Immune biomarkers of response to immune-checkpoint inhibitors in head and neck squamous cell carcinoma

M Oliva, A Spreafico, M Taberna, L Alemany, B Coburn, R Mesia, L L Siu, M Oliva, A Spreafico, M Taberna, L Alemany, B Coburn, R Mesia, L L Siu

Abstract

Anti-programmed cell death protein 1 (PD-1) agents have become the standard of care for platinum-refractory recurrent/metastatic head and neck squamous cell carcinoma (HNSCC) and are currently being evaluated in various disease settings. However, despite the gain in overall survival seen in some of the clinical trials, the majority of patients display primary resistance and do not benefit from these agents. Taking into consideration the potentially severe immune-related toxicities and their high cost, the search for predictive biomarkers of response is crucial. Besides Programmed death ligand-1 (PD-L1) expression, other biomarkers such as immune infiltration, tumor mutational burden or immune-gene expression profiling have been explored, but none of them has been validated in this disease. Among these, the microbiota has recently garnered tremendous interest since it has proven to influence the efficacy of PD-1 blockade in some tumor types. With the accumulating evidence on the effect of the microbiota in HNSCC tumorigenesis and progression, the study of its potential role as a predictive immune biomarker is warranted. This review examines the available evidence on emerging immune predictive biomarkers of response to anti-PD-1/PD-L1 therapy in HNSCC, introducing the microbiota and its potential use as a predictive immune biomarker in this disease.

Figures

Figure 1.
Figure 1.
Interactions between the oral and intestinal microbiome, immune responses and the HNSCC TME. The composition of the oral microbiota alters the oral mucosae contributing to tumor development and progression in the context of other coexisting factors such as HPV infection. Intestinal and oral microbial composition and diversity regulate systemic and local immune responses modulating the TME along with other immune biomarkers such as TMB or immune checkpoint protein expression, ultimately dampening or enhancing antitumor immune responses.

References

    1. Hodi FS, O'Day SJ, McDermott DF. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 2010; 363(8): 711–723.
    1. Larkin J, Chiarion-Sileni V, Gonzalez R. et al. Combined nivolumab and Ipilimumab or monotherapy in untreated melanoma. N Engl J Med 2015; 373(1): 23–34.
    1. Bellmunt J, de Wit R, Vaughn DJ. et al. Pembrolizumab as second-line therapy for advanced urothelial carcinoma. N Engl J Med 2017; 376(11): 1015–1026.
    1. Brahmer J, Reckamp KL, Baas P. et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med 2015; 373(2): 123–135.
    1. Motzer RJ, Escudier B, McDermott DF. et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med 2015; 373(19): 1803–1813.
    1. Seiwert TY, Burtness B, Mehra R. et al. Safety and clinical activity of pembrolizumab for treatment of recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-012): an open-label, multicentre, phase 1b trial. Lancet Oncol 2016; 17(7): 956–965.
    1. Chow LQM, Haddad R, Gupta S. et al. Antitumor activity of pembrolizumab in biomarker-unselected patients with recurrent and/or metastatic head and neck squamous cell carcinoma: results from the phase Ib KEYNOTE-012 expansion cohort. J Clin Oncol 2016; 34(32): 3838–3845.
    1. Soulieres D, Cohen E, Le Tourneau C. et al. Updated survival results of the KEYNOTE-040 study of pembrolizumab vs standard-of-care chemotherapy for recurrent or metastatic head and neck squamous cell carcinoma. Abstract. Cancer Res 2018; CT115.
    1. Ferris RL, Blumenschein G, Fayette J. et al. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med 2016; 375(19): 1856–1867.
    1. Larkins E, Blumenthal GM, Yuan W. et al. FDA approval summary: pembrolizumab for the treatment of recurrent or metastatic head and neck squamous cell carcinoma with disease progression on or after platinum-containing chemotherapy. Oncologist 2017; 22(7): 873–878.
    1. Topalian SL, Hodi FS, Brahmer JR. et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 2012; 366(26): 2443–2454.
    1. O'Donnell JS, Long GV, Scolyer RA. et al. Resistance to PD1/PDL1 checkpoint inhibition. Cancer Treat Rev 2017; 52: 71–81.
    1. Zou W, Wolchok JD, Chen L.. PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: mechanisms, response biomarkers, and combinations. Sci Transl Med 2016; 8(328): 328rv4.
    1. Schalper KA, Kaftan E, Herbst RS.. Predictive biomarkers for PD-1 axis therapies: the hidden treasure or a call for research. Clin Cancer Res 2016; 22(9): 2102–2104.
    1. Melero I, Berman DM, Aznar MA. et al. Evolving synergistic combinations of targeted immunotherapies to combat cancer. Nat Rev Cancer 2015; 15(8): 457–472.
    1. Saâda-Bouzid E, Defaucheux C, Karabajakian A. et al. Hyperprogression during anti-PD-1/PD-L1 therapy in patients with recurrent and/or metastatic head and neck squamous cell carcinoma. Ann Oncol 2017; 28(7): 1605–1611.
    1. Fridman WH, Zitvogel L, Sautès-Fridman C. et al. The immune contexture in cancer prognosis and treatment. Nat Rev Clin Oncol 2017; 14(12): 717–734.
    1. Mandal R. et al. The head and neck cancer immune landscape and its immunotherapeutic implications. JCI Insight 2016; 1(17): e89829.
    1. Nelson MH, Diven MA, Huff LW. et al. Harnessing the microbiome to enhance cancer immunotherapy. J Immunol Res 2015; 2015: 368736..
    1. Sivan A, Corrales L, Hubert N. et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 2015; 350(6264): 1084–1089.
    1. Routy B, Le Chatelier E, Derosa L. et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 2018; 359(6371): 91–97.
    1. Gopalakrishnan V, Spencer CN, Nezi L. et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 2018; 359(6371): 97–103.
    1. Hayes RB, Ahn J, Fan X. et al. Association of oral microbiome with risk for incident head and neck squamous cell cancer. JAMA Oncol 2018; 4(3): 358–365.
    1. Guerrero-Preston R, Godoy-Vitorino R, Jedlicka A. et al. 16S rRNA amplicon sequencing identifies microbiota associated with oral cancer, human papilloma virus infection and surgical treatment. Oncotarget 2016; 7(32): 51320–51334.
    1. Guerrero-Preston R, White JR, Godoy-Vitorino F. et al. High-resolution microbiome profiling uncovers Fusobacterium nucleatum, Lactobacillus gasseri/johnsonii, and Lactobacillus vaginalis associated to oral and oropharyngeal cancer in saliva from HPV positive and HPV negative patients treated with surgery and chemo-radiation. Oncotarget 2017; 8(67): 110931–110948.
    1. Hansen AR, Siu LL.. PD-L1 testing in cancer: challenges in companion diagnostic development. JAMA Oncol 2016; 2(1): 15–16.
    1. Taube JM, Klein A, Brahmer JR. et al. Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin Cancer Res 2014; 20(19): 5064–5074.
    1. Garon EB, Rizvi NA, Hui R. et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med 2015; 372(21): 2018–2028.
    1. Segal NH, Logan TF, Hodi FS. et al. Safety and efficacy of MEDI4736, an anti-PD-L1 antibody, in patients from a squamous cell carcinoma of the head and neck (SCCHN) expansion cohort. J Clin Oncol 2015; 33(Suppl 15): 3011–3011.
    1. Zandberg D, Algazi A, Jimeno A. et al. Durvalumab of recurrent/metastatic (R/M) head and neck squamous cell carcinoma (HNSCC): preliminary results from a single-arm, phase 2 study. Ann Oncol 2017; 28(Suppl 5): v372–v394.
    1. Bahleda R, Braither FS, Balmanoukian AS. et al. Long-term safety and clinical outcomes of atezolizumab in head and neck cancer: phase IA trial results. Ann Oncol 2017; 28(Suppl 5): v372–v394.
    1. Cohen EE, Machiels JP, Harrington KJ. et al. KEYNOTE-040: a phase III randomized trial of pembrolizumab (MK-3475) versus standard treatment in patients with recurrent or metastatic head and neck cancer. J Clin Oncol 2015; 33(Suppl 15): TPS6084–TPS6084.
    1. Burtness B, Harrington KJ, Greil R. et al. KEYNOTE-048: phase 3 study of first-line pembrolizumab for recurrent/metastatic head and neck squamous cell carcinoma (R/M HNSCC). ESMO Meeting 2018.
    1. Ferris RL, Blumenschein G, Fayette J. et al. Nivolumab vs investigator's choice in recurrent or metastatic squamous cell carcinoma of the head and neck: 2-year long-term survival update of CheckMate 141 with analyses by tumor PD-L1 expression. Oral Oncol 2018; 81: 45–51.
    1. Philip R, Carrington L, Chan M.. US FDA perspective on challenges in co-developing in vitro companion diagnostics and targeted cancer therapeutics. Bioanalysis 2011; 3(4): 383–389.
    1. Hirsch FR, McElhinny A, Stanforth D. et al. PD-L1 immunohistochemistry assays for lung cancer: results from phase 1 of the blueprint PD-L1 IHC assay comparison project. J Thorac Oncol 2017; 12(2): 208–222.
    1. Kotsakis A, Georgoulias V.. Avelumab, an anti-PD-L1 monoclonal antibody, shows activity in various tumour types. Lancet Oncol 2017; 18(5): 556–557.
    1. Heery CR, O'Sullivan-Coyne G, Madan RA. et al. Avelumab for metastatic or locally advanced previously treated solid tumours (JAVELIN Solid Tumor): a phase 1a, multicohort, dose-escalation trial. Lancet Oncol 2017; 18(5): 587–598.
    1. Network CGA. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature 2015; 517(7536): 576–582.
    1. Lui VWY, Hedberg ML, Li H. et al. Frequent mutation of the PI3K pathway in head and neck cancer defines predictive biomarkers. Cancer Discov 2013; 3(7): 761–769.
    1. Skinner HD, Giri U, Yang LP. et al. Integrative analysis identifies a novel AXL-PI3 Kinase-PD-L1 signaling axis associated with radiation resistance in head and neck cancer. Clin Cancer Res 2017; 23(11): 2713–2722.
    1. Darb-Esfahani S. et al. Prognostic impact of programmed cell death-1 (PD-1) and PD-ligand 1 (PD-L1) expression in cancer cells and tumor-infiltrating lymphocytes in ovarian high grade serous carcinoma. Oncotarget 2016; 7(2): 1486–1499.
    1. Cimino-Mathews A, Thompson E, Taube JM. et al. PD-L1 (B7-H1) expression and the immune tumor microenvironment in primary and metastatic breast carcinomas. Hum Pathol 2016; 47(1): 52–63.
    1. Gadiot J, Hooijkaas AI, Kaiser ADM. et al. Overall survival and PD-L1 expression in metastasized malignant melanoma. Cancer 2011; 117(10): 2192–2201.
    1. Zhou J, Gong Z, Jia Q. et al. Programmed death ligand 1 expression and CD8. Biochem Biophys Res Commun 2018; 498(4): 751–757.
    1. Wildsmith S, Marietta S, Midhta A. et al. PD-L1 expression in patients screened for phase 2 head and neck squamous cell carcinoma clinical studies (HAWK and CONDOR). Cancer Res 2018; 78(Suppl 13): 5530–5530.
    1. Okada S, Itoh K, Ishihara S. et al. Significance of PD-L1 expression in pulmonary metastases from head and neck squamous cell carcinoma. Surg Oncol 2018; 27(2): 259–265.
    1. Zandberg DP, Strome SE.. The role of the PD-L1: PD-1 pathway in squamous cell carcinoma of the head and neck. Oral Oncol 2014; 50(7): 627–632.
    1. Kansy BA, Concha-Benavente F, Srivastava RM. et al. PD-1 Status in CD8. Cancer Res 2017; 77(22): 6353–6364.
    1. Jie H-B, Gildener-Leapman N, Li J. et al. Intratumoral regulatory T cells upregulate immunosuppressive molecules in head and neck cancer patients. Br J Cancer 2013; 109(10): 2629–2635.
    1. Mattox AK, Lee J, Westra WH. et al. PD-1 expression in head and neck squamous cell carcinomas derives primarily from functionally anergic CD4. Cancer Res 2017; 77(22): 6365–6374.
    1. Cohen EEW. et al. KEYNOTE-040: a phase III randomized trial of pembrolizumab (MK-3475) versus standard treatment in patients with recurrent or metastatic head and neck cancer. J Clin Oncol 2015; 33(Suppl 15): TPS6084–TPS6084.
    1. Reck M, Rodríguez-Abreu D, Robinson AG. et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med 2016; 375(19): 1823–1833.
    1. Herbst RS, Baas P, Kim D-W. et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet 2016; 387(10027): 1540–1550.
    1. Ang KK, Harris J, Wheeler R. et al. Human papillomavirus and survival of patients with oropharyngeal cancer. N Engl J Med 2010; 363(1): 24–35.
    1. Taberna M, Mena M, Pavón MA. et al. Human papillomavirus-related oropharyngeal cancer. Ann Oncol 2017; 28(10): 2386–2398.
    1. Huang SH, O'Sullivan B, Waldron J.. The current state of biological and clinical implications of human papillomavirus-related oropharyngeal cancer. Semin Radiat Oncol 2018; 28(1): 17–26.
    1. Kanaan H, Kourie HR, Awada AH.. Are virus-induced cancers more sensitive to checkpoint inhibitors? Future Oncol 2016; 12(23): 2665–2668.
    1. Andersen AS, Koldjaer Sølling AS, Ovesen T. et al. The interplay between HPV and host immunity in head and neck squamous cell carcinoma. Int J Cancer 2014; 134(12): 2755–2763.
    1. Matlung SE, Wilhelmina van Kempen PM, Bovenschen N. et al. Differences in T-cell infiltrates and survival between HPV+ and HPV– oropharyngeal squamous cell carcinoma. Future Sci OA 2016; 2(1): FSO88..
    1. de Ruiter EJ, Ooft ML, Devriese LA. et al. The prognostic role of tumor infiltrating T-lymphocytes in squamous cell carcinoma of the head and neck: a systematic review and meta-analysis. Oncoimmunology 2017; 6(11): e1356148..
    1. Lechner A, Schlößer H, Rothschild SI. et al. Characterization of tumor-associated T-lymphocyte subsets and immune checkpoint molecules in head and neck squamous cell carcinoma. Oncotarget 2017; 8(27): 44418–44433.
    1. Partlová S, Bouček J, Kloudová K. et al. Distinct patterns of intratumoral immune cell infiltrates in patients with HPV-associated compared to non-virally induced head and neck squamous cell carcinoma. Oncoimmunology 2015; 4(1): e965570..
    1. Lyford-Pike S, Peng S, Young GD. et al. Evidence for a role of the PD-1: PD-L1 pathway in immune resistance of HPV-associated head and neck squamous cell carcinoma. Cancer Res 2013; 73(6): 1733–1741.
    1. Solomon B, Young R, Bressel M. et al. Prognostic significance of PD-L1. Cancer Immunol Res 2018; 6(3): 295–304.
    1. Kim HR, Ha SJ, Hong MH. et al. PD-L1 expression on immune cells, but not on tumor cells, is a favorable prognostic factor for head and neck cancer patients. Sci Rep 2016; 6: 36956.
    1. Desrichard A, Kuo F, Chowell D. et al. Tobacco smoking-associated alterations in the immune microenvironment of squamous cell carcinomas. J Natl Cancer Inst 2018; doi: 10.1093/jnci/djy60.
    1. Henderson S, Chakravarthy A, Su X. et al. APOBEC-mediated cytosine deamination links PIK3CA helical domain mutations to human papillomavirus-driven tumor development. Cell Rep 2014; 7(6): 1833–1841.
    1. Faden DL, Thomas S, Cantalupo PG. et al. Multi-modality analysis supports APOBEC as a major source of mutations in head and neck squamous cell carcinoma. Oral Oncol 2017; 74: 8–14.
    1. Swanton C, McGranahan N, Starrett GJ. et al. APOBEC enzymes: mutagenic fuel for cancer evolution and heterogeneity. Cancer Discov 2015; 5(7): 704–712.
    1. Glaser AP, Fantini D, Wang Y. et al. APOBEC-mediated mutagenesis in urothelial carcinoma is associated with improved survival, mutations in DNA damage response genes, and immune response. Oncotarget 2018; 9(4): 4537–4548.
    1. Wang S, Jia M, He Z. et al. APOBEC3B and APOBEC mutational signature as potential predictive markers for immunotherapy response in non-small cell lung cancer. Oncogene 2018; 37(29): 3924–3936.
    1. Hanna GJ, Lizotte P, Cavanaugh M. et al. Frameshift events predict anti-PD-1/L1 response in head and neck cancer. JCI Insight 2018; 3(4): e98811.
    1. Haddad RI, Seiwert TY, Chow LQM. et al. Genomic determinants of response to pembrolizumab in head and neck squamous cell carcinoma (HNSCC). J Clin Oncol 2017; 35(Suppl 15): 6009.
    1. Seiwert TY. et al. Biomarkers predictive of response to pembrolizumab in head and neck cancer (HNSCC). AACR meeting 2018. Abstract 339.
    1. Leemans CR, Snijders PJF, Brakenhoff RH.. The molecular landscape of head and neck cancer. Nat Rev Cancer 2018; 18(5): 269–282.
    1. Yarchoan M, Hopkins A, Jaffee EM.. Tumor mutational burden and response rate to PD-1 inhibition. N Engl J Med 2017; 377(25): 2500–2501.
    1. Nghiem PT, Bhatia S, Lipson EJ. et al. PD-1 blockade with pembrolizumab in advanced merkel-cell carcinoma. N Engl J Med 2016; 374(26): 2542–2552.
    1. Palucka AK, Coussens LM.. The basis of oncoimmunology. Cell 2016; 164(6): 1233–1247.
    1. Donnem T, Hald SM, Paulsen E-E. et al. Stromal CD8+ T-cell density—a promising supplement to TNM staging in non-small cell lung cancer. Clin Cancer Res 2015; 21(11): 2635–2643.
    1. Daud AI, Loo K, Pauli ML. et al. Tumor immune profiling predicts response to anti-PD-1 therapy in human melanoma. J Clin Invest 2016; 126(9): 3447–3452.
    1. Hamid O, Schmidt H, Nissan A. et al. A prospective phase II trial exploring the association between tumor microenvironment biomarkers and clinical activity of ipilimumab in advanced melanoma. J Transl Med 2011; 9(1): 204.
    1. Gildener-Leapman N, Ferris RL, Bauman JE.. Promising systemic immunotherapies in head and neck squamous cell carcinoma. Oral Oncol 2013; 49(12): 1089–1096.
    1. Russell S, Angell T, Lechner M. et al. Immune cell infiltration patterns and survival in head and neck squamous cell carcinoma. Head Neck Oncol 2013; 5(3): 24..
    1. Oguejiofor K, Galletta-Williams H, Dovedi SJ. et al. Distinct patterns of infiltrating CD8+ T cells in HPV+ and CD68 macrophages in HPV– oropharyngeal squamous cell carcinomas are associated with better clinical outcome but PD-L1 expression is not prognostic. Oncotarget 2017; 8(9): 14416–14427.
    1. Karpathiou G, Casteillo F, Giroult JB. et al. Prognostic impact of immune microenvironment in laryngeal and pharyngeal squamous cell carcinoma: immune cell subtypes, immuno-suppressive pathways and clinicopathologic characteristics. Oncotarget 2017; 8(12): 19310–19322.
    1. Molling JW, Langius JAE, Langendijk JA. et al. Low levels of circulating invariant natural killer T cells predict poor clinical outcome in patients with head and neck squamous cell carcinoma. J Clin Oncol 2007; 25(7): 862–868.
    1. Wagner S, Wittekindt C, Reuschenbach M. et al. CD56-positive lymphocyte infiltration in relation to human papillomavirus association and prognostic significance in oropharyngeal squamous cell carcinoma. Int J Cancer 2016; 138(9): 2263–2273.
    1. Davis RJ, Van Waes C, Allen CT.. Overcoming barriers to effective immunotherapy: MDSCs, TAMs, and Tregs as mediators of the immunosuppressive microenvironment in head and neck cancer. Oral Oncol 2016; 58: 59–70.
    1. Mlecnik B, Bindea G, Angell HK. et al. Integrative analyses of colorectal cancer show immunoscore is a stronger predictor of patient survival than microsatellite instability. Immunity 2016; 44(3): 698–711.
    1. Galon J, Costes A, Sanchez-Cabo F. et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 2006; 313(5795): 1960–1964.
    1. Galon J, Fox BA, Bifulco CB. et al. Immunoscore and Immunoprofiling in cancer: an update from the melanoma and immunotherapy bridge 2015. J Transl Med 2016; 14: 273..
    1. Ishii H, Azuma K, Kawahara A. et al. Programmed cell death-ligand 1 expression and immunoscore in stage II and III non-small cell lung cancer patients receiving adjuvant chemotherapy. Oncotarget 2017; 8(37): 61618–61625.
    1. Chauvin J-M, Pagliano O, Fourcade J. et al. TIGIT and PD-1 impair tumor antigen-specific CD8+ T cells in melanoma patients. J Clin Invest 2015; 125(5): 2046–2058.,
    1. Fourcade J, Sun Z, Benallaoua M. et al. Upregulation of Tim-3 and PD-1 expression is associated with tumor antigen-specific CD8+ T cell dysfunction in melanoma patients. J Exp Med 2010; 207(10): 2175–2186.
    1. Kurtulus S, Sakuishi K, Ngiow S-F. et al. TIGIT predominantly regulates the immune response via regulatory T cells. J Clin Invest 2015; 125(11): 4053–4062.
    1. Jenkins RW, Barbie DA, Flaherty KT.. Mechanisms of resistance to immune checkpoint inhibitors. Br J Cancer 2018; 118(1): 9–16.
    1. Koyama S, Akbay EA, Li YY. et al. Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints. Nat Commun 2016; 7: 10501..
    1. Thommen DS, Schreiner J, Müller P. et al. Progression of lung cancer is associated with increased dysfunction of T cells defined by coexpression of multiple inhibitory receptors. Cancer Immunol Res 2015; 3(12): 1344–1355.,
    1. Zhuo M, Chen H, Zhang T. et al. The potential predictive value of circulating immune cell ratio and tumor marker in atezolizumab treated advanced non-small cell lung cancer patients. Cancer Biomark 2018; 22(3): 467–476.
    1. Martens A, Wistuba-Hamprecht K, Geukes Foppen M. et al. Baseline peripheral blood biomarkers associated with clinical outcome of advanced melanoma patients treated with ipilimumab. Clin Cancer Res 2016; 22(12): 2908–2918.
    1. Haddad RE, Blumenschein G, Fayette J Jr. et al. Treatment beyond progression with nivolumab in patients with recurrent or metastatic (R/M) squamous cell carcinoma of the head and neck (SCCHN) in the phase 3 checkmate 141 study: a biomarker analysis and updated clinical outcomes. Ann Oncol 2017; 28(Suppl 5):mdx374.001.
    1. Jamieson NB, Maker AV.. Gene-expression profiling to predict responsiveness to immunotherapy. Cancer Gene Ther 2017; 24(3): 134–140.
    1. Ayers M, Lunceford J, Nebozhyn M. et al. IFN-γ-related mRNA profile predicts clinical response to PD-1 blockade. J Clin Invest 2017; 127(8): 2930–2940.
    1. Cristescu R, Mogg R, Ayers M. et al. Pan-tumor genomic biomarkers for PD-1 checkpoint blockade-based immunotherapy. Science 2018; 362(6411): eaar3593.
    1. Rizvi NA, Hellmann MD, Snyder A. et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 2015; 348(6230): 124–128.
    1. Gandara D, Kowanetz M, Mok TSK. et al. Blood-based biomarkers for cancer immunotherapy: tumor mutational burden in blood (bTMB) is associated with improved atezolizumab (atezo) efficacy in 2L+ NSCLC (POPLAR and OAK). Ann Oncol 2017; 28(Suppl 5): mdx380.
    1. Galsky AS, Saci A, Szabo PM. et al. Impact of tumor mutation burden on nivolumab efficacy in second-line urothelial carcinoma patients: exploratory analysis of the phase II CheckMate 275 study. Ann Oncol 2017; 28(Suppl 5): v295–v329.
    1. Snyder A, Makarov V, Merghoub T. et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med 2014; 371(23): 2189–2199.
    1. Goodman AM, Kato S, Bazhenova L. et al. Tumor mutational burden as an independent predictor of response to immunotherapy in diverse cancers. Mol Cancer Ther 2017; 16(11): 2598–2608.
    1. Chalmers ZR, Connelly CF, Fabrizio D. et al. Analysis of 100, 000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med 2017; 9(1): 34.,
    1. Le DT, Uram JN, Wang H. et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med 2015; 372(26): 2509–2520.
    1. Le DT, Durham JN, Smith KN. et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 2017; 357(6349): 409–413.
    1. Malone E, Siu LL.. Precision medicine in head and neck cancer: myth or reality? Clin Med Insights Oncol 2018; 12: 1179554918779581..
    1. Maynard CL, Elson CO, Hatton RD. et al. Reciprocal interactions of the intestinal microbiota and immune system. Nature 2012; 489(7415): 231–241.
    1. Garrett WS. Cancer and the microbiota. Science 2015; 348(6230): 80–86.
    1. Zitvogel L, Galluzzi L, Viaud S. et al. Cancer and the gut microbiota: an unexpected link. Sci Transl Med 2015; 7(271): 271ps1.
    1. Routy B, Gopalakrishnan V, Daillère R. et al. The gut microbiota influences anticancer immunosurveillance and general health. Nat Rev Clin Oncol 2018; 15(6): 382–396.
    1. Dzutsev A, Goldszmid RS, Viaud S. et al. The role of the microbiota in inflammation, carcinogenesis, and cancer therapy. Eur J Immunol 2015; 45(1): 17–31.
    1. Meurman JH. Oral microbiota and cancer. J Oral Microbiol 2010; 2:
    1. Le Bars P, Matamoros S, Montassier E. et al. The oral cavity microbiota: between health, oral disease, and cancers of the aerodigestive tract. Can J Microbiol 2017; 63(6): 475–492.
    1. Pushalkar S, Ji X, Li Y. et al. Comparison of oral microbiota in tumor and non-tumor tissues of patients with oral squamous cell carcinoma. BMC Microbiol 2012; 12: 144..
    1. Hooper SJ, Wilson MJ, Crean SJ.. Exploring the link between microorganisms and oral cancer: a systematic review of the literature. Head Neck 2009; 31(9): 1228–1239.
    1. Wu J-Y, Yi C, Chung H-R. et al. Potential biomarkers in saliva for oral squamous cell carcinoma. Oral Oncol 2010; 46(4): 226–231.
    1. Guerrero-Preston R, White JR, Godoy-Vitorino F. et al. High-resolution microbiome profiling and genome wide arrays uncover bacteria driven alterations of oncogenic and immune pathways in head and neck cancer patients treated with surgery, chemo-radiation and PD-1 checkpoint blockade therapy. Cancer Resh 2017; 77(Suppl 13): 1018–1018.
    1. Roy S, Trinchieri G.. Microbiota: a key orchestrator of cancer therapy. Nat Rev Cancer 2017; 17(5): 271–285.
    1. Greenhill C. Anti-cancer therapies affected by gut microbiota. Nat Rev Gastroenterol Hepatol 2013; 11(1): 1.
    1. Garcia-Gonzalez AP. et al. Bacterial metabolism affects the C. elegans response to cancer chemotherapeutics. Cell 2017; 169(3): 431–441 e8.
    1. Montassier E, Gastinne T, Vangay P. et al. Chemotherapy-driven dysbiosis in the intestinal microbiome. Aliment Pharmacol Ther 2015; 42(5): 515–528.
    1. Kroemer G, Zitvogel L.. Cancer immunotherapy in 2017: the breakthrough of the microbiota. Nat Rev Immunol 2018; 18(2): 87–88.
    1. Yu TChung, Guo F, Yu Y. et al. Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy. Cell 2017; 170(3): 548–563 e16.,
    1. Vétizou M, Pitt JM, Daillère R. et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 2015; 350(6264): 1079–1084.
    1. Ferris RL, Blumenschein G, Harrington K. et al. Evaluation of oral microbiome profiling as a response biomarker in squamous cell carcinoma of the head and neck: analyses from CheckMate 141. Cancer Res 2017; 77(Suppl 13): CT022–CT022.
    1. Siu L, Even C, Mesia R. et al. A randomized, open-label, multicenter, global phase 2 study of durvalumab, tremelimumab, or durvalumab plus tremelimumab in patients with PD-L1 low/negative recurrent or metastatic (R/M) head and neck squamous cell carcinoma (HNSCC): CONDOR. JAMA Oncol 2018. Nov 1 [Epub ahead of print], doi:10.1001/jamaoncol.2018.4628.

Source: PubMed

3
Iratkozz fel