Effects of High-Intensity Aquatic or Bicycling Training in Athletes with Unilateral Patellofemoral Pain Syndrome

Bin Fang, Yong-Hwan Kim, Moon-Young Choi, Bin Fang, Yong-Hwan Kim, Moon-Young Choi

Abstract

Patellofemoral pain syndrome (PFPS) is one of the most common overuse injuries experienced by athletes. It is characterized by pain and functional deficits that lead to decreased performance, thereby limiting sports activity. Therefore, optimal training interventions are required to improve physical fitness and function while minimizing pain due to PFPS. This study aimed to compare and analyze the effects of high-intensity aquatic training (AT) and bicycling training (BT) in male athletes with PFPS. Fifty-four athletes with PFPS were divided into AT and BT intervention groups. Intervention training was conducted three times per week for 8 weeks. Cardiorespiratory fitness was evaluated using the graded exercise test (GXT) based on peak oxygen uptake (VO2 peak), and anaerobic threshold. For the knee strength test, extension and flexion were performed and measured using isokinetic equipment. One-leg hop tests and the Y-balance test (YBT) were performed to evaluate dynamic balance, and the International Knee Documentation Committee (IKDC) scoring system was used for subjective knee evaluation. The GXT, YBT, and IKDC scores were reported according to the group and duration of the intervention. After training, VO2 peak, YBT, knee extension strength, and IKDC score improved significantly in both the AT and BT groups compared with the pre-training values. Furthermore, the AT group exhibited significant improvement compared with the BT group. We demonstrated that AT and BT effectively improved the symptoms and muscle strength of athletes with PFPS who were only able to engage in limited high-intensity field training. AT produced a modestly better effect than BT.

Keywords: bicycle; muscle strength; pain; patellofemoral pain syndrome; physical fitness; training.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Lower extremity functional tests; (A) knee strength test using isokinetic device; (B) one-leg hop tests; (C) Y-balance test for dynamic balance.
Figure 2
Figure 2
Aquatic training and bicycling training intervention.

References

    1. Petersen W., Ellermann A., Gösele-Koppenburg A., Best R., Rembitzki I.V., Brüggemann G.-P., Liebau C. Patellofemoral pain syndrome. Knee Surg. Sports Traumatol. Arthrosc. 2014;22:2264–2274. doi: 10.1007/s00167-013-2759-6.
    1. Bolgla L.A., Boling M.C. An update for the conservative management of patellofemoral pain syndrome: A systematic review of the literature from 2000 to 2010. Int. J. Sports Phys. Ther. 2011;6:112–125.
    1. Devereaux M., Lachmann S. Patello-femoral arthralgia in athletes attending a Sports Injury Clinic. Br. J. Sports Med. 1984;18:18–21. doi: 10.1136/bjsm.18.1.18.
    1. Petersen W., Rembitzki I., Liebau C. Patellofemoral pain in athletes. Open Access J. Sports Med. 2017;8:143–154. doi: 10.2147/OAJSM.S133406.
    1. Lankhorst N.E., Bierma-Zeinstra S.M., van Middelkoop M. Factors associated with patellofemoral pain syndrome: A systematic review. Br. J. Sports Med. 2013;47:193–206. doi: 10.1136/bjsports-2011-090369.
    1. Davis I.S., Powers C. Patellofemoral pain syndrome: Proximal, distal, and local factors—international research retreat, April 30–may 2, 2009, Baltimore, Maryland. J. Orthop. Sports Phys. Ther. 2010;40:A1–A48. doi: 10.2519/jospt.2010.0302.
    1. Goharpey S., Shaterzadeh M., Emrani A., Khalesi V. Relationship between functional tests and knee muscular isokinetic parameters in patients with patellofemoral pain syndrome. J. Med. Sci. 2007;7:1315–1319. doi: 10.3923/jms.2007.1315.1319.
    1. Callaghan M., Oldham J. Quadriceps atrophy: To what extent does it exist in patellofemoral pain syndrome? Br. J. Sports Med. 2004;38:295–299. doi: 10.1136/bjsm.2002.002964.
    1. Lee S.-E., Cho S.-H. The effect of McConnell taping on vastus medialis and lateralis activity during squatting in adults with patellofemoral pain syndrome. J. Exerc. Rehabil. 2013;9:326–330. doi: 10.12965/jer.130018.
    1. Besier T.F., Fredericson M., Gold G.E., Beaupré G.S., Delp S.L. Knee muscle forces during walking and running in patellofemoral pain patients and pain-free controls. J. Biomech. 2009;42:898–905. doi: 10.1016/j.jbiomech.2009.01.032.
    1. DeHaven K.E., Lintner D.M. Athletic injuries: Comparison by age, sport, and gender. Am. J. Sports Med. 1986;14:218–224. doi: 10.1177/036354658601400307.
    1. Meckel Y., Machnai O., Eliakim A. Relationship among repeated sprint tests, aerobic fitness, and anaerobic fitness in elite adolescent soccer players. J. Strength Cond. Res. 2009;23:163–169. doi: 10.1519/JSC.0b013e31818b9651.
    1. Schelling X., Torres-Ronda L. Conditioning for basketball: Quality and quantity of training. Strength Cond. J. 2013;35:89–94. doi: 10.1519/SSC.0000000000000018.
    1. Iaia F.M., Ermanno R., Bangsbo J. High-intensity training in football. Int. J. Sports Physiol. Perform. 2009;4:291–306. doi: 10.1123/ijspp.4.3.291.
    1. Haff G.G. Aquatic Cross Training for Athletes: Part I. Strength Cond. J. 2008;30:18–26. doi: 10.1519/SSC.0b013e3181638586.
    1. Nagle E.F., Sanders M.E., Franklin B.A. Aquatic high intensity interval training for cardiometabolic health: Benefits and training design. Am. J. Lifestyle Med. 2017;11:64–76. doi: 10.1177/1559827615583640.
    1. Lack S., Barton C., Sohan O., Crossley K., Morrissey D. Proximal muscle rehabilitation is effective for patellofemoral pain: A systematic review with meta-analysis. Br. J. Sports Med. 2015;49:1365–1376. doi: 10.1136/bjsports-2015-094723.
    1. Dutton R.A., Khadavi M.J., Fredericson M. Update on rehabilitation of patellofemoral pain. Curr. Sports Med. Rep. 2014;13:172–178. doi: 10.1249/JSR.0000000000000056.
    1. Crouse S.F., Tolson H., Lytle J., Johnson K.A., Martin S.E., Green J.S., Oliver J., Carbuhn A., Lambert B., Bramhall J.P. Predicting VO2max from treadmill performance in American-style football athletes. J. Strength Cond. Res. 2019;33:1028–1034.
    1. Berglund I.J., Sørås S.E., Relling B.E., Lundgren K.M., Kiel I.A., Moholdt T. The relationship between maximum heart rate in a cardiorespiratory fitness test and in a maximum heart rate test. J. Sci. Med. Sport. 2019;22:607–610. doi: 10.1016/j.jsams.2018.11.018.
    1. Rovai S., Magini A., Cittar M., Masè M., Carriere C., Contini M., Vignati C., Sinagra G., Agostoni P. Evidence of a double anaerobic threshold in healthy subjects. Eur. J. Prev. Cardiol. 2021;29:502–509. doi: 10.1093/eurjpc/zwab100.
    1. Habets B., Staal J.B., Tijssen M., van Cingel R. Intrarater reliability of the Humac NORM isokinetic dynamometer for strength measurements of the knee and shoulder muscles. BMC Res. Notes. 2018;11:15. doi: 10.1186/s13104-018-3128-9.
    1. Corum M., Basoglu C., Yakal S., Sahinkaya T., Aksoy C. Effects of whole body vibration training on isokinetic muscular performance, pain, function, and quality of life in female patients with patellofemoral pain: A randomized controlled trial. J. Musculoskelet. Neuronal Interact. 2018;18:473–484.
    1. Dingenen B., Truijen J., Bellemans J., Gokeler A. Test–retest reliability and discriminative ability of forward, medial and rotational single-leg hop tests. Knee. 2019;26:978–987. doi: 10.1016/j.knee.2019.06.010.
    1. Miller J., Westrick R., Diebal A., Marks C., Gerber J.P. Immediate effects of lumbopelvic manipulation and lateral gluteal kinesio taping on unilateral patellofemoral pain syndrome: A pilot study. Sports Health. 2013;5:214–219. doi: 10.1177/1941738112473561.
    1. Coughlan G.F., Fullam K., Delahunt E., Gissane C., Caulfield B.M. A comparison between performance on selected directions of the star excursion balance test and the Y balance test. J. Athl. Train. 2012;47:366–371. doi: 10.4085/1062-6050-47.4.03.
    1. Anderson A.F., Irrgang J.J., Kocher M.S., Mann B.J., Harrast J.J., Committee I.K.D. The International Knee Documentation Committee subjective knee evaluation form: Normative data. Am. J. Sports Med. 2006;34:128–135. doi: 10.1177/0363546505280214.
    1. Kim J.G., Ha J.K., Lee J.Y., Seo S.S., Choi C.H., Lee M.C. Translation and validation of the Korean version of the international knee documentation committee subjective knee form. Knee Surg. Relat. Res. 2013;25:106–111. doi: 10.5792/ksrr.2013.25.3.106.
    1. Higgins L.D., Taylor M.K., Park D., Ghodadra N., Marchant M., Pietrobon R., Cook C. Reliability and validity of the International Knee Documentation Committee (IKDC) subjective knee form. Jt. Bone Spine. 2007;74:594–599. doi: 10.1016/j.jbspin.2007.01.036.
    1. Kruel L.F.M., Posser M.S., Alberton C.L., Pinto S.S., Oliveira A.D.S. Comparison of energy expenditure between continuous and interval water aerobic routines. Int. J. Aquat. Res. Educ. 2009;3:9. doi: 10.25035/ijare.03.02.09.
    1. ACSM . ACSM’s Health-Related Physical Fitness Assessment Manual. Lippincott Williams & Wilkins; Philadelphia, PA, USA: 2013.
    1. Herman L., Foster C., Maher M., Mikat R., Porcari J. Validity and reliability of the session RPE method for monitoring exercise training intensity. S. Afr. J. Sports Med. 2006;18:14–17. doi: 10.17159/2078-516X/2006/v18i1a247.
    1. Andersen A.B., Bejder J., Bonne T., Olsen N.V., Nordsborg N. Repeated Wingate sprints is a feasible high-quality training strategy in moderate hypoxia. PLoS ONE. 2020;15:e0242439–e0242452. doi: 10.1371/journal.pone.0242439.
    1. Wang Y., Liang L., Wang D., Tang Y., Wu X., Li L., Liu Y. Cycling with low saddle height is related to increased knee adduction moments in healthy recreational cyclists. Eur. J. Sport Sci. 2020;20:461–467. doi: 10.1080/17461391.2019.1635651.
    1. Pescatello L.S., Riebe D., Thompson P.D. ACSM’s Guidelines for Exercise Testing and Prescription. Lippincott Williams & Wilkins; Philadelphia, PA, USA: 2020.
    1. Neal B.S., Lack S.D., Lankhorst N.E., Raye A., Morrissey D., Van Middelkoop M. Risk factors for patellofemoral pain: A systematic review and meta-analysis. Br. J. Sports Med. 2019;53:270–281. doi: 10.1136/bjsports-2017-098890.
    1. Holmberg P.M., Gorman A.D., Jenkins D.G., Kelly V.G. Lower-Body Aquatic Training Prescription for Athletes. J. Strength Cond. Res. 2021;35:859–869. doi: 10.1519/JSC.0000000000003925.
    1. Ahmed T.A.E., Seleem H.A.I., Elsayed G.M.Y. Effects of Eight Weeks Aquatic-Non-aquatic Training program on Aerobic Fitness and Physical preparation in junior Basketball Player. Life Sci. J. 2019;16:111–118.
    1. Arazi H., Eston R., Asadi A., Roozbeh B., Zarei A.S. Type of ground surface during plyometric training affects the severity of exercise-induced muscle damage. Sports. 2016;4:15. doi: 10.3390/sports4010015.
    1. Miller M.G., Cheatham C.C., Porter A.R., Ricard M.D., Hennigar D., Berry D.C. Chest-and waist-deep aquatic plyometric training and average force, power, and vertical-jump performance. Int. J. Aquat. Res. Educ. 2007;1:6–18. doi: 10.25035/ijare.01.02.06.
    1. Alkatan M., Machin D.R., Baker J.R., Akkari A.S., Park W., Tanaka H. Effects of swimming and cycling exercise intervention on vascular function in patients with osteoarthritis. Am. J. Cardiol. 2016;117:141–145. doi: 10.1016/j.amjcard.2015.10.017.
    1. Salacinski A.J., Krohn K., Lewis S.F., Holland M.L., Ireland K., Marchetti G. The effects of group cycling on gait and pain-related disability in individuals with mild-to-moderate knee osteoarthritis: A randomized controlled trial. J. Orthop. Sports Phys. Ther. 2012;42:985–995. doi: 10.2519/jospt.2012.3813.
    1. Asplund C., St Pierre P. Knee pain and bicycling: Fitting concepts for clinicians. Physician Sportsmed. 2004;32:23–30. doi: 10.3810/psm.2004.04.201.
    1. Versey N.G., Halson S.L., Dawson B.T. Water immersion recovery for athletes: Effect on exercise performance and practical recommendations. Sports Med. 2013;43:1101–1130. doi: 10.1007/s40279-013-0063-8.
    1. Wilcock I.M., Cronin J.B., Hing W.A. Physiological response to water immersion. Sports Med. 2006;36:747–765. doi: 10.2165/00007256-200636090-00003.
    1. Torres-Ronda L., i del Alcázar X.S. The properties of water and their applications for training. J. Hum. Kinet. 2014;44:237–248. doi: 10.2478/hukin-2014-0129.
    1. Guney H., Yuksel I., Kaya D., Doral M.N. The relationship between quadriceps strength and joint position sense, functional outcome and painful activities in patellofemoral pain syndrome. Knee Surg. Sports Traumatol. Arthrosc. 2016;24:2966–2972. doi: 10.1007/s00167-015-3599-3.
    1. Kaya D., Citaker S., Kerimoglu U., Atay O.A., Nyland J., Callaghan M., Yakut Y., Yüksel I., Doral M.N. Women with patellofemoral pain syndrome have quadriceps femoris volume and strength deficiency. Knee Surg. Sports Traumatol. Arthrosc. 2011;19:242–247. doi: 10.1007/s00167-010-1290-2.
    1. Dvir Z., Halperin N., Shklar A., Robinson D. Quadriceps function and patellofemoral pain syndrome. Part I: Pain provocation during concentric and eccentric isokinetic activity. Isokinet. Exerc. Sci. 1991;1:26–30. doi: 10.3233/IES-1991-1105.
    1. Ko D.-H., Choi Y.-C., Lee D.-S. The Effect of Short-Term Wingate-Based High Intensity Interval Training on Anaerobic Power and Isokinetic Muscle Function in Adolescent Badminton Players. Children. 2021;8:458. doi: 10.3390/children8060458.
    1. Fang B., Kim Y., Choi M. Effect of Cycle-Based High-Intensity Interval Training and Moderate to Moderate-Intensity Continuous Training in Adolescent Soccer Players. Healthcare. 2021;9:1628. doi: 10.3390/healthcare9121628.
    1. Fältström A., Hägglund M., Hedevik H., Kvist J. Poor Validity of Functional Performance Tests to Predict Knee Injury in Female Soccer Players With or Without Anterior Cruciate Ligament Reconstruction. Am. J. Sports Med. 2021;49:1441–1450. doi: 10.1177/03635465211002541.
    1. Wilk K.E., Romaniello W.T., Soscia S.M., Arrigo C.A., Andrews J.R. The relationship between subjective knee scores, isokinetic testing, and functional testing in the ACL-reconstructed knee. J. Orthop. Sports Phys. Ther. 1994;20:60–73. doi: 10.2519/jospt.1994.20.2.60.
    1. Lee S.-K., Ahn S.-H. Effects of balance evaluation comparison of dynamic balance and Y balance. J. Exerc. Rehabil. 2018;14:939–943. doi: 10.12965/jer.1836494.247.
    1. Ringhof S., Stein T. Biomechanical assessment of dynamic balance: Specificity of different balance tests. Hum. Mov. Sci. 2018;58:140–147. doi: 10.1016/j.humov.2018.02.004.
    1. Greenberg E.T., Barle M., Glassmann E., Jung M.-K. Interrater and test-retest reliability of the Y balance test in healthy, early adolescent female athletes. Int. J. Sports Phys. Ther. 2019;14:204–213. doi: 10.26603/ijspt20190204.
    1. Powden C.J., Dodds T.K., Gabriel E.H. The reliability of the star excursion balance test and lower quarter Y-balance test in healthy adults: A systematic review. Int. J. Sports Phys. Ther. 2019;14:683–694. doi: 10.26603/ijspt20190683.
    1. Veldema J., Jansen P. Aquatic therapy in stroke rehabilitation: Systematic review and meta-analysis. Acta Neurol. Scand. 2021;143:221–241. doi: 10.1111/ane.13371.
    1. Pinto C., Salazar A.P., Marchese R.R., Stein C., Pagnussat A.S. The effects of hydrotherapy on balance, functional mobility, motor status, and quality of life in patients with Parkinson disease: A systematic review and meta-analysis. PMR. 2019;11:278–291. doi: 10.1016/j.pmrj.2018.09.031.
    1. Bento P.C.B., Lopes M.D.F.A., Cebolla E.C., Wolf R., Rodacki A.L. Effects of water-based training on static and dynamic balance of older women. Rejuvenation Res. 2015;18:326–331. doi: 10.1089/rej.2014.1650.
    1. Takacs J., Carpenter M.G., Garland S.J., Hunt M.A. The role of neuromuscular changes in aging and knee osteoarthritis on dynamic postural control. Aging Dis. 2013;4:84–89.
    1. Sanchez-Ramirez D.C., van der Leeden M., Knol D.L., van der Esch M., Roorda L.D., Verschueren S., van Dieën J., Lems W.F., Dekker J. Association of postural control with muscle strength, proprioception, self-reported knee instability and activity limitations in patients with knee osteoarthritis. J. Rehabil. Med. 2013;45:192–197. doi: 10.2340/16501977-1087.
    1. Dammerer D., Liebensteiner M., Kujala U., Emmanuel K., Kopf S., Dirisamer F., Giesinger J. Validation of the German version of the Kujala score in patients with patellofemoral instability: A prospective multi-centre study. Arch. Orthop. Trauma Surg. 2018;138:527–535. doi: 10.1007/s00402-018-2881-5.
    1. Cerciello S., Corona K., Morris B.J., Visonà E., Maccauro G., Maffulli N., Ronga M. Cross-cultural adaptation and validation of the Italian versions of the Kujala, Larsen, Lysholm and Fulkerson scores in patients with patellofemoral disorders. J. Orthop. Traumatol. 2018;19:18. doi: 10.1186/s10195-018-0508-9.
    1. Weitzel P.P., Richmond J.C. Critical evaluation of different scoring systems of the knee. Sports Med. Arthrosc. Rev. 2002;10:183–190. doi: 10.1097/00132585-200210030-00003.
    1. Siqueira D.A., Baraúna M.A., Dionísio V.C. Functional evaluation of the knee in subjects with patellofemoral pain syndrome (PFPS): Comparison between KOS and IKDC scales. Rev. Bras. De Med. Do Esporte. 2012;18:400–403. doi: 10.1590/S1517-86922012000600011.
    1. Becker B.E. Aquatic therapy: Scientific foundations and clinical rehabilitation applications. PMR. 2009;1:859–872. doi: 10.1016/j.pmrj.2009.05.017.

Source: PubMed

3
Iratkozz fel