Post-stroke Hemiplegic Gait: New Perspective and Insights

Sheng Li, Gerard E Francisco, Ping Zhou, Sheng Li, Gerard E Francisco, Ping Zhou

Abstract

Walking dysfunction occurs at a very high prevalence in stroke survivors. Human walking is a phenomenon often taken for granted, but it is mediated by complicated neural control mechanisms. The automatic process includes the brainstem descending pathways (RST and VST) and the intraspinal locomotor network. It is known that leg muscles are organized into modules to serve subtasks for body support, posture and locomotion. Major kinematic mechanisms are recognized to minimize the center of gravity (COG) displacement. Stroke leads to damage to motor cortices and their descending corticospinal tracts and subsequent muscle weakness. On the other hand, brainstem descending pathways and the intraspinal motor network are disinhibited and become hyperexcitable. Recent advances suggest that they mediate post-stroke spasticity and diffuse spastic synergistic activation. As a result of such changes, existing modules are simplified and merged, thus leading to poor body support and walking performance. The wide range and hierarchy of post-stroke hemiplegic gait impairments is a reflection of mechanical consequences of muscle weakness, spasticity, abnormal synergistic activation and their interactions. Given the role of brainstem descending pathways in body support and locomotion and post-stroke spasticity, a new perspective of understanding post-stroke hemiplegic gait is proposed. Its clinical implications for management of hemiplegic gait are discussed. Two cases are presented as clinical application examples.

Keywords: botulinum toxin; gait; hemiparesis; motor recovery; spasticity; stroke.

Figures

Figure 1
Figure 1
Altered neural control for post-stroke gait. CST, corticospinal tract; RST, reticulospinal tract; VST, vestibulospinal tract.
Figure 2
Figure 2
(A,B) A stroke survivor with spasticity that resulted in dramatic trunk lateral flexion and hip hiking before and after botulinum toxin injections; (C,D) A stroke survivor with spasticity that resulted in dynamic hip adduction and pelvic anterior rotation before and after botulinum toxin injection. See text for details.

References

    1. Akazawa N., Okawa N., Tamura K., Moriyama H. (2017). Determining the cut-off value for knee extensor strength for identifying independence in gait in chronic stroke survivors. J. Rehabil. Med. 49, 765–767. 10.2340/16501977-2279
    1. Allen J. L., Neptune R. R. (2012). Three-dimensional modular control of human walking. J. Biomech. 45, 2157–2163. 10.1016/j.jbiomech.2012.05.037
    1. Baker R., Esquenazi A., Benedetti M. G., Desloovere K. (2016). Gait analysis: clinical facts. Eur. J. Phys. Rehabil. Med. 52, 560–574.
    1. Batchelor F. A., MacKintosh S. F., Said C. M., Hill K. D. (2012). Falls after stroke. Int. J. Stroke 7, 482–490. 10.1111/j.1747-4949.2012.00796.x
    1. Benjamin E. J., Blaha M. J., Chiuve S. E., Cushman M., Das S. R., Deo R., et al. . (2017). Heart disease and stroke statistics-2017 update: a report from the American Heart Association. Circulation 135, e146–e603. 10.1161/CIR.0000000000000485
    1. Bernstein N. A. (1967). The Co-ordination and Regulation of Movements. Oxford: T. Pergamon Press.
    1. Beyaert C., Vasa R., Frykberg G. E. (2015). Gait post-stroke: pathophysiology and rehabilitation strategies. Neurophysiol. Clin. 45, 335–355. 10.1016/j.neucli.2015.09.005
    1. Brown P. (1994). Pathophysiology of spasticity. J. Neurol. Neurosurg. Psychiatry 57, 773–777. 10.1136/jnnp.57.7.773
    1. Burke D., Wissel J., Donnan G. A. (2013). Pathophysiology of spasticity in stroke. Neurology 80, S20–S26. 10.1212/WNL.0b013e31827624a7
    1. Chang S. H., Francisco G. E., Zhou P., Rymer W. Z., Li S. (2013). Spasticity, weakness, force variability, and sustained spontaneous motor unit discharges of resting spastic-paretic biceps brachii muscles in chronic stroke. Muscle Nerve 48, 85–92. 10.1002/mus.23699
    1. Clark D. J., Ting L. H., Zajac F. E., Neptune R. R., Kautz S. A. (2010). Merging of healthy motor modules predicts reduced locomotor performance and muscle coordination complexity post-stroke. J. Neurophysiol. 103, 844–857. 10.1152/jn.00825.2009
    1. Croce U. D., Riley P. O., Lelas J. L., Kerrigan D. C. (2001). A refined view of the determinants of gait. Gait Posture 14, 79–84. 10.1016/S0966-6362(01)00128-X
    1. Dietz V. (1996). Interaction between central programs and afferent input in the control of posture and locomotion. J. Biomech. 29, 841–844. 10.1016/0021-9290(95)00175-1
    1. Dobkin B. H. (2005). Rehabilitation after Stroke. N. Engl. J. Med. 352, 1677–1684. 10.1056/NEJMcp043511
    1. Drew T., Kalaska J., Krouchev N. (2008). Muscle synergies during locomotion in the cat: a model for motor cortex control. J. Physiol. 586, 1239–1245. 10.1113/jphysiol.2007.146605
    1. Duncan P. W., Zorowitz R., Bates B., Choi J. Y., Glasberg J. J., Graham G. D., et al. . (2005). Management of adult stroke rehabilitation care. a clinical practice guideline. Stroke 36, e100–e143. 10.1161/01.STR.0000180861.54180.FF
    1. Esquenazi A., Moon D., Wikoff A., Sale P. (2015). Hemiparetic gait and changes in functional performance due to OnabotulinumtoxinA injection to lower limb muscles. Toxicon 107, 109–113. 10.1016/j.toxicon.2015.08.004
    1. Finley J. M., Perreault E. J., Dhaher Y. Y. (2008). Stretch reflex coupling between the hip and knee: implications for impaired gait following stroke. Exp. Brain Res. 188, 529–540. 10.1007/s00221-008-1383-z
    1. Francisco G. E., Li S. (2016). Spasticity. Physical Medicine and Rehabilitation, 5th Edn, ed CIfu D. X. (Philadelphia, PA: Elsevier; ), 487–489.
    1. Gard S. A., Childress D. S. (1997). The effect of pelvic list on the vertical displacement of the trunk during normal walking. Gait Posture 5, 233–238. 10.1016/S0966-6362(96)01089-2
    1. Gard S. A., Childress D. S. (1999). The influence of stance-phase knee flexion on the vertical displacement of the trunk during normal walking. Arch. Phys. Med. Rehabil. 80, 26–32. 10.1016/S0003-9993(99)90303-9
    1. Gracies J. M. (2005). Pathophysiology of spastic paresis. II: Emergence of muscle overactivity. Muscle Nerve 31, 552–571. 10.1002/mus.20285
    1. Hayot C., Sakka S., Lacouture P. (2013). Contribution of the six major gait determinants on the vertical center of mass trajectory and the vertical ground reaction force. Hum. Mov. Sci. 32, 279–289. 10.1016/j.humov.2012.10.003
    1. Hendricks H. T., van Limbeek J., Geurts A. C., Zwarts M. J. (2002). Motor recovery after stroke: a systematic review of the literature. Arch. Phys. Med. Rehabil. 83, 1629–1637. 10.1053/apmr.2002.35473
    1. Hsu C. J., Kim J., Roth E. J., Rymer W. Z., Wu M. (2017). Forced use of the paretic leg induced by a constraint force applied to the nonparetic leg in individuals poststroke during walking. Neurorehabil. Neural Repair 31, 1042–1052. 10.1177/1545968317740972
    1. Hyndman D., Ashburn A., Stack E. (2002). Fall events among people with stroke living in the community: circumstances of falls and characteristics of fallers. Arch. Phys. Med. Rehabil. 83, 165–170. 10.1053/apmr.2002.28030
    1. Jacinto L. J., Reis Silva M. (2018). Gait analysis in the context of spasticity management. Biosyst. Biorobot. 19, 471–487. 10.1007/978-3-319-72736-3_31
    1. Jahn R. (2006). Neuroscience. A neuronal receptor for botulinum toxin. Science 312, 540–541. 10.1126/science.1127236
    1. Kline T. L., Schmit B. D., Kamper D. G. (2007). Exaggerated interlimb neural coupling following stroke. Brain 130, 159–169. 10.1093/brain/awl278
    1. Kuo A. D. (2007). The six determinants of gait and the inverted pendulum analogy: a dynamic walking perspective. Hum. Mov. Sci. 26, 617–656. 10.1016/j.humov.2007.04.003
    1. Lance J. W. (1980). Symposium synopsis, in Spasticity: Disordered Motor Control, eds Feldman R. G., Young R. R., Koella W. P. (Chicago, IL: Year Book Medical Publishers; ), 485–494.
    1. Li S. (2017). Spasticity, motor recovery, and neural plasticity after stroke. Front. Neurol. 8:120. 10.3389/fneur.2017.00120
    1. Li S., Francisco G. (2015). New insights into the pathophysiology of post-stroke spasticity. Front. Hum. Neurosci. 9:192. 10.3389/fnhum.2015.00192
    1. Lin Y. C., Gfoehler M., Pandy M. G. (2014). Quantitative evaluation of the major determinants of human gait. J. Biomech. 47, 1324–1331. 10.1016/j.jbiomech.2014.02.002
    1. McGowan C. P., Neptune R. R., Clark D. J., Kautz S. A. (2010). Modular control of human walking: adaptations to altered mechanical demands. J. Biomech. 43, 412–419. 10.1016/j.jbiomech.2009.10.009
    1. Miller D. M., Klein C. S., Suresh N. L., Rymer W. Z. (2014). Asymmetries in vestibular evoked myogenic potentials in chronic stroke survivors with spastic hypertonia: evidence for a vestibulospinal role. Clin. Neurophysiol. 125, 2070–2078. 10.1016/j.clinph.2014.01.035
    1. Mottram C. J., Suresh N. L., Heckman C. J., Gorassini M. A., Rymer W. Z. (2009). Origins of abnormal excitability in biceps brachii motoneurons of spastic-paretic stroke survivors. J. Neurophysiol. 102, 2026–2038. 10.1152/jn.00151.2009
    1. Mottram C. J., Wallace C. L., Chikando C. N., Rymer W. Z. (2010). Origins of spontaneous firing of motor units in the spastic-paretic biceps brachii muscle of stroke survivors. J. Neurophysiol. 104, 3168–3179. 10.1152/jn.00463.2010
    1. Mukherjee A., Chakravarty A. (2010). Spasticity mechanisms–for the clinician. Front. Neurol. 1:149. 10.3389/fneur.2010.00149
    1. Mulroy S., Gronley J., Weiss W., Newsam C., Perry J. (2003). Use of cluster analysis for gait pattern classification of patients in the early and late recovery phases following stroke. Gait Posture 18, 114–125. 10.1016/S0966-6362(02)00165-0
    1. Neptune R. R., Clark D. J., Kautz S. A. (2009). Modular control of human walking: a simulation study. J. Biomech. 42, 1282–1287. 10.1016/j.jbiomech.2009.03.009
    1. Nielsen J. B. (2003). How we walk: central control of muscle activity during human walking. Neuroscientist 9, 195–204. 10.1177/1073858403009003012
    1. Nielsen J. B., Crone C., Hultborn H. (2007). The spinal pathophysiology of spasticity–from a basic science point of view. Acta Physiol. 189, 171–180. 10.1111/j.1748-1716.2006.01652.x
    1. Olney S. J., Richards C. (1996). Hemiparetic gait following stroke. Part I: Characteristics. Gait Posture 4, 136–148. 10.1016/0966-6362(96)01063-6
    1. Owen E. (2010). The importance of being earnest about shank and thigh kinematics especially when using ankle-foot orthoses. Prosthet. Orthot. Int. 34, 254–269. 10.3109/03093646.2010.485597
    1. Owen M., Ingo C., Dewald J. P. A. (2017). Upper extremity motor impairments and microstructural changes in bulbospinal pathways in chronic hemiparetic stroke. Front. Neurol. 8:257. 10.3389/fneur.2017.00257
    1. Perry J., Burnfield J. M. (2010). Gait Analysis: Normal and Pathological Function, 2nd Edn. Thorofare, NJ: SLACK Incorporated.
    1. Richards C. L., Olney S. J. (1996). Hemiparetic gait following stroke. Part II: recovery and physical therapy. Gait Posture 4, 149–162. 10.1016/0966-6362(96)01064-8
    1. Routson R. L., Kautz S. A., Neptune R. R. (2014). Modular organization across changing task demands in healthy and poststroke gait. Physiol. Rep. 2:e12055. 10.14814/phy2.12055
    1. Saunders J. B., Inman V. T., Eberhart H. D. (1953). The major determinants in normal and pathological gait. J. Bone Joint Surg. Am. 35-A, 543–558. 10.2106/00004623-195335030-00003
    1. Stecco A., Stecco C., Raghavan P. (2014). Peripheral mecahnisms contributing to spasticity and implications for treatment. Curr. Phys. Med. Rehabil. Rep. 2, 121–127. 10.1007/s40141-014-0052-3
    1. Tenniglo M. J., Nederhand M. J., Prinsen E. C., Nene A. V., Rietman J. S., Buurke J. H. (2014). Effect of chemodenervation of the rectus femoris muscle in adults with a stiff knee gait due to spastic paresis: a systematic review with a meta-analysis in patients with stroke. Arch. Phys. Med. Rehabil. 95, 576–587. 10.1016/j.apmr.2013.11.008
    1. Ting L. H., McKay J. L. (2007). Neuromechanics of muscle synergies for posture and movement. Curr. Opin. Neurobiol. 17, 622–628. 10.1016/j.conb.2008.01.002
    1. Verma R., Arya K. N., Sharma P., Garg R. K. (2012). Understanding gait control in post-stroke: implications for management. J. Bodyw. Mov. Ther. 16, 14–21. 10.1016/j.jbmt.2010.12.005
    1. Winter D. A. (1992). Foot trajectory in human gait: a precise and multifactorial motor control task. Phys. Ther. 72, 45–56. 10.1093/ptj/72.1.45
    1. Zorowitz R. D., Gillard P. J., Brainin M. (2013). Poststroke spasticity: sequelae and burden on stroke survivors and caregivers. Neurology 80, S45–S52. 10.1212/WNL.0b013e3182764c86

Source: PubMed

3
Iratkozz fel