulation on the cortical properties during TMS-EEG and working memory performance. Hum. Brain Mapp. 38 783–802. 10.1002/hbm.23882
    1. Cieslik E. C., Zilles K., Caspers S., Roski C., Kellermann T. S., Jakobs O., et al. (2013). Is there one DLPFC in cognitive action control? Evidence for heterogeneity from Co-activation-based parcellation. Cereb. Cortex 23 2677–2689. 10.1093/cercor/bhs256
    1. Cocchi L., Bosisio F., Carter O., Wood S., Berchtold A., Conus P., et al. (2009). Visuospatial working memory deficits and visual pursuit impairments are not directly related in schizophrenia. Aust. N. Z. J. Psychiatry 43 766–774. 10.1080/00048670903001901
    1. Cowan N. (2014). Working memory underpins cognitive development, learning, and education. Educ. Psychol. Rev. 26 197–223. 10.1007/s10648-013-9246-y
    1. Dutilh G., Krypotos A. M., Wagenmakers E. J. (2011). Task-related versus stimulus-specific practice: a diffusion model account. Exp. Psychol. 58 434–442. 10.1027/1618-3169/a000111
    1. Figueroa-Vargas A., Cárcamo C., Henríquez-Ch R., Zamorano F., Ciampi E., Uribe-San-Martin R., et al. (2020). Frontoparietal connectivity correlates with working memory performance in multiple sclerosis. Sci. Rep. 10:9310. 10.1038/s41598-020-66279-0
    1. Fried P. J., Rushmore R. J., Moss M. B., Valero-Cabré A., Pascual-Leone A. (2014). Causal evidence supporting functional dissociation of verbal and spatial working memory in the human dorsolateral prefrontal cortex. Eur. J. Neurosci. 39 1973–1981. 10.1111/ejn.12584
    1. Gärtner M., Ghisu M. E., Scheidegger M., Bönke L., Fan Y., Stippl A., et al. (2018). Aberrant working memory processing in major depression: evidence from multivoxel pattern classification. Neuropsychopharmacology 43 1972–1979. 10.1038/s41386-018-0081-1
    1. Goldman-Rakic P. S. (1995). Architecture of the prefrontal cortex and the central executive. Ann. N. Y. Acad. Sci. 769 71–83. 10.1111/j.1749-6632.1995.tb38132.x
    1. Haatveit B. C., Sundet K., Hugdahl K., Ueland T., Melle I., Andreassen O. A. (2010). The validity of d prime as a working memory index: results from the Bergen n-back task. J. Clin. Exp. Neuropsychol. 32 871–880. 10.1080/13803391003596421
    1. Hinder M. R., Goss E. L., Fujiyama H., Canty A. J., Garry M. I., Rodger J., et al. (2014). Inter- and Intra-individual variability following intermittent theta burst stimulation: implications for rehabilitation and recovery. Brain Stimul. 7 365–371. 10.1016/j.brs.2014.01.004
    1. Hoy K. E., Bailey N., Michael M., Fitzgibbon B., Rogasch N. C., Saeki T., et al. (2015). Enhancement of working memory and task-related oscillatory activity following intermittent theta burst stimulation in healthy controls. Cereb. Cortex 26 4563–4573. 10.1093/cercor/bhv193
    1. Hoy K. E., Whitty D., Bailey N., Fitzgerald P. B. (2016). Preliminary investigation of the effects of γ-tACS on working memory in schizophrenia. J. Neural Transm. 123 1205–1212. 10.1007/s00702-016-1554-1
    1. Huang Y. Z., Edwards M. J., Rounis E., Bhatia K. P., Rothwell J. C. (2005). Theta burst stimulation of the human motor cortex. Neuron 45 201–206. 10.1016/j.neuron.2004.12.033
    1. Huang Y., Rothwell J. C., Chen R., Lu C., Chuang W. (2011). The theoretical model of theta burst form of repetitive transcranial magnetic stimulation. Clin. Neurophysiol. 122 1011–1018. 10.1016/j.clinph.2010.08.016
    1. John Irwin R., Hautus M. J., Francis M. A. (2001). Indices of response bias in the same-different experiment. Percept. Psychophys. 63 1091–1100. 10.3758/BF03194527
    1. Jonides J., Smith E. E., Koeppe R. A., Awh E., Minoshima S., Mintun M. A. (1993). Spatial working memory in humans as revealed by PET. Nature 363 623–625. 10.1038/363623a0
    1. Kaller C. P., Heinze K., Frenkel A., Unterrainer J. M., Weiller C., La C. H., et al. (2011). Differential impact of continuous theta-burst stimulation over left and right DLPFC on planning. Hum. Brain Mapp. 36 36–51. 10.1002/hbm.21423
    1. Kessels R. P. C., Kappelle L. J., de Haan E. H. F., Postma A. (2002). Lateralization of spatial-memory processes: evidence on spatial span, maze learning, and memory for object locations. Neuropsychologia 40 1465–1473. 10.1016/s0028-3932(01)00199-3
    1. Kessels R. P. C., Postma A., Wijnalda E. M., de Haan E. H. F. (2000). Frontal-lobe involvement in spatial memory: evidence from PET, fMRI, and lesion studies. Neuropsychology Review 10 101–113.
    1. Kiyonaga A., Korb F. M., Lucas J., Soto D., Egner T. (2014). Dissociable causal roles for left and right parietal cortex in controlling attentional biases from the contents of working memory. NeuroImage 100 200–205. 10.1016/j.neuroimage.2014.06.019
    1. Ko J. H., Monchi O., Ptito A., Bloomfield P., Houle S., Strafella A. P. (2008). Theta burst stimulation-induced inhibition of dorsolateral prefrontal cortex reveals hemispheric asymmetry in striatal dopamine release during a set-shifting task – a TMS –[11 C] raclopride PET study. Eur. J. Neurosci. 28 2147–2155. 10.1111/j.1460-9568.2008.06501.x
    1. Lee J. C., Corlier J., Wilson A. C., Tadayonnejad R., Marder K. G., Ngo D., et al. (2021). Subthreshold stimulation intensity is associated with greater clinical efficacy of intermittent theta-burst stimulation priming for Major Depressive Disorder. Brain Stimul. 14 1015–1021. 10.1016/j.brs.2021.06.008
    1. Li C. T., Huang Y. Z., Bai Y. M., Tsai S. J., Su T. P., Cheng C. M. (2019). Critical role of glutamatergic and GABAergic neurotransmission in the central mechanisms of theta-burst stimulation. Hum. Brain Mapp. 40 2001–2009. 10.1002/hbm.24485
    1. Li C., Chen M., Juan C., Huang H., Chen L., Hsieh J., et al. (2014). Efficacy of prefrontal theta-burst stimulation in refractory depression: a randomized sham-controlled study. Brain 137 2088–2098. 10.1093/brain/awu109
    1. Lowe C. J., Manocchio F., Safati A. B., Hall P. A. (2018). The effects of theta burst stimulation (TBS) targeting the prefrontal cortex on executive functioning: a systematic review and meta-analysis. Neuropsychologia 111 344–359. 10.1016/j.neuropsychologia.2018.02.004
    1. Luber B., Lisanby S. H. (2014). Enhancement of human cognitive performance using transcranial magnetic stimulation (TMS). NeuroImage 85 961–970. 10.1016/j.neuroimage.2013.06.007
    1. Luck S. J., Vogel E. K. (2013). Visual working memory capacity: from psychophysics and neurobiology to individual differences. Trends Cogn. Sci. 17 391–400. 10.1016/j.tics.2013.06.006
    1. Manoach D. S., White N. S., Lindgren K. A., Heckers S., Coleman M. J., Dubal S., et al. (2004). Hemispheric specialization of the lateral prefrontal cortex for strategic processing during spatial and shape working memory. NeuroImage 21 894–903. 10.1016/j.neuroimage.2003.10.025
    1. McDonnell M. D., Abbott D. (2009). What is stochastic resonance? Definitions, misconceptions, debates, and its relevance to biology. PLoS Comput. Biol. 5:e1000348. 10.1371/journal.pcbi.1000348
    1. Mckiernan K. A., Kaufman J. N., Kucera-thompson J., Binder J. R. (2003). A parametric manipulation of factors affecting task-induced deactivation in fmri. J. Cogn. Neurosci. 15 394–408. 10.1162/089892903321593117
    1. Mcneill A., Monk R. L., Qureshi A. W., Makris S., Heim D. (2018). Continuous theta burst transcranial magnetic stimulation of the right dorsolateral prefrontal cortex impairs inhibitory control and increases alcohol consumption. Cogn. Affect. Behav. Neurosci. 18 1198–1206. 10.3758/s13415-018-0631-3
    1. Nee D. E., Brown J. W. (2013). Dissociable frontal-striatal and frontal-parietal networks involved in updating hierarchical contexts in working memory. Cereb. Cortex (New York, N.Y.: 1991) 23 2146–2158. 10.1093/cercor/bhs194
    1. Ngetich R., Li W., Jin D., Zhang J., Jin Z., Li L. (2021). Continuous theta-burst stimulation over the right dorsolateral prefrontal cortex impairs visuospatial working memory performance in medium load task. NeuroReport 32 808–814. 10.1097/WNR.0000000000001666
    1. Ngetich R., Zhou J., Zhang J., Jin Z., Li L. (2020). Assessing the effects of continuous theta burst stimulation over the dorsolateral prefrontal cortex on human cognition: a systematic review. Front. Integr. Neurosci. 14:35. 10.3389/fnint.2020.00035
    1. Oldfield R. C. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9 97–113. 10.1016/0028-3932(71)90067-4
    1. Oliveira J. F., Zanão T. A., Valiengo L., Lotufo P. A., Benseñor I. M., Fregni F., et al. (2013). Acute working memory improvement after tDCS in antidepressant-free patients with major depressive disorder. Neurosci. Lett. 537 60–64. 10.1016/j.neulet.2013.01.023
    1. Oliveri M., Turriziani P., Carlesimo G. A., Koch G., Tomaiuolo F., Panella M., et al. (2001). Parieto-frontal interactions in visual-object and visual-spatial working memory: evidence from transcranial magnetic stimulation. Cereb. Cortex 11 606–618. 10.1093/cercor/11.7.606
    1. Ott D. V. M., Ullsperger M., Jocham G., Neumann J., Klein T. A. (2011). Continuous theta-burst stimulation (cTBS) over the lateral prefrontal cortex alters reinforcement learning bias. NeuroImage 57 617–623. 10.1016/j.neuroimage.2011.04.038
    1. Owen A. M., McMillan K. M., Laird A. R., Bullmore E. (2005). N-back working memory paradigm: a meta-analysis of normative functional neuroimaging studies. Hum. Brain Mapp. 25 46–59. 10.1002/hbm.20131
    1. Pestalozzi M. I., Annoni J. M., Müri R. M., Jost L. B. (2020). Effects of theta burst stimulation over the dorsolateral prefrontal cortex on language switching – A behavioral and ERP study. Brain Lang. 205:104775. 10.1016/j.bandl.2020.104775
    1. Petrides M. (2019). Atlas of the Morphology of the Human Cerebral Cortex on the Average MNI Brain, 1st Edn. New York, NY: Academic Press.
    1. Plewnia C., Pasqualetti P., Große S., Schlipf S., Wasserka B., Zwissler B., et al. (2014). Treatment of major depression with bilateral theta burst stimulation: a randomized controlled pilot trial. J. Affect. Disord. 156 219–223. 10.1016/j.jad.2013.12.025
    1. Polanía R., Nitsche M. A., Ruff C. C. (2018). Studying and modifying brain function with non-invasive brain stimulation. Nat. Neurosci. 21 174–187. 10.1038/s41593-017-0054-4
    1. Ridding M. C., Ziemann U. (2010). Determinants of the induction of cortical plasticity by non-invasive brain stimulation in healthy subjects. J. Physiol. 588 2291–2304. 10.1113/jphysiol.2010.190314
    1. Romei V., Thut G., Silvanto J. (2016). Information-based approaches of noninvasive transcranial brain stimulation. Trends Neurosci. 39 782–795. 10.1016/j.tins.2016.09.001
    1. Rottschy C., Langner R., Dogan I., Reetz K., Laird A. R., Schulz J. B. (2012). NeuroImage Modelling neural correlates of working memory: a coordinate-based meta-analysis. NeuroImage 60 830–846. 10.1016/j.neuroimage.2011.11.050
    1. Schicktanz N., Fastenrath M., Milnik A., Spalek K. (2015). Continuous theta burst stimulation over the left dorsolateral prefrontal cortex decreases medium load working memory performance in healthy humans. PLoS One 10:e0120640. 10.1371/journal.pone.0120640
    1. Silvanto J., Cattaneo Z. (2017). Common framework for “virtual lesion” and state-dependent TMS: the facilitatory/suppressive range model of online TMS effects on behavior. Brain Cogn. 119 32–38. 10.1016/j.bandc.2017.09.007
    1. Silvanto J., Bona S., Marelli M., Cattaneo Z. (2018). On the mechanisms of transcranial magnetic stimulation (TMS): how brain state and baseline performance level determine behavioral effects of TMS. Front. Psychol. 9:741. 10.3389/fpsyg.2018.00741
    1. Silvanto J., Muggleton N. G., Cowey A., Walsh V. (2007). Neural activation state determines behavioral susceptibility to modified theta burst transcranial magnetic stimulation. Eur. J. Neurosci. 26 523–528. 10.1111/j.1460-9568.2007.05682.x
    1. Sörqvist P., Dahlström Ö, Karlsson T., Rönnberg J. (2016). Concentration: the neural underpinnings of how cognitive load shields against distraction. Front. Hum. Neurosci. 10:221. 10.3389/fnhum.2016.00221
    1. Stocks N. G. (2000). Suprathreshold stochastic resonance in multilevel threshold systems. Rev. Lett. 84 2310–2313. 10.1103/PhysRevLett.84.2310
    1. Taren A. A., Gianaros P. J., Greco C. M., Lindsay E. K., Fairgrieve A., Brown K. W., et al. (2017). Mindfulness meditation training and executive control network resting state functional connectivity: a randomized controlled trial. Psychosom. Med. 79 674–683. 10.1097/PSY.0000000000000466
    1. Thomason M. E., Race E., Burrows B., Whitfield-Gabrieli S., Glover G. H., Gabrieli J. D. E. (2009). Development of spatial and verbal working memory capacity in the human brain. J. Cogn. Neurosci. 21 316–332. 10.1162/jocn.2008.21028
    1. Tomasi D., Chang L., Caparelli E. C., Ernst T. (2008). Different activation patterns for working memory load and visual attention load. Brain Res. 1132 158–165. 10.1038/jid.2014.371
    1. Vékony T., Németh V. L., Holczer A., Kocsis K., Kincses Z. T., Vécsei L., et al. (2018). Continuous theta-burst stimulation over the dorsolateral prefrontal cortex inhibits improvement on a working memory task. Sci. Rep. 8:14835. 10.1038/s41598-018-33187-3
    1. Wang H., He W., Wu J., Zhang J., Jin Z., Li L. (2019). A coordinate-based meta-analysis of the n-back working memory paradigm using activation likelihood estimation. Brain Cogn. 132 1–12. 10.1016/j.bandc.2019.01.002
    1. Westin G. G., Bassi B. D., Lisanby S. H., Luber B. (2014). Determination of motor threshold using visual observation overestimates transcranial magnetic stimulation dosage: safety implications. Clin. Neurophysiol. 125 142–147. 10.1016/j.clinph.2013.06.187
    1. Widhalm M. L., Rose N. S. (2019). How can transcranial magnetic stimulation be used to causally manipulate memory representations in the human brain? WIREs Cogn. Sci. 10:e1469. 10.1002/wcs.1469
    1. Wischnewski M., Schutter D. J. L. G. (2015). Efficacy and time course of theta burst stimulation in healthy humans. Brain Stimul. 8 685–692. 10.1016/j.brs.2015.03.004

Source: PubMed

3
Iratkozz fel