State-of-the-art polymeric nanoparticles as promising therapeutic tools against human bacterial infections

Amanda Cano, Miren Ettcheto, Marta Espina, Ana López-Machado, Yolanda Cajal, Francesc Rabanal, Elena Sánchez-López, Antonio Camins, Maria Luisa García, Eliana B Souto, Amanda Cano, Miren Ettcheto, Marta Espina, Ana López-Machado, Yolanda Cajal, Francesc Rabanal, Elena Sánchez-López, Antonio Camins, Maria Luisa García, Eliana B Souto

Abstract

Infectious diseases kill over 17 million people a year, among which bacterial infections stand out. From all the bacterial infections, tuberculosis, diarrhoea, meningitis, pneumonia, sexual transmission diseases and nosocomial infections are the most severe bacterial infections, which affect millions of people worldwide. Moreover, the indiscriminate use of antibiotic drugs in the last decades has triggered an increasing multiple resistance towards these drugs, which represent a serious global socioeconomic and public health risk. It is estimated that 33,000 and 35,000 people die yearly in Europe and the United States, respectively, as a direct result of antimicrobial resistance. For all these reasons, there is an emerging need to find novel alternatives to overcome these issues and reduced the morbidity and mortality associated to bacterial infectious diseases. In that sense, nanotechnological approaches, especially smart polymeric nanoparticles, has wrought a revolution in this field, providing an innovative therapeutic alternative able to improve the limitations encountered in available treatments and capable to be effective by theirselves. In this review, we examine the current status of most dangerous human infections, together with an in-depth discussion of the role of nanomedicine to overcome the current disadvantages, and specifically the most recent and innovative studies involving polymeric nanoparticles against most common bacterial infections of the human body.

Keywords: Bacterial infections; Infectious diseases; Nanomedicine; Nanotechnology; Polymeric nanoparticles.

Conflict of interest statement

None of the authors has any conflicts of interest including any financial, personal or other relationships with other people or organizations. All authors have reviewed the contents of the manuscript being submitted and approved its contents.

Figures

Fig. 1
Fig. 1
Most common human bacterial infections
Fig. 2
Fig. 2
Main improvements brought by nanoparticles for the antibacterial therapy

References

    1. World Health Organization (WHO). Global health estimates 2016: disease burden by cause, age, sex, by country and by region, 2000–2016 [Internet]. 2018. . Accessed 28 Oct 2020.
    1. Rappuoli R, Bloom DE, Black S. Deploy vaccines to fight superbugs. Nature. 2017;552:163–167. doi: 10.1038/d41586-017-08323-0.
    1. Khalil IA, Troeger C, Blacker BF, Rao PC, Brown A, Atherly DE, et al. Morbidity and mortality due to shigella and enterotoxigenic Escherichia coli diarrhoea : the Global Burden of Disease Study 1990–2016. Lancet Infect Dis. 2018;18:1229–1240. doi: 10.1016/S1473-3099(18)30475-4.
    1. GBD Estimates of the global, regional, and national morbidity, mortality, and aetiologies of diarrhoea in 195 countries : a systematic analysis for the Global Burden of Disease Study 2016. Lancet Infect Dis. 2018;18:1211–1228. doi: 10.1016/S1473-3099(18)30362-1.
    1. GBD Global, regional, and national burden of meningitis, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2018;17:1061–1782. doi: 10.1016/S1474-4422(18)30387-9.
    1. GBD Global , regional , and national burden of tuberculosis , 1990–2016 : results from the Global Burden of Diseases , Injuries , and Risk Factors 2016 Study. Lancet Infect Dis. 2018;18:1329–1349. doi: 10.1016/S1473-3099(18)30625-X.
    1. Rudd KE, Johnson SC, Agesa KM, Shackelford KA, Tsoi D, Kievlan DR, et al. Global, regional, and national sepsis incidence and mortality, 1990–2017: analysis for the Global Burden of Disease Study. Lancet. 2020;395:200–211. doi: 10.1016/S0140-6736(19)32989-7.
    1. Collignon PJ, McEwen SA. One health-its importance in helping to better control antimicrobial resistance. Trop Med Infect Dis. 2019;4(1):22. doi: 10.3390/tropicalmed4010022.
    1. Doron S, Gorbach S. Bacterial infections : overview. In: International Encyclopedia of Public Health. Amsterdam: Elsevier; 2008;273–282. 10.1016/B978-012373960-5.00596-7
    1. Santajit S, Indrawattana N. Mechanisms of antimicrobial resistance in ESKAPE pathogens. Biomed Res Int. 2016;2016:2475067. doi: 10.1155/2016/2475067.
    1. Hollingshead S, Tang CM. An overview of Neisseria Meningitidis. Methods Mol Biol. 2019;1969:1–16. doi: 10.1007/978-1-4939-9202-7_1.
    1. Young N, Thomas M. Meningitis in adults: diagnosis and management. Intern Med J. 2018;48(11):1294–1307. doi: 10.1111/imj.14102.
    1. Conner JG, Teschler JK, Jones CJ, Yildiz FH. Staying alive: vibrio cholerae’s cycle of environmental survival, transmission, and dissemination. Microbiol Spectr. 2016;4(2):10. doi: 10.1128/microbiolspec.VMBF-0015-2015.
    1. Lekshmi N, Iype J, Ramamurthy T, Sabu T. Changing facades of Vibrio cholerae: an enigma in the epidemiology of cholera. Indian J Med Res. 2018;147(2):133–141. doi: 10.4103/ijmr.IJMR_280_17.
    1. Burke KE, Lamont JT. Clostridium difficile infection: a worldwide disease. Gut Liver. 2014;8(1):1–6. doi: 10.5009/gnl.2014.8.1.1.
    1. Ooijevaar RE, Van BYH, Terveer EM, Goorhuis A, Bauer MP, Keller JJ, et al. Update of treatment algorithms for Clostridium difficile infection. Clin Microbiol Infect. 2018;24(5):452–462. doi: 10.1016/j.cmi.2017.12.022.
    1. Le Chevalier F, Cascioferro A, Majlessi L, Herrmann JL, Brosch R. Mycobacterium tuberculosis evolutionary pathogenesis and its putative impact on drug development. Future Microbiol. 2014;9(8):969–985. doi: 10.2217/fmb.14.70.
    1. Tiberi S, du Plessis N, Walzl G, Vjecha MJ, Rao M, Ntoumi F, et al. Tuberculosis: progress and advances in development of new drugs, treatment regimens, and host-directed therapies. Lancet Infect Dis. 2018;18(7):e183–e198. doi: 10.1016/S1473-3099(18)30110-5.
    1. Witkin SS, Minis E, Athanasiou A, Leizer J, Linhares IM. Chlamydia trachomatis: the persistent pathogen. Clin Vaccine Immunol. 2017;24(10):e00203–e217. doi: 10.1128/CVI.00203-17.
    1. Lane AB, Decker CF. Chlamydia trachomatis infections. Dis Mon. 2016;62(8):269–273. doi: 10.1016/j.disamonth.2016.03.010.
    1. Singh S, Hussain A, Shakeel F, Ahsan MJ, Alshehri S, Webster TJ, et al. Recent insights on nanomedicine for augmented infection control. Int J Nanomed. 2019;14:2301–2325. doi: 10.2147/IJN.S170280.
    1. Kamaruzzaman NF, Tan LP, Hamdan RH, Pina MDF. Antimicrobial polymers : the potential replacement of existing antibiotics? Int J Mol Sci. 2019;20(2747):1–31.
    1. Aminov RI. A brief history of the antibiotic era : lessons learned and challenges for the future. Front Mocrobiol. 2010;1:134.
    1. European Commission [Internet]. EU Action on Antimicrobial Resistance. 2020. . Accessed 28 Oct 2020.
    1. Centers for Disease Control and Prevention [Internet]. 2019 AR Threats Report. 2019. . Accessed 28 Oct 2020.
    1. Gao W, Chen Y, Zhang Y, Zhang Q, Zhang L. Nanoparticle-based local antimicrobial drug delivery. Adv Drug Deliv Rev. 2018;127:46–57. doi: 10.1016/j.addr.2017.09.015.
    1. Masri A, Anwar A, Khan NA. The use of nanomedicine for targeted therapy against bacterial infections. Antibiotics. 2019;8:260. doi: 10.3390/antibiotics8040260.
    1. Gupta A, Mumtaz S, Li C, Hussain I, Vincent M, States U. Combatting antibiotic-resistant bacteria using nanomaterials. Chem Soc Rev. 2019;48(2):415–427. doi: 10.1039/C7CS00748E.
    1. Lam SJ, Wong EHH, Boyer C, Qiao GG. Antimicrobial polymeric nanoparticles. Prog Polym Sci. 2018;76:40–64. doi: 10.1016/j.progpolymsci.2017.07.007.
    1. Sánchez-lópez E, Gomes D, Esteruelas G, Bonilla L, Lopez-machado AL, Galindo R, et al. Metal-based nanoparticles as antimicrobial agents : an overview. Nanomaterials. 2020;10(2):292. doi: 10.3390/nano10020292.
    1. AlMatar M, Makky EA, Var I, Koksal F. The role of nanoparticles in the inhibition of multidrug-resistant bacteria and biofilms. Curr Drug Deliv. 2018;15(4):470–484. doi: 10.2174/1567201815666171207163504.
    1. Chen J, Andler SM, Goddard JM, Nugen SR, Rotello VM. Integrating recognition elements with nanomaterials for bacteria sensing. Chem Soc Rev. 2017;46(5):1272–1283. doi: 10.1039/C6CS00313C.
    1. Hamula C, Zhang H, Li F, Wang Z, Chris LX, Li X. Selection and analytical applications of aptamers binding microbial pathogens. TrAC, Trends Anal Chem. 2011;30(10):1587–1597. doi: 10.1016/j.trac.2011.08.006.
    1. van der Merwe R, van Helden P, Warren R, Sampson S, van Pittius NG. Phage-based detection of bacterial pathogens. Analyst. 2014;139(11):2617–2626. doi: 10.1039/C4AN00208C.
    1. Barraud N, Kelso MJ, Rice SA, Kjelleberg S. Nitric oxide: a key mediator of biofilm dispersal with applications in infectious diseases. Curr Pharm Des. 2015;21(1):31–42. doi: 10.2174/1381612820666140905112822.
    1. Duong HTT, Adnan NNM, Barraud N, Basuki JS, Kutty SK, Jung K, et al. Functional gold nanoparticles for the storage and controlled release of nitric oxide : applications in bio fi lm dispersal and intracellular delivery. J Mater Chem B. 2014;2:5003–5011. doi: 10.1039/C4TB00632A.
    1. Duong HTT, Jung K, Kutty SK, Agustina S, Adnan NNM, Basuki JS, et al. Nanoparticle (Star Polymer) delivery of nitric oxide effectively negates Pseudomonas aeruginosa biofilm formation. Biomacromol. 2014;15:2583–2589. doi: 10.1021/bm500422v.
    1. Nguyen T-K, Selvanayagam R, Ho KKK, Chen R, Kutty SK, Rice SA, et al. Co-delivery of nitric oxide and antibiotic using polymeric nanoparticles. Chem Sci. 2016;7:1016–1027. doi: 10.1039/C5SC02769A.
    1. Nguyen T, Duong HTT, Selvanayagam R, Boyer C. Iron oxide nanoparticle-mediated hyperthermia stimulates dispersal in bacterial biofilms and enhances antibiotic efficacy. Sci Rep. 2015;5:18385. doi: 10.1038/srep18385.
    1. Kyzioł A, Khan W, Sebastian V, Kyzioł K. Tackling microbial infections and increasing resistance involving formulations based on antimicrobial polymers. Chem Eng J. 2020;385:123888. doi: 10.1016/j.cej.2019.123888.
    1. Mowery B, Lee S, Kissounko D, Epand R, Epand R, Weisblum B, et al. Mimicry of antimicrobial host-defense peptides by random copolymers. J Am Chem Soc. 2007;129:15474–15476. doi: 10.1021/ja077288d.
    1. Park A, Okhovat J, Kim J. Antimicrobial peptides. Clin Basic Immunodermatol Second Ed. 2017;1548:81–95. doi: 10.1007/978-3-319-29785-9_6.
    1. Judzewitsch APR, Nguyen T, Wong EHH, Jean CA. Towards sequence-controlled antimicrobial polymers: effect of polymer block order on antimicrobial activity. Angew Chem. 2018;130(17):4649–4654. doi: 10.1002/ange.201713036.
    1. Nguyen T, Lam SJ, Ho KKK, Kumar N, Qiao GG, Egan S, et al. Rational design of single-chain polymeric nanoparticles that kill planktonic and bio film bacteria. ACS Infect Dis. 2017;3:237–248. doi: 10.1021/acsinfecdis.6b00203.
    1. Namivandi-Zangeneh R, Kwan RJ, Nguyen T-K, Yeow J, Byrne FL, Oehlers SH, et al. The effects of polymer topology and chain length on the antimicrobial activity and hemocompatibility of amphiphilic ternary copolymers. Polym Chem. 2018;9(13):1735–1744. doi: 10.1039/C7PY01069A.
    1. Namivandi-zangeneh R, Sadrearhami Z, Dutta D, Willcox M, Wong EHH, Boyer C. Synergy between synthetic antimicrobial polymer and antibiotics: a promising platform to combat multidrug-resistant bacteria. ACS Infect Dis. 2019;5:1357–1365. doi: 10.1021/acsinfecdis.9b00049.
    1. Namivandi-zangeneh R, Yang Y, Xu S, Wong EHH, Boyer C. Antibiofilm platform based on the combination of antimicrobial polymers and essential oils. Biomacromol. 2020;21:262–272. doi: 10.1021/acs.biomac.9b01278.
    1. Burian M, Schittek B. The secrets of dermcidin action. Int J Med Microbiol. 2015;305:283–286. doi: 10.1016/j.ijmm.2014.12.012.
    1. Aoki W, Ueda M. Characterization of antimicrobial peptides toward the development of novel antibiotics. Pharmaceuticals. 2013;6:1055–1081. doi: 10.3390/ph6081055.
    1. Le C, Fang C, Sekaran S. Intracellular targeting mechanisms by antimicrobial peptides. Antimicrob Agents Chemother. 2017;61:e02340–e2416.
    1. Butler M, Blaskovich M, Cooper M. Antibiotics in the clinical pipeline at the end of 2015. J Antibiot. 2016;70:3. doi: 10.1038/ja.2016.72.
    1. Muñoz-Bonilla A, Fernández-García M. Polymeric materials with antimicrobial activity. Prog Polym Sci. 2012;37:281–339. doi: 10.1016/j.progpolymsci.2011.08.005.
    1. Park E, Moon W, Song M, Kim M, Chung K, Yoon J. Antimicrobial activity of phenol and benzoic acid derivatives. Int Biodeterior Biodegrad. 2001;47:209–214. doi: 10.1016/S0964-8305(01)00058-0.
    1. Suaifan GA, Mohammed AA. Fluoroquinolones structural and medicinal developments (2013–2018): Where are we now? Bioorg Med Chem. 2019;27(14):3005–3060. doi: 10.1016/j.bmc.2019.05.038.
    1. Lin J, Chen X, Chen C, Hu J, Zhou C, Cai X, et al. Durably antibacterial and bacterially antiadhesive cotton fabrics coated by cationic fluorinated polymers. ACS Appl Mater Interfaces. 2018;10:6124–6136. doi: 10.1021/acsami.7b16235.
    1. Mesallati H, Umerska A, Paluch K, Tajber L. Amorphous polymeric drug salts as ionic solid dispersion forms of ciprofloxacin. Mol Pharm. 2017;14:2209–2223. doi: 10.1021/acs.molpharmaceut.7b00039.
    1. Kocer H, Worley S, Broughton R, Huang T. A novel N-halamine acrylamide monomer and its copolymers for antimicrobial coatings. React Funct Polym. 2011;71:561–568. doi: 10.1016/j.reactfunctpolym.2011.02.002.
    1. Locock KE, Michl T, Griesser H, Haeussler M, Meagher L. Structure–activity relationships of guanylated antimicrobial polymethacrylates. Pure Appl Chem. 2014;86:1281–1291. doi: 10.1515/pac-2014-0213.
    1. Mankoci S, Kaiser R, Sahai N, Barton H, Joy A. Bactericidal peptidomimetic polyurethanes with remarkable selectivity against Escherichia coli. ACS Biomater Sci Eng. 2017;3:2588–2597. doi: 10.1021/acsbiomaterials.7b00309.
    1. Delplace V, Nicolas J. Degradable vinyl polymers for biomedical applications. Nat Chem. 2015;7:771–784. doi: 10.1038/nchem.2343.
    1. Awad M, Mekhamer W, Merghani N, Hendi A, Ortashi KM, Al-Abbas F, et al. Green synthesis, characterization, and antibacterial activity of silver/polystyrene nanocomposite. J Nanomater. 2015;2015:1–6. doi: 10.1155/2015/943821.
    1. GBD and Collaborators Estimates of the global, regional, and national morbidity, mortality, and aetiologies of lower respiratory infections in 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Infect Dis. 2018;18:1191–1210. doi: 10.1016/S1473-3099(18)30310-4.
    1. Maurice NM, Bedi B, Sadikot RT. Pseudomonas aeruginosa biofilms: host response and clinical implications in lung infections. Am J Respir Cell Mol Biol. 2018;58(4):428–439. doi: 10.1165/rcmb.2017-0321TR.
    1. Schaefers MM, Duan B, Mizrahi B, Lu R, Reznor G, Kohane DS, et al. PLGA-encapsulation of the Pseudomonas aeruginosa PopB vaccine antigen improves Th17 responses and confers protection against experimental acute pneumonia. Vaccine. 2018;36(46):6926–6932. doi: 10.1016/j.vaccine.2018.10.010.
    1. Deacon J, Abdelghany SM, Quinn DJ, Schmid D, Megaw J, Donnelly RF, et al. Antimicrobial efficacy of tobramycin polymeric nanoparticles for Pseudomonas aeruginosa infections in cystic fibrosis: formulation, characterisation and functionalisation with dornasealfa (DNase) J Control Release. 2015;198:55–61. doi: 10.1016/j.jconrel.2014.11.022.
    1. Coya JM, De Matteis L, Gatineau AG, Biton A, Sevilla IS, Danckaert A, et al. Tri-mannose grafting of chitosan nanocarriers remodels the macrophage response to bacterial infection. J Nanobiotechnol. 2019;17(15):1–15. doi: 10.1186/s12951-018-0439-x.
    1. Malik A, Gupta M, Mani R, Bhatnagar R. Single-dose Ag85B-ESAT6—loaded poly ( lactic- co -glycolic acid ) nanoparticles confer protective immunity against tuberculosis. Int J Nanomed. 2019;14:3129–3143. doi: 10.2147/IJN.S172391.
    1. Knittler MR, Sachse K. Chlamydia psittaci: update on an underestimated zoonotic agent. Pathog Dis. 2015;73(1):1–15. doi: 10.1093/femspd/ftu007.
    1. Hogerwerf L, DE Gier B, Baan B, Van Der Hoek W. Chlamydia psittaci (psittacosis) as a cause of community-acquired pneumonia: a systematic review and meta-analysis. Epidemiol Infect. 2017;145(15):3096–3105. doi: 10.1017/S0950268817002060.
    1. Li Y, Wang C, Sun Z, Xiao J, Yan X, Chen Y, et al. Simultaneous intramuscular and intranasal administration of chitosan nanoparticles—adjuvanted chlamydia vaccine elicits elevated protective responses in the lung. IJN. 2019;14:8179–8193. doi: 10.2147/IJN.S218456.
    1. Tonetti M, Jepsen S, Jin L, Otomo-Corgel J. Impact of the global burden of periodontal diseases on health, nutrition and wellbeing of mankind: a call for global action. J Clin Periodontol. 2017;44(5):456–462. doi: 10.1111/jcpe.12732.
    1. Kassebaum N, Bernabe E, Dahiya M, Bhandari B, Murray C, Marcenes W. Global burden of untreated caries: a systematic review and metaregression. J Dent Res. 2015;94(5):650–658. doi: 10.1177/0022034515573272.
    1. Sankar V, Hearnden V, Hull K, Vidovic Juras D, Greenberg M, Kerr A, et al. Local drug delivery for oral mucosal diseases: challenges and opportunities. Oral Dis. 2011;17(Suppl 1):73–84. doi: 10.1111/j.1601-0825.2011.01793.x.
    1. Meng Y, Wu T, Billings R, Kopycka-Kedzierawski DT, Xiao J. Human genes influence the interaction between Streptococcus mutans and host caries susceptibility: a genome-wide association study in children with primary dentition. Int J Oral Sci. 2019;11:19. doi: 10.1038/s41368-019-0051-4.
    1. Yadav K, Prakash S. Dental caries: a microbiological approach. J Clin Infect Dis Pract. 2017;2(1):118. doi: 10.4172/2476-213X.1000118.
    1. Forssten SD, Björklund M, Ouwehand AC. Streptococcus mutans, caries and simulation models. Nutrients. 2010;2(3):290–298. doi: 10.3390/nu2030290.
    1. Ikono R, Vibriani A, Wibowo I, Saputro KE, Muliawan W. Nanochitosan antimicrobial activity against Streptococcus mutans and Candida albicans dual—species biofilms. BMC Res Notes. 2019;12:383. doi: 10.1186/s13104-019-4422-x.
    1. Sims KR, Liu Y, Hwang G, Jung HI, Koo H, Benoit DSW. Enhanced design and formulation of nanoparticles for antibiofilm drug delivery. Nanoscale. 2018;11(1):219–236. doi: 10.1039/C8NR05784B.
    1. Liu Y, Ren Y, Li Y, Su L, Zhang Y, Huang F, et al. Nanocarriers with conjugated antimicrobials to eradicate pathogenic biofilms evaluated in murine in vivo and human ex vivo infection models. Acta Biomater. 2018;79:331–343. doi: 10.1016/j.actbio.2018.08.038.
    1. Fiorillo L, Cervino G, Laino L, D’Amico C, Mauceri R, Fikret Tozum T, et al. Porphyromonas gingivalis, periodontal and systemic implications: a systematic review. Dent J (Basel) 2019;7(4):114. doi: 10.3390/dj7040114.
    1. Mahmoud MY, Steinbach-rankins JM. Functional assessment of peptide-modified PLGA nanoparticles against oral biofilms in a murine model of periodontitis. J Control Release. 2019;297:3–13. doi: 10.1016/j.jconrel.2019.01.036.
    1. Toledano-osorio M, Babu JP, Osorio R, Medina-castillo AL, Garc F, Toledano M. Modified polymeric nanoparticles exert in vitro antimicrobial activity against oral bacteria. Materials. 2018;11:1013. doi: 10.3390/ma11061013.
    1. Fhogartaigh CN, Dance DAB. Bacterial gastroenteritis. Gastrointestinal Infect. 2013;41(12):693–699.
    1. Das S, Angsantikul P, Le C, Bao D, Miyamoto Y, Gao W, et al. Neutralization of cholera toxin with nanoparticle decoys for treatment of cholera. PLoS Negl Trop Dis. 2018;12(2):e0006266. doi: 10.1371/journal.pntd.0006266.
    1. Taha-Abdelaziz K, Yitbarek A, Alkie TN, Hodgins DC. PLGA-encapsulated CpG ODN and Campylobacter jejuni lysate modulate cecal microbiota composition in broiler chickens experimentally challenged with. Sci Rep. 2018;8:12076. doi: 10.1038/s41598-018-30510-w.
    1. Shirota H, Klinman D. CpG oligodeoxynucleotides as adjuvants for clinical use. In: Immunopotentiators in modern vaccines, 2nd ed. Elsevier; 2017. p. 163–98. 10.1016/B978-0-12-804019-5.00009-8
    1. Kurtz JR, Goggins JA, McLachlan JB. Salmonella infection: interplay between the bacteria and host immune system. Immunol Lett. 2017;190:42–50. doi: 10.1016/j.imlet.2017.07.006.
    1. Wotzka SY, Nguyen BD, Hardt W-D. Salmonella typhimurium diarrhea reveals basic principles of enteropathogen infection and disease-promoted DNA exchange. Cell Host Microbe. 2017;21(4):443–454. doi: 10.1016/j.chom.2017.03.009.
    1. Rishi P, Bhogal A, Arora S, Pandey SK, Verma I, Pal I. Improved oral therapeutic potential of nanoencapsulated cryptdin formulation against Salmonella infection. Eur J Pharm Sci. 2015;72:27–33. doi: 10.1016/j.ejps.2015.02.014.
    1. Gravina AG, Zagari RM, De MC, Romano L, Loguercio C, Romano M. Helicobacter pylori and extragastric diseases: a review. World J Gastroenterol. 2018;24(29):3204–3221. doi: 10.3748/wjg.v24.i29.3204.
    1. Angsantikul P, Thamphiwatana S, Zhang Q, Spiekermann K, Zhuang J, Fang RH, et al. Coating nanoparticles with gastric epithelial cell membrane for targeted antibiotic delivery against Helicobacter pylori infection. Adv Therap. 2018;1(2):1800016. doi: 10.1002/adtp.201800016.
    1. Boyanova L, Hadzhiyski P, Kandilarov N, Markovska R, Mitov I. Multidrug resistance in Helicobacter pylori: current state and future directions. Expert Rev Clin Pharmacol. 2019;12(9):909–915. doi: 10.1080/17512433.2019.1654858.
    1. Løvmo SD, Tobias M, Repnik U, Olaf E, Wyn G, Paul J. Translocation of nanoparticles and Mycobacterium marinum across the intestinal epithelium in zebrafish and the role of the mucosal immune system. Dev Comp Immunol. 2017;67:508–518. doi: 10.1016/j.dci.2016.06.016.
    1. Mistik S, Uludag A, Kartal D, Cinar SL. Bacterial skin infections: epidemiology and latest research. TJFMPC. 2015;9(2):65–74. doi: 10.5455/tjfmpc.177379.
    1. Hasan N, Cao J, Lee J, Hlaing SP, Oshi MA, Naeem M, et al. Bacteria-targeted clindamycin loaded polymeric nanoparticles: effect of surface charge on nanoparticle adhesion to MRSA, antibacterial activity, and wound healing. Pharmaceutics. 2019;11:236. doi: 10.3390/pharmaceutics11050236.
    1. Han C, Goodwine J, Romero N, Steck KS, Sauer K. Enzyme-encapsulating polymeric nanoparticles: a potential adjunctive therapy in Pseudomonas aeruginosa biofilm-associated infection treatment. Colloids Surf B. 2019;184:110512. doi: 10.1016/j.colsurfb.2019.110512.
    1. Goodwine J, Gil J, Doiron A, Valdes J, Solis M, Higa A, et al. Pyruvate-depleting conditions induce biofilm dispersion and enhance the efficacy of antibiotics in killing biofilms in vitro and in vivo. Sci Rep. 2019;9:3763. doi: 10.1038/s41598-019-40378-z.
    1. Ong TH, Chitra E, Ramamurthy S, Chong C, Ling S, Ambu SP, et al. Cationic chitosan-propolis nanoparticles alter the zeta potential of S. epidermidis, inhibit biofilm formation by modulating gene expression and exhibit synergism with antibiotics. PLoS ONE. 2019;14(2):e0213079. doi: 10.1371/journal.pone.0213079.
    1. Takahashi C, Hattori Y, Yagi S, Murai T, Takai C, Ogawa N, et al. Optimization of ionic liquid-incorporated PLGA nanoparticles for treatment of biofilm infections NPs suspension Centrifuge. Mater Sci Eng C. 2019;97:78–83. doi: 10.1016/j.msec.2018.11.079.
    1. Medina M, Castillo-Pino E. An introduction to the epidemiology and burden of urinary tract infections. Ther Adv Urol. 2019;11:3–7. doi: 10.1177/1756287219832172.
    1. Tandogdu Z, Wagenlehner FME. Global epidemiology of urinary tract infections. Curr Opin Infect Dis. 2016;29(1):73–79. doi: 10.1097/QCO.0000000000000228.
    1. Lüthje P, Brauner A. Virulence factors of uropathogenic E. coli and their interaction with the host. Adv Microb Physiol. 2014;65:337–372. doi: 10.1016/bs.ampbs.2014.08.006.
    1. Vila J, Sáez-López E, Johnson R, Römling U, Dobrindt U, Cantón R, et al. Escherichia coli: an old friend with new tidings. FEMS Microbiol Rev. 2016;40(4):437–463. doi: 10.1093/femsre/fuw005.
    1. Ashmore DA, Chaudhari A, Barlow B, Barlow B, Harper T, Vig K, et al. Evaluation of E. coli inhibition by plain and polymer-coated silver nanoparticles. Rev Inst Med Trop São Paulo. 2018;60:e8. doi: 10.1590/s1678-9946201860018.
    1. Alfaro-viquez E, Esquivel-alvarado D, Madrigal-carballo S, Krueger CG, Reed JD. Proanthocyanidin-chitosan composite nanoparticles prevent bacterial invasion and colonization of gut epithelial cells by extra-intestinal pathogenic Escherichia coli. Int J Biol Macromol. 2019;135:630–636. doi: 10.1016/j.ijbiomac.2019.04.170.
    1. Kumar GV, Su C-H, Velusamy P. Surface immobilization of kanamycin-chitosan nanoparticles on polyurethane ureteral stents to prevent bacterial adhesion. Biofouling. 2016;32(8):861–870. doi: 10.1080/08927014.2016.1202242.
    1. Zhang A, Mu H, Zhang W, Cui G, Zhu J, Duan J. Chitosan coupling makes microbial biofilms susceptible to antibiotics. Sci Rep. 2013;3:3364. doi: 10.1038/srep03364.
    1. Liu S, Qiao S, Li L, Qi G, Lin Y. Surface charge-conversion polymeric nanoparticles for photodynamic treatment of urinary tract bacterial infections. Nanotechnology. 2015;26:495602. doi: 10.1088/0957-4484/26/49/495602.
    1. Bračič M, Fras-Zemljič L, Pérez L, Kogej K, Stana-Kleinschek K, Kargl R, et al. Protein-repellent and antimicrobial nanoparticle coatings from hyaluronic acid and a lysine-derived biocompatible surfactant. J Mater Chem B. 2017;5:3888–3897. doi: 10.1039/C7TB00311K.
    1. Dayyoub E, Frant M, Reddy S, Liefeith K. Antibacterial and anti-encrustation biodegradable polymer coating for urinary catheter. Int J Pharm. 2017;531(1):205–214. doi: 10.1016/j.ijpharm.2017.08.072.
    1. Maruthupandy M, Rajivgandhi G, Kadaikunnan S, Khaled JM, Jun-li W, Alanzi KF. Anti-biofilm investigation of graphene / chitosan nanocomposites against biofilm producing P. aeruginosa and K. pneumoniae. Carbohydr Polym. 2020;230:115646. doi: 10.1016/j.carbpol.2019.115646.
    1. Giovane R, Lavender P. Central nervous system infections. Prim Care. 2018;45(3):505–518. doi: 10.1016/j.pop.2018.05.007.
    1. Brouwer MC, Tunkel AR, Van De BD. Epidemiology, diagnosis, and antimicrobial treatment of acute bacterial meningitis. Clin Microbiol Rev. 2010;23(3):467–492. doi: 10.1128/CMR.00070-09.
    1. Debiasi RL, Tyler KL. Molecular methods for diagnosis of viral encephalitis. Clin Microbiol Rev. 2004;17(4):903–925. doi: 10.1128/CMR.17.4.903-925.2004.
    1. Robertson FC, Lepard JR, Mekary RA, Davis MC, Yunusa I, Gormley WB, et al. Epidemiology of central nervous system infectious diseases: a meta-analysis and systematic review with implications for neurosurgeons worldwide. J Neurosurg. 2019;130:1107–1126. doi: 10.3171/2017.10.JNS17359.
    1. GBD Global, regional, and national age–sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2014;385(9963):117–171.
    1. Cano A, Sánchez-López E, Ettcheto M, López-Machado A, Espina M, Souto EB, et al. Current advances in the development of novel polymeric nanoparticles for the treatment of neurodegenerative diseases. Nanomedicine (London) 2020;15(12):1239–1261. doi: 10.2217/nnm-2019-0443.
    1. Christodoulides M, Heckels J. Novel approaches to Neisseria meningitidis vaccine design. Pathog Dis. 2017;75(3):1–16. doi: 10.1093/femspd/ftx033.
    1. Gala RP, Souza MD, Zughaier SM. Evaluation of various adjuvant nanoparticulate formulations for meningococcal capsular polysaccharide-based vaccine. Vaccine. 2016;34(28):3260–3267. doi: 10.1016/j.vaccine.2016.05.010.
    1. Long Y, Li Z, Bi Q, Deng C, Chen Z, Bhattachayya S, et al. Novel polymeric nanoparticles targeting the lipopolysaccharides of Pseudomonas aeruginosa. Int J Pharm. 2016;502:232–241. doi: 10.1016/j.ijpharm.2016.02.021.
    1. Shah SS, Gloor P, Gallagher PG. Bacteremia, meningitis, and brain abscesses in a hospitalized infant: complications of Pseudomonas aeruginosa conjunctivitis. J Perinatol. 1999;19:462–465. doi: 10.1038/sj.jp.7200247.
    1. Hong W, Zhang Z, Liu L, Zhao Y, Zhang D, Liu M. Brain-targeted delivery of PEGylated nano-bacitracin A against Penicillin-sensitive and -resistant Pneumococcal meningitis: formulated with RVG 29 and Pluronic V P85 unimers. Drug Deliv. 2018;25(1):1–12. doi: 10.1080/10717544.2017.1399301.

Source: PubMed

3
Iratkozz fel