Muse Cells: Nontumorigenic Pluripotent Stem Cells Present in Adult Tissues-A Paradigm Shift in Tissue Regeneration and Evolution

Ariel A Simerman, Julia D Phan, Daniel A Dumesic, Gregorio D Chazenbalk, Ariel A Simerman, Julia D Phan, Daniel A Dumesic, Gregorio D Chazenbalk

Abstract

Muse cells are a novel population of nontumorigenic pluripotent stem cells, highly resistant to cellular stress. These cells are present in every connective tissue and intrinsically express pluripotent stem markers such as Nanog, Oct3/4, Sox2, and TRA1-60. Muse cells are able to differentiate into cells from all three embryonic germ layers both spontaneously and under media-specific induction. Unlike ESCs and iPSCs, Muse cells exhibit low telomerase activity and asymmetric division and do not undergo tumorigenesis or teratoma formation when transplanted into a host organism. Muse cells have a high capacity for homing into damaged tissue and spontaneous differentiation into cells of compatible tissue, leading to tissue repair and functional restoration. The ability of Muse cells to restore tissue function may demonstrate the role of Muse cells in a highly conserved cellular mechanism related to cell survival and regeneration, in response to cellular stress and acute injury. From an evolutionary standpoint, genes pertaining to the regenerative capacity of an organism have been lost in higher mammals from more primitive species. Therefore, Muse cells may offer insight into the molecular and evolutionary bases of autonomous tissue regeneration and elucidate the molecular and cellular mechanisms that prevent mammals from regenerating limbs and organs, as planarians, newts, zebrafish, and salamanders do.

Conflict of interest statement

The authors declare that they have no competing interests. Gregorio D. Chazenbalk is a consultant for ClusterXStem Inc.

Figures

Figure 1
Figure 1
Muse-AT cells can differentiate into mesodermal, endodermal, and ectodermal cell lineages. Muse-AT cells can grow in suspension, forming spheres or cell clusters as well as individual cells (see white arrows) both expressing characteristic pluripotent stem cell markers, such as Oct4 (Texas Red) and TRA-1-60 (Green Fluorescence GFP), while nuclei were stained with DAPI (blue) (a); myogenic differentiation medium; the formation of myocytes (mesodermal origin) was detected using an anti-human MSA antibody (b); hepatogenic differentiation medium; formation of hepatocytes (endodermal origin) was detected using an anti-cytokeratin 7 antibody (c); neural differentiation medium; neural-like cells (ectodermal origin) were detected by immunofluorescence using an anti-human MAP2 antibody (d). Nuclei were stained with DAPI (blue) (original magnification 600x). (b)–(d) From Figures 3(C), 4(C), and 5(D) [5].
Figure 2
Figure 2
Properties of Muse-AT cells. Nontumorigenicity of Muse-AT cells. Embryonic stem (ES) cells injected into immunodeficient mice (SCID mice) testes, formed teratomas within 8 to 12 weeks (a). Histological analysis showed that the teratoma contained muscle tissue, intestine-like structure, and keratinized skin (b). Muse-AT cells transplanted into testes did not form teratomas even 6 months after injection, similar to untreated testes (d). Testis injected with Muse-AT cells maintained normal structure (e). Yin-Yang balance between Let7 and Lin28: ES and IPS expressed much higher levels of Lin28 versus Let7 (c). Muse-AT cells and neoblasts expressed much higher levels of Let7 versus Lin28 (f). Differences in expression of pluripotent stem cell genes between Muse cells, ES, iPS, and non-Muse cells determined by qRT-PCR (g). MicroRNA Let-7 is an upstream regulator of CDA3, CDC16, DZIP1, SSR1, RFC3, RFC5, MCM6, NUF2, BRCA1, BUB1B, and CDK6 (h). Normal karyotype of human Muse-AT cells is indicated by 23 intact pair of chromosomes with a pair XX chromosome indicating female origin of the cells (i). (a)-(b) From Figure 3: [6]. (g) From Table 1 [7]. indicates pluripotent stem cell markers.
Figure 3
Figure 3
Planarians, zebrafish, newts, and salamanders have the capacity to self-regenerate damaged appendages and critical organs.

References

    1. Jiang Y., Jahagirdar B. N., Reinhardt R. L., et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature. 2002;418(6893):41–49. doi: 10.1038/nature00870.
    1. D'Ippolito G., Diabira S., Howard G. A., Menei P., Roos B. A., Schiller P. C. Marrow-isolated adult multilineage inducible (MIAMI) cells, a unique population of postnatal young and old human cells with extensive expansion and differentiation potential. Journal of Cell Science. 2004;117(14):2971–2981. doi: 10.1242/jcs.01103.
    1. Miyanishi M., Mori Y., Seita J., et al. Do pluripotent stem cells exist in adult mice as very small embryonic stem cells? Stem Cell Reports. 2013;1(2):198–208. doi: 10.1016/j.stemcr.2013.07.001.
    1. Santourlidis S., Wernet P., Ghanjati F., et al. Unrestricted somatic stem cells (USSC) from human umbilical cord blood display uncommitted epigenetic signatures of the major stem cell pluripotency genes. Stem Cell Research. 2011;6(1):60–69. doi: 10.1016/j.scr.2010.08.003.
    1. Heneidi S., Simerman A. A., Keller E., et al. Awakened by cellular stress: isolation and characterization of a novel population of pluripotent stem cells derived from human adipose tissue. PLoS ONE. 2013;8(6) doi: 10.1371/journal.pone.0064752.e64752
    1. Wakao S., Kuroda Y., Ogura F., Shigemoto T., Dezawa M. Regenerative effects of mesenchymal stem cells: contribution of muse cells, a novel pluripotent stem cell type that resides in mesenchymal cells. Cells. 2012;1(4):1045–1060. doi: 10.3390/cells1041045.
    1. Wakao S., Kitada M., Kuroda Y., et al. Multilineage-differentiating stress-enduring (Muse) cells are a primary source of induced pluripotent stem cells in human fibroblasts. Proceedings of the National Academy of Sciences of the United States of America. 2011;108(24):9875–9880. doi: 10.1073/pnas.1100816108.
    1. Kuroda Y., Kitada M., Wakao S., et al. Unique multipotent cells in adult human mesenchymal cell populations. Proceedings of the National Academy of Sciences of the United States of America. 2010;107(19):8639–8643. doi: 10.1073/pnas.0911647107.
    1. Simerman A. A., Dumesic D. A., Chazenbalk G. D. Pluripotent muse cells derived from human adipose tissue: a new perspective on regenerative medicine and cell therapy. Clinical and Translational Medicine. 2014;3, article 12 doi: 10.1186/2001-1326-3-12.
    1. Kinoshita K., Kuno S., Ishimine H., et al. Therapeutic potential of adipose-derived SSEA-3-positive muse cells for treating diabetic skin ulcers. Stem Cells Translational Medicine. 2015;4(2):146–155. doi: 10.5966/sctm.2014-0181.
    1. Hori E., Hayakawa Y., Hayashi T., et al. Mobilization of pluripotent multilineage-differentiating stress-enduring cells in ischemic stroke. Journal of Stroke and Cerebrovascular Diseases. 2016;25(6):1473–1481. doi: 10.1016/j.jstrokecerebrovasdis.2015.12.033.
    1. Liu Q., Zhang R., Li D., et al. Muse cells, a new type of pluripotent stem cell derived from human fibroblasts. Cellular Reprogramming. 2016;18(2):67–77. doi: 10.1089/cell.2015.0085.
    1. Yang Z., Liu J., Liu H., et al. Isolation and characterization of SSEA3(+) stem cells derived from goat skin fibroblasts. Cell Reprogram. 2013;15(3):195–205.
    1. Gimeno M. L., Fuertes F., Barcala Tabarrozzi A. E., et al. Pluripotent nontumorigenic adipose tissue-derived muse cells have immunomodulatory capacity mediated by transforming growth factor-β1. Stem Cells Translational Medicine. 2016 doi: 10.5966/sctm.2016-0014.
    1. Ogura F., Wakao S., Kuroda Y., et al. Human adipose tissue possesses a unique population of pluripotent stem cells with nontumorigenic and low telomerase activities: potential implications in regenerative medicine. Stem Cells and Development. 2014;23(7):717–728. doi: 10.1089/scd.2013.0473.
    1. Iseki M., Kushida Y., Wakao S., et al. Human Muse cells, non-tumorigenic pluripotent-like stem cells, have the capacity for liver regeneration by specific homing and replenishment of new hepatocytes in liver fibrosis mouse model. Cell Transplantation. 2016 doi: 10.3727/096368916X693662.
    1. Yamauchi T., Kuroda Y., Morita T., et al. Therapeutic effects of human multilineage-differentiating stress enduring (MUSE) cell transplantation into infarct brain of mice. PLoS ONE. 2015;10(3) doi: 10.1371/journal.pone.0116009.e0116009
    1. Uchida H., Morita T., Niizuma K., et al. Transplantation of unique subpopulation of fibroblasts, muse cells, ameliorates experimental stroke possibly via robust neuronal differentiation. STEM CELLS. 2016;34(1):160–173. doi: 10.1002/stem.2206.
    1. Pearson B. J., Sánchez Alvarado A. Regeneration, stem cells, and the evolution of tumor suppression. Cold Spring Harbor Symposia on Quantitative Biology. 2008;73:565–572. doi: 10.1101/sqb.2008.73.045.
    1. Marson A., Levine S. S., Cole M. F., et al. Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells. Cell. 2008;134(3):521–533. doi: 10.1016/j.cell.2008.07.020.
    1. Thornton J. E., Gregory R. I. How does Lin28 let-7 control development and disease? Trends in Cell Biology. 2012;22(9):474–482. doi: 10.1016/j.tcb.2012.06.001.
    1. Birnbaum K. D., Alvarado A. S. Slicing across kingdoms: regeneration in plants and animals. Cell. 2008;132(4):697–710. doi: 10.1016/j.cell.2008.01.040.
    1. Brockes J. P., Kumar A. Appendage regeneration in adult vertebrates and implications for regenerative medicine. Science. 2005;310(5756):1919–1923. doi: 10.1126/science.1115200.
    1. Poss K. D. Advances in understanding tissue regenerative capacity and mechanisms in animals. Nature Reviews Genetics. 2010;11(10):710–722. doi: 10.1038/nrg2879.
    1. Pellettieri J., Fitzgerald P., Watanabe S., Mancuso J., Green D. R., Sánchez Alvarado A. Cell death and tissue remodeling in planarian regeneration. Developmental Biology. 2010;338(1):76–85. doi: 10.1016/j.ydbio.2009.09.015.
    1. Tseng A.-S., Adams D. S., Qiu D., Koustubhan P., Levin M. Apoptosis is required during early stages of tail regeneration in Xenopus laevis. Developmental Biology. 2007;301(1):62–69. doi: 10.1016/j.ydbio.2006.10.048.
    1. Chera S., Ghila L., Dobretz K., et al. Apoptotic cells provide an unexpected source of Wnt3 signaling to drive hydra head regeneration. Developmental Cell. 2009;17(2):279–289. doi: 10.1016/j.devcel.2009.07.014.
    1. Tanaka E. M., Gann A. A. F., Gates P. B., Brockes J. P. Newt myotubes reenter the cell cycle by phosphorylation of the retinoblastoma protein. The Journal of Cell Biology. 1997;136(1):155–165. doi: 10.1083/jcb.136.1.155.
    1. Jopling C., Boue S., Belmonte J. C. I. Dedifferentiation, transdifferentiation and reprogramming: three routes to regeneration. Nature Reviews Molecular Cell Biology. 2011;12(2):79–89. doi: 10.1038/nrm3043.
    1. Brockes J. P., Kumar A. Plasticity and reprogramming of differentiated cells in amphibian regeneration. Nature Reviews Molecular Cell Biology. 2002;3(8):566–574. doi: 10.1038/nrm881.
    1. Butler E. G. The effects of X-radiation on the regeneration of the fore limb of Amblystoma larvae. Journal of Experimental Zoology. 1933;65(3):271–315. doi: 10.1002/jez.1400650302.
    1. Echeverri K., Clarke J. D. W., Tanaka E. M. In vivo imaging indicates muscle fiber dedifferentiation is a major contributor to the regenerating tail blastema. Developmental Biology. 2001;236(1):151–164. doi: 10.1006/dbio.2001.0312.
    1. Kragl M., Knapp D., Nacu E., et al. Cells keep a memory of their tissue origin during axolotl limb regeneration. Nature. 2009;460(7251):60–65. doi: 10.1038/nature08152.
    1. Eguchi G., Okada T. S. Differentiation of lens tissue from the progeny of chick retinal pigment cells cultured in vitro: a demonstration of a switch of cell types in clonal cell culture. Proceedings of the National Academy of Sciences of the United States of America. 1973;70(5):1495–1499. doi: 10.1073/pnas.70.5.1495.
    1. Maki N., Martinson J., Nishimura O., et al. Expression profiles during dedifferentiation in newt lens regeneration revealed by expressed sequence tags. Molecular Vision. 2010;16:72–78.
    1. Gargiolo C., Slack J. M. W. Cell lineage tracing during Xenopus tail regeneration. Development. 2004;131(11):2669–2679. doi: 10.1242/dev.01155.
    1. Chen Y., Lin G., Slack J. M. W. Control of muscle regeneration in the Xenopus tadpole tail by Pax7. Development. 2006;133(12):2303–2313. doi: 10.1242/dev.02397.
    1. Shibata N., Rouhana L., Agata K. Cellular and molecular dissection of pluripotent adult somatic stem cells in planarians. Development Growth and Differentiation. 2010;52(1):27–41. doi: 10.1111/j.1440-169x.2009.01155.x.
    1. Reddien P. W., Sánchez Alvarado A. Fundamentals of planarian regeneration. Annual Review of Cell and Developmental Biology. 2004;20:725–757. doi: 10.1146/annurev.cellbio.20.010403.095114.
    1. Wagner D. E., Wang I. E., Reddien P. W. Clonogenic neoblasts are pluripotent adult stem cells that underlie planarian regeneration. Science. 2011;332(6031):811–816. doi: 10.1126/science.1203983.
    1. Pellettieri J., Alvarado A. Ś. Cell turnover and adult tissue homeostasis: from humans to planarians. Annual Review of Genetics. 2007;41:83–105. doi: 10.1146/annurev.genet.41.110306.130244.
    1. Hori I. Possible role of rhabdite-forming cells in cellular succession of the planarian epidermis. Journal of Electron Microscopy. 1978;27(2):89–102.
    1. Lentz T. L. Rhabdite formation in planaria: the role of microtubules. Journal of Ultrasructure Research. 1967;17(1-2):114–126. doi: 10.1016/s0022-5320(67)80024-8.
    1. Morita M., Best J. B. Electron microscopic studies of planarian regeneration. II. Changes in epidermis during regeneration. Journal of Experimental Zoology. 1974;187(3):345–374. doi: 10.1002/jez.1401870305.
    1. Wenemoser D., Reddien P. W. Planarian regeneration involves distinct stem cell responses to wounds and tissue absence. Developmental Biology. 2010;344(2):979–991. doi: 10.1016/j.ydbio.2010.06.017.
    1. Odelberg S. J. Cellular plasticity in vertebrate regeneration. Anatomical Record—Part B New Anatomist. 2005;287(1):25–35. doi: 10.1002/ar.b.20080.
    1. Baguñà J. Mitosis in the intact and regenerating planarianDugesia mediterranea n.sp. I. Mitotic studies during growth, feeding and starvation. Journal of Experimental Zoology. 1976;195(1):53–64. doi: 10.1002/jez.1401950106.
    1. Oviedo N. J., Newmark P. A., Sánchez Alvarado A. Allometric scaling and proportion regulation in the freshwater planarian Schmidtea mediterranea . Developmental Dynamics. 2003;226(2):326–333. doi: 10.1002/dvdy.10228.
    1. Kültz D. Molecular and evolutionary basis of the cellular stress response. Annual Review of Physiology. 2005;67:225–257. doi: 10.1146/annurev.physiol.67.040403.103635.

Source: PubMed

3
Iratkozz fel