Pluripotent nontumorigenic multilineage differentiating stress enduring cells (Muse cells): a seven-year retrospective

Samantha C Fisch, María L Gimeno, Julia D Phan, Ariel A Simerman, Daniel A Dumesic, Marcelo J Perone, Gregorio D Chazenbalk, Samantha C Fisch, María L Gimeno, Julia D Phan, Ariel A Simerman, Daniel A Dumesic, Marcelo J Perone, Gregorio D Chazenbalk

Abstract

Multilineage differentiating stress enduring (Muse) cells, discovered in the spring of 2010 at Tohoku University in Sendai, Japan, were quickly recognized by scientists as a possible source of pluripotent cells naturally present within mesenchymal tissues. Muse cells normally exist in a quiescent state, singularly activated by severe cellular stress in vitro and in vivo. Muse cells have the capacity for self-renewal while maintaining pluripotent cell characteristics indicated by the expression of pluripotent stem cell markers. Muse cells differentiate into cells representative of all three germ cell layers both spontaneously and under media-specific induction. In contrast to embryonic stem and induced pluripotent stem cells, Muse cells exhibit low telomerase activity, a normal karyotype, and do not undergo tumorigenesis once implanted in SCID mice. Muse cells efficiently home into damaged tissues and differentiate into specific cells leading to tissue regeneration and functional recovery as described in different animal disease models (i.e., fulminant hepatitis, muscle degeneration, skin ulcers, liver cirrhosis, cerebral stroke, vitiligo, and focal segmental glomerulosclerosis). Circulating Muse cells have been detected in peripheral blood, with higher levels present in stroke patients during the acute phase. Furthermore, Muse cells have inherent immunomodulatory properties, which could contribute to tissue generation and functional repair in vivo. Genetic studies in Muse cells indicate a highly conserved cellular mechanism as seen in more primitive organisms (yeast, Saccharomyces cerevisiae, Caenorhabditis elegans, chlamydomonas, Torpedo californica, drosophila, etc.) in response to cellular stress and acute injury. This review details the molecular and cellular properties of Muse cells as well as their capacity for tissue repair and functional recovery, highlighting their potential for clinical application in regenerative medicine.

Keywords: Adult pluripotent stem cells; Cellular stress; High homing capacity; Muse cells; Nontumorigenic; Quiescence; Regenerative medicine.

Conflict of interest statement

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests. GDC is a consultant for ClusterXStem Inc.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
a Schematic of Muse-AT cell generation from lipoaspirate material. Different cellular components are present in adipose tissue (i.e., adipocytes, endothelial cells (ECs), adipose stem cells (ASCs), adipose tissue macrophages, and Muse-AT cells). Adipose tissue (lipoaspirate material) first exposed to collagenase for 30 minutes at 37 °C, and then for 12 hours under severe cellular stress conditions (i.e., long-term collagenase incubation, lack of nutrients, low temperature, and hypoxia). Only a cluster of Muse-AT cells survived such stress. b Expression of pluripotent stem cell markers SSEA4, Oct-4, Sox-2, and TRA1-6 in Muse-AT cells. c Expression of CD markers in Muse cells indicating an immunophenotype. d Evidence of a normal karyotype in Muse cells. e Muse-AT cells do not form teratomas after 6-month implantation in testis (right) in comparison with control, sham-injected testis (left). Muse-AT adipose tissue-derived multilineage differentiating stress enduring (c Reproduced from Figure 2 in Gimeno et al. [22] under CC-BY license) (d Reproduced from Figure 4 in Gimeno et al. [22] under CC-BY license) (e Reproduced from Figure 4 in Gimeno et al. [22] under CC-BY license)
Fig. 2
Fig. 2
a TGF-β1 signaling blockade on IFN-γ secretion. Using a neutralizing monoclonal anti-TGF-β1, the inhibitory action on IFN-γ secretion was abolished in antigen (M)-specific stimulation of T cells. T cells were obtained from transgenic NOD BDC2.5 mice. Results representative of five separate experiments (Gimeno et al., unpublished data, 2017). b Putative intracellular signaling of TGF-β1 secreted by Muse-AT cells on T lymphocytes and macrophages. IFN-γ interferon gamma, IL interleukin, Muse-AT adipose tissue-derived multilineage differentiating stress enduring, TGF-β1 transforming growth factor-β1
Fig. 3
Fig. 3
A Effect of Muse cells in damaged liver. Functional improvement shown in Muse cells by a decrease in bilirubin production, increase in albumin levels, and decrease in fibrotic tissues. B Effect of Muse cells in damaged kidney: (b1) detection of GFP(+) Muse cells distributed in different tissues after 7 weeks of injection in FSGS-SCID mice; (b2, b3) Muse cells show significant decrease in glomerular sclerosis as well as fibrotic areas. C Effect of Muse cells in damaged neural tissue: (c1) ipsilateral sensory cortex analysis in cerebral stroke-SCID mice after 84 days of Muse, non-Muse, and vehicle treatment; somatosensory evoked potentials show no effect in latency (c2) and significant increase in amplitude (c3) between Muse cells and vehicle controls; (c4) integration of GFP(+) Muse cells into neural tissue at days 3 and 7 display neurite-like cell formation. D Effect of Muse cells in diabetic skin ulcers: (d1) Muse-rich fraction shows significant reduction in percent wounded area in comparison with Muse-poor fraction at 14 days post implantation; (d2) Muse-rich fraction expresses PECAM-1 and isolectin (markers of dermis and vascular endothelial cells) in upper dermis at 14 days post implantation; (d3) Muse cells show negative expression of PECAM-1 and isolectin in middle and lower dermis 14 days post implantation. Muse multilineage differentiating stress enduring, ns not significant (A Reproduced with permission from Figure 4 in Iseki et al. [26]) (b1 Reproduced with permission from Figure 2 in Uchida et al. [46], License Number 4141730401653) (b2, b3 Reproduced with permission from Figure 6 in Uchida et al. [46], License Number 4141730401653) (c1–c3 Reproduced from Figure 6 in Uchida et al. [23] under CC-BY license) (c4 Reproduced from Figure 7 in Uchida et al. [23] under CC-BY license) (d1 Reproduced with permission from Figure 5 in Kinoshita et al. [21], License Number 4136900281603) (d2, d3 Reproduced with permission from Figure 7 in Kinoshita et al. [21], License Number 4136900281603)

References

    1. Rosenthal N, Badylak S, Watt FM, Trounson A. Regenerative medicine: today’s discoveries informing the future of medical practice. npj Reg Med. 2016;1:16007. doi: 10.1038/npjregenmed.2016.7.
    1. Trounson A, McDonald C. Stem cell therapies in clinical trials: progress and challenges. Cell Stem Cell. 2015;17:11–22. doi: 10.1016/j.stem.2015.06.007.
    1. Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature. 1981;292:154–6. doi: 10.1038/292154a0.
    1. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282:1145–7. doi: 10.1126/science.282.5391.1145.
    1. Przyborski SA. Differentiation of human embryonic stem cells after transplantation in immune-deficient mice. Stem Cells. 2005;23:1242–50. doi: 10.1634/stemcells.2005-0014.
    1. Yui Y. Questions Surrounding iPS cells in Japan. Int J Stem Cells. 2016;9:1–2. doi: 10.15283/ijsc.2016.9.1.1.
    1. Garber K. RIKEN suspends first clinical trial involving induced pluripotent stem cells. Nat Biotechnol. 2015;33:890–1. doi: 10.1038/nbt0915-890.
    1. Kucia M, Zuba-Surma EK, Wysoczynski M, Wu W, Ratajczak J, Machalinski B, Ratajczak MZ. Adult marrow-derived very small embryonic-like stem cells and tissue engineering. Expert Opin Biol Ther. 2007;7:1499–514. doi: 10.1517/14712598.7.10.1499.
    1. D'Ippolito G, Diabira S, Howard GA, Menei P, Roos BA, Schiller PC. Marrow-isolated adult multilineage inducible (MIAMI) cells, a unique population of postnatal young and old human cells with extensive expansion and differentiation potential. J Cell Sci. 2004;117:2971–81. doi: 10.1242/jcs.01103.
    1. Miyanishi M, Mori Y, Seita J, Chen JY, Karten S, Chan CKF, Nakauchi H, Weissman IL. Do pluripotent stem cells exist in adult mice as very small embryonic stem cells? Stem Cell Rep. 2013;1:198–208. doi: 10.1016/j.stemcr.2013.07.001.
    1. Santourlidis S, Wernet P, Ghanjati F, Graffmann N, Springer J, Kriegs C, Zhao X, Brands J, Araúzo-Bravo MJ, Neves R, et al. Unrestricted somatic stem cells (USSC) from human umbilical cord blood display uncommitted epigenetic signatures of the major stem cell pluripotency genes. Stem Cell Res. 2011;6:60–9. doi: 10.1016/j.scr.2010.08.003.
    1. Faiella W, Atoui R. Immunotolerant properties of mesenchymal stem cells: updated review. Stem Cells Int. 2016;2016:1859567. doi: 10.1155/2016/1859567.
    1. Wakao S, Akashi H, Kushida Y, Dezawa M. Muse cells, newly found non-tumorigenic pluripotent stem cells, reside in human mesenchymal tissues. Pathol Int. 2014;64:1–9. doi: 10.1111/pin.12129.
    1. Kuroda Y, Kitada M, Wakao S, Nishikawa K, Tanimura Y, Makinoshima H, Goda M, Akashi H, Inutsuka A, Niwa A, et al. Unique multipotent cells in adult human mesenchymal cell populations. Proc Natl Acad Sci U S A. 2010;107:8639–43. doi: 10.1073/pnas.0911647107.
    1. Wakao S, Kitada M, Kuroda Y, Shigemoto T, Matsuse D, Akashi H, Tanimura Y, Tsuchiyama K, Kikuchi T, Goda M, et al. Multilineage-differentiating stress-enduring (Muse) cells are a primary source of induced pluripotent stem cells in human fibroblasts. Proc Natl Acad Sci U S A. 2011;108:9875–80. doi: 10.1073/pnas.1100816108.
    1. Katagiri H, Kushida Y, Nojima M, Kuroda Y, Wakao S, Ishida K, Endo F, Kume K, Takahara T, Nitta H, et al. A distinct subpopulation of bone marrow mesenchymal stem cells, muse cells, directly commit to the replacement of liver components. Am J Transplant. 2016;16:468–83. doi: 10.1111/ajt.13537.
    1. Tian T, Zhang R-Z, Yang Y-H, Liu Q, Li D, Pan X-R. Muse cells derived from dermal tissues can differentiate into melanocytes. Cell Reprogram. 2017;19:116–22. doi: 10.1089/cell.2016.0032.
    1. Heneidi S, Simerman AA, Keller E, Singh P, Li X, Dumesic DA, Chazenbalk G. Awakened by cellular stress: isolation and characterization of a novel population of pluripotent stem cells derived from human adipose tissue. PLoS One. 2013;8:e64752. doi: 10.1371/journal.pone.0064752.
    1. Simerman AA, Dumesic DA, Chazenbalk GD. Pluripotent muse cells derived from human adipose tissue: a new perspective on regenerative medicine and cell therapy. Clin Trans Med. 2014;3:12. doi: 10.1186/2001-1326-3-12.
    1. Ogura F, Wakao S, Kuroda Y, Tsuchiyama K, Bagheri M, Heneidi S, Chazenbalk G, Aiba S, Dezawa M. Human adipose tissue possesses a unique population of pluripotent stem cells with nontumorigenic and low telomerase activities: potential implications in regenerative medicine. Stem Cells Dev. 2014;23:717–28. doi: 10.1089/scd.2013.0473.
    1. Kinoshita K, Kuno S, Ishimine H, Aoi N, Mineda K, Kato H, Doi K, Kanayama K, Feng J, Mashiko T, et al. Therapeutic potential of adipose-derived SSEA-3-positive Muse cells for treating diabetic skin ulcers. Stem Cells Trans Med. 2015;4:146–55. doi: 10.5966/sctm.2014-0181.
    1. Gimeno ML, Fuertes F, Barcala Tabarrozzi AE, Attorressi AI, Cucchiani R, Corrales L, Oliveira TC, Sogayar MC, Labriola L, Dewey RA, et al. Pluripotent nontumorigenic adipose tissue-derived muse cells have immunomodulatory capacity mediated by transforming growth factor-β1. Stem Cells Trans Med. 2017;6:161–73. doi: 10.5966/sctm.2016-0014.
    1. Uchida H, Morita T, Niizuma K, Kushida Y, Kuroda Y, Wakao S, Sakata H, Matsuzaka Y, Mushiake H, Tominaga T, et al. Transplantation of unique subpopulation of fibroblasts, muse cells, ameliorates experimental stroke possibly via robust neuronal differentiation. Stem Cells. 2016;34:160–73. doi: 10.1002/stem.2206.
    1. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76. doi: 10.1016/j.cell.2006.07.024.
    1. Liu Q, Zhang R-z, Li D, Cheng S, Yang Y-h, Tian T, Pan X-r. Muse cells, a new type of pluripotent stem cell derived from human fibroblasts. Cell Reprogram. 2016;18:67–77. doi: 10.1089/cell.2015.0085.
    1. Iseki M, Kushida Y, Wakao S, Akimoto T, Mizuma M, Motoi F, Asada R, Shimizu S, Unno M, Chazenbalk G, et al. Muse cells, nontumorigenic pluripotent-like stem cells, have liver regeneration capacity through specific homing and cell replacement in a mouse model of liver fibrosis. Cell Transplant. 2017;26:821–40. doi: 10.3727/096368916X693662.
    1. Hori E, Hayakawa Y, Hayashi T, Hori S, Okamoto S, Shibata T, Kubo M, Horie Y, Sasahara M, Kuroda S. Mobilization of pluripotent multilineage-differentiating stress-enduring cells in ischemic stroke. J Stroke Cerebrovasc Dis. 2016;25:1473–81. doi: 10.1016/j.jstrokecerebrovasdis.2015.12.033.
    1. Yang Z, Liu J, Liu H, Qiu M, Liu Q, Zheng L, Pang M, Quan F, Zhang Y. Isolation and characterization of SSEA3(+) stem cells derived from goat skin fibroblasts. Cell Reprogram. 2013;15:195–205. doi: 10.1089/cell.2013.0013.
    1. Liu J, Yang Z, Qiu M, Luo Y, Pang M, Wu Y, et al. Developmental potential of cloned goat embryos from an SSEA3(+) subpopulation of skin fibroblasts. Cell Reprogram. 2013;15:159–65.
    1. Kültz D. Molecular and evolutionary basis of the cellular stress response. Annu Rev Physiol. 2005;67:225–57. doi: 10.1146/annurev.physiol.67.040403.103635.
    1. Luong MX, Smith KP, Stein GS. Human embryonic stem cell registries: value, challenges and opportunities. J Cell Biochem. 2008;105:625–32. doi: 10.1002/jcb.21872.
    1. Zhang WY, de Almeida PE, Wu JC. Teratoma formation: a tool for monitoring pluripotency in stem cell research. StemBook. 2008.
    1. Thornton JE, Gregory RI. How does Lin28 let-7 control development and disease? Trends Cell Biol. 2012;22:474–82. doi: 10.1016/j.tcb.2012.06.001.
    1. Yañez R, Lamana ML, García-Castro J, Colmenero I, Ramírez M, Bueren JA. Adipose tissue-derived mesenchymal stem cells have in vivo immunosuppressive properties applicable for the control of the graft-versus-host disease. Stem Cells. 2006;24:2582–91. doi: 10.1634/stemcells.2006-0228.
    1. Le Blanc K, Rasmusson I, Sundberg B, Götherström C, Hassan M, Uzunel M, Ringdén O. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet. 2004;363:1439–41. doi: 10.1016/S0140-6736(04)16104-7.
    1. Selmani Z, Naji A, Zidi I, Favier B, Gaiffe E, Obert L, Borg C, Saas P, Tiberghien P, Rouas-Freiss N, et al. Human leukocyte antigen-G5 secretion by human mesenchymal stem cells is required to suppress T lymphocyte and natural killer function and to induce CD4 + CD25highFOXP3+ regulatory T cells. Stem Cells. 2008;26:212–22. doi: 10.1634/stemcells.2007-0554.
    1. Ramasamy R, Fazekasova H, Lam EW-F, Soeiro I, Lombardi G, Dazzi F. Mesenchymal stem cells inhibit dendritic cell differentiation and function by preventing entry into the cell cycle. Transplantation. 2007;83:71–6. doi: 10.1097/01.tp.0000244572.24780.54.
    1. Spaggiari GM, Capobianco A, Becchetti S, Mingari MC, Moretta L. Mesenchymal stem cell-natural killer cell interactions: evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation. Blood. 2006;107:1484–90. doi: 10.1182/blood-2005-07-2775.
    1. Yen BL, Chang CJ, Liu K-J, Chen YC, Hu H-I, Bai C-H, Yen M-L. Brief report—human embryonic stem cell-derived mesenchymal progenitors possess strong immunosuppressive effects toward natural killer cells as well as T lymphocytes. Stem Cells. 2009;27:451–6. doi: 10.1634/stemcells.2008-0390.
    1. Yagi H, Soto-Gutierrez A, Parekkadan B, Kitagawa Y, Tompkins RG, Kobayashi N, Yarmush ML. Mesenchymal stem cells: mechanisms of immunomodulation and homing. Cell Transplant. 2010;19:667–79. doi: 10.3727/096368910X508762.
    1. Chen K, Wang D, Du WT, Han Z-B, Ren H, Chi Y, Yang SG, Zhu D, Bayard F, Han ZC. Human umbilical cord mesenchymal stem cells hUC-MSCs exert immunosuppressive activities through a PGE2-dependent mechanism. Clin Immunol. 2010;135:448–58. doi: 10.1016/j.clim.2010.01.015.
    1. Nemeth K, Keane-Myers A, Brown JM, Metcalfe DD, Gorham JD, Gorham JD, Bundoc VG, Bundoc VG, Hodges MG, Jelinek I, et al. Bone marrow stromal cells use TGF-beta to suppress allergic responses in a mouse model of ragweed-induced asthma. Proc Natl Acad Sci U S A. 2010;107:5652–7. doi: 10.1073/pnas.0910720107.
    1. Alessio N, Özcan S, Tatsumi K, Murat A, Peluso G, Dezawa M, Galderisi U. The secretome of MUSE cells contains factors that may play a role in regulation of stemness, apoptosis and immunomodulation. Cell Cycle. 2017;16:33–44. doi: 10.1080/15384101.2016.1211215.
    1. Byass P. The global burden of liver disease: a challenge for methods and for public health. BMC Med. 2014;12:159. doi: 10.1186/s12916-014-0159-5.
    1. Kidney Disease Statistics for the United States. NIDDK National Institute of Diabetes and Digestive and Kidney Diseases; 2016.
    1. Uchida N, Kushida Y, Kitada M, Wakao S, Kumagai N, Kuroda Y, Kondo Y, Hirohara Y, Kure S, Chazenbalk G, et al. Beneficial effects of systemically administered human Muse cells in murine adriamycin nephropathy. J Am Soc Nephrol. 2017.
    1. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, Das SR, de Ferranti S, Després J-P, Fullerton HJ, et al. Heart disease and stroke statistics—2016 update: a report from the American Heart Association. Circulation. 2016;133:e38–360. doi: 10.1161/CIR.0000000000000350.
    1. Yamauchi T, Kuroda Y, Morita T, Shichinohe H, Houkin K, Dezawa M, Kuroda S. Therapeutic effects of human Multilineage-differentiating stress enduring (MUSE) cell transplantation into infarct brain of mice. PLoS One. 2015;10:e0116009. doi: 10.1371/journal.pone.0116009.
    1. Shimamura N, Kakuta K, Wang L, Naraoka M, Uchida H, Wakao S, Dezawa M, Ohkuma H. Neuro-regeneration therapy using human Muse cells is highly effective in a mouse intracerebral hemorrhage model. Exp Brain Res. 2017;235:565–72. doi: 10.1007/s00221-016-4818-y.
    1. Yamauchi T, Yamasaki K, Tsuchiyama K, Koike S, Aiba S. A quantitative analysis of multilineage-differentiating stress-enduring (Muse) cells in human adipose tissue and efficacy of melanocytes induction. J Dermatol Sci. 2017;86:198–205. doi: 10.1016/j.jdermsci.2017.03.001.

Source: PubMed

3
Iratkozz fel