Modulation of neural oscillations during working memory update, maintenance, and readout: An hdEEG study

Marianna Semprini, Gaia Bonassi, Federico Barban, Elisa Pelosin, Riccardo Iandolo, Michela Chiappalone, Dante Mantini, Laura Avanzino, Marianna Semprini, Gaia Bonassi, Federico Barban, Elisa Pelosin, Riccardo Iandolo, Michela Chiappalone, Dante Mantini, Laura Avanzino

Abstract

Working memory (WM) performance is very often measured using the n-back task, in which the participant is presented with a sequence of stimuli, and required to indicate whether the current stimulus matches the one presented n steps earlier. In this study, we used high-density electroencephalography (hdEEG) coupled to source localization to obtain information on spatial distribution and temporal dynamics of neural oscillations associated with WM update, maintenance and readout. Specifically, we a priori selected regions from a large fronto-parietal network, including also the insula and the cerebellum, and we analyzed modulation of neural oscillations by event-related desynchronization and synchronization (ERD/ERS). During update and readout, we found larger θ ERS and smaller β ERS respect to maintenance in all the selected areas. γLOW and γHIGH bands oscillations decreased in the frontal and insular cortices of the left hemisphere. In the maintenance phase we observed decreased θ oscillations and increased β oscillations (ERS) in most of the selected posterior areas and focally increased oscillations in γLOW and γHIGH bands in the frontal and insular cortices of the left hemisphere. Finally, during WM readout, we also found a focal modulation of the γLOW band in the left fusiform cortex and cerebellum, depending on the response trial type (true positive vs. true negative). Overall, our study demonstrated specific spectral signatures associated with updating of memory information, WM maintenance, and readout, with relatively high spatial resolution.

Keywords: ERS/ERD; hdEEG; n-back; network; neural oscillations; working memory.

Conflict of interest statement

The authors declare no conflict of interest.

© 2020 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.

Figures

FIGURE 1
FIGURE 1
Outline of working memory task. (a) Graphical representation of n‐back tasks: the current letter (framed in red) must be compared with the one presented n times before, n being either 2 or 3 depending on the task. (b) Contingency matrix of possible behavioral outcomes: true positive (TP), true negative (TN), false positive (FP), and false negative (FN). (c) Timeline representing 2‐back (top) and 3‐back (bottom) task timings and intervals chosen for hdEEG analysis. Letters appear on screen every 2500 ms and remain displayed for 500 ms. Analysis of memory update was performed by comparing baseline (500 ms preceding letter presentation, indicated as “BASE” in the figure) with a portion of signal ranging from 100 to 1000 ms post stimulus‐letter onset (900 ms in total). Analysis of memory update was performed by comparing baseline (500 ms preceding distractor‐letter presentation) with a portion of signal ranging from 1000 to 2000 ms post distractor‐letter onset (1000 ms in total). Analysis of readout was performed by comparing baseline (500 ms preceding probe‐letter presentation) with a portion of signal ranging from 100 to 600 ms post probe‐letter onset (500 ms in total)
FIGURE 2
FIGURE 2
Cognitive performance of n‐back task. (a) Reaction times obtained by single subjects during the 2‐back (light gray) and 3‐back (dark gray) task (mean ± standard error of TP trials). (b) Average reaction time obtained in the two tasks (mean ± standard error of single subjects’ scores). (c) Normalized reaction times distribution of reaction times during the 2‐back (top) and 3‐back (bottom) tasks; data obtained from all the TP trials of all subjects. (d) Accuracy obtained by single subjects during the 2‐back (light gray) and 3‐back (dark gray) task. (e) Average reaction time obtained in the two tasks (mean ± standard error of single subjects’ scores). (f) Accuracy vs mean reaction times of single subjects in the 2‐back (light gray dots) and 3‐back (dark gray dots) task
FIGURE 3
FIGURE 3
Effect of PHASE in the θ and β band. (a) Violin plots of ERS/ERD variation in the θ (blue) and β (light blue) bands during update (top), maintenance (middle) and readout (bottom). Superimposed in grey are boxplots describing the median value (white dot), 25th and 75th percentiles (extremes of the thick grey line), and full data range (extremes of the thin grey line) of the distributions. (b) Temporal evolution of band power in the θ (blue) and β (light blue) during the 2‐back task for PPC‐R, CerT‐R, PPC‐L, and Fus‐L). (c) Temporal evolution (mean – thick lines, standard deviation – shaded areas) of band power in the θ (blue) and β (light blue) during the 3‐back task for PPC‐R, CerT‐R, PPC‐L, and Fus‐L
FIGURE 4
FIGURE 4
Effect of PHASE in the γLOW and γHIGH band. (a) Violin plots of ERS/ERD variation in the γLOW (yellow) and γHIGH (orange) bands during update (top), maintenance (middle) and readout (bottom). Superimposed in grey are boxplots describing the median value (white dot), 25th and 75th percentiles (extremes of the thick grey line), and full data range (extremes of the thin grey line) of the distributions. (b) Temporal evolution (mean – thick lines, standard deviation – shaded areas) of band power in the γLOW (yellow) and γHIGH (orange) during the 2‐back task for FC‐L and InsCl‐L). (c) Temporal evolution of band power in the γLOW (yellow) and γHIGH (orange) during the 3‐back task for FC‐L and InsCl‐L
FIGURE 5
FIGURE 5
Interactions of main effects in the γLOW band. Bar plots of ERS/ERD variation in the γLOW band. Thick bars represent mean across, black thin bars represent standard deviation. Left panels (a1, b1, c1) are referred to TASK*PHASE interaction, central panels (a2, b2, c2) to TRAIL*PHASE interaction, and right panels (a3, b3, c3) to TRIAL*TASK*PHASE interaction. Top panels (a1, a2, a3) represent ERS/ERD during update, central panels (b1, b2, b3) during maintenance and bottom panels (c1, c2, c3) during readout. Level of significance is reported: ** p

References

    1. Alekseichuk, I. , Turi, Z. , Amador de Lara, G. , Antal, A. , & Paulus, W. (2016). Spatial working memory in humans depends on theta and high gamma synchronization in the prefrontal cortex. Current Biology, 26, 1513–1521.
    1. Antal, A. , & Paulus, W. (2013). Transcranial alternating current stimulation (tACS). Frontiers in Human Neuroscience, 7, 317.
    1. Baddeley, A. (1996). The fractionation of working memory. Proceedings of the National Academy of Sciences of the United States of America, 93, 13468–13472.
    1. Brookes, M. J. , Wood, J. R. , Stevenson, C. M. , Zumer, J. M. , White, T. P. , Liddle, P. F. , & Morris, P. G. (2011). Changes in brain network activity during working memory tasks: A magnetoencephalography study. NeuroImage, 55, 1804–1815.
    1. Burke, J. F. , Zaghloul, K. A. , Jacobs, J. , Williams, R. B. , Sperling, M. R. , Sharan, A. D. , & Kahana, M. J. (2013). Synchronous and asynchronous theta and gamma activity during episodic memory formation. The Journal of Neuroscience, 33, 292–304.
    1. Buzsaki, G. , & Moser, E. I. (2013). Memory, navigation and theta rhythm in the hippocampal‐entorhinal system. Nature Neuroscience, 16, 130–138.
    1. Chee, M. W. , Soon, C. S. , Lee, H. L. , & Pallier, C. (2004). Left insula activation: A marker for language attainment in bilinguals. Proceedings of the National Academy of Sciences of the United States of America, 101, 15265–15270.
    1. Cohen, L. , Lehericy, S. , Chochon, F. , Lemer, C. , Rivaud, S. , & Dehaene, S. (2002). Language‐specific tuning of visual cortex? Functional properties of the visual word form area. Brain, 125, 1054–1069.
    1. Crone, N. E. , Sinai, A. , & Korzeniewska, A. (2006). High‐frequency gamma oscillations and human brain mapping with electrocorticography. Progress in Brain Research, 159, 275–295.
    1. Dehaene, S. , & Cohen, L. (2011). The unique role of the visual word form area in reading. Trends in Cognitive Sciences, 15, 254–262.
    1. Gevins, A. , Smith, M. E. , McEvoy, L. , & Yu, D. (1997). High‐resolution EEG mapping of cortical activation related to working memory: Effects of task difficulty, type of processing, and practice. Cerebral Cortex, 7, 374–385.
    1. Gray, C. M. , Konig, P. , Engel, A. K. , & Singer, W. (1989). Oscillatory responses in cat visual cortex exhibit inter‐columnar synchronization which reflects global stimulus properties. Nature, 338, 334–337.
    1. Haenschel, C. , Bittner, R. A. , Waltz, J. , Haertling, F. , Wibral, M. , Singer, W. , … Rodriguez, E. (2009). Cortical oscillatory activity is critical for working memory as revealed by deficits in early‐onset schizophrenia. The Journal of Neuroscience, 29, 9481–9489.
    1. Hanslmayr, S. , Matuschek, J. , & Fellner, M. C. (2014). Entrainment of prefrontal beta oscillations induces an endogenous echo and impairs memory formation. Current Biology, 24, 904–909.
    1. Haueisen, J. , Bottner, A. , Funke, M. , Brauer, H. , & Nowak, H. (1997). Effect of boundary element discretization on forward calculation and the inverse problem in electroencephalography and magnetoencephalography. Biomedizinische Technik. Biomedical Engineering, 42, 240–248.
    1. Helfrich, R. F. , Schneider, T. R. , Rach, S. , Trautmann‐Lengsfeld, S. A. , Engel, A. K. , & Herrmann, C. S. (2014). Entrainment of brain oscillations by transcranial alternating current stimulation. Current Biology, 24, 333–339.
    1. Herrmann, C. S. , Rach, S. , Neuling, T. , & Struber, D. (2013). Transcranial alternating current stimulation: A review of the underlying mechanisms and modulation of cognitive processes. Frontiers in Human Neuroscience, 7, 279.
    1. Hill, A. T. , Rogasch, N. C. , Fitzgerald, P. B. , & Hoy, K. E. (2019). Impact of concurrent task performance on transcranial direct current stimulation (tDCS)‐induced changes in cortical physiology and working memory. Cortex, 113, 37–57.
    1. Honkanen, R. , Rouhinen, S. , Wang, S. H. , Palva, J. M. , & Palva, S. (2015). Gamma oscillations underlie the maintenance of feature‐specific information and the contents of visual working memory. Cerebral Cortex, 25, 3788–3801.
    1. Hoy, K. E. , Bailey, N. , Arnold, S. , Windsor, K. , John, J. , Daskalakis, Z. J. , & Fitzgerald, P. B. (2015). The effect of gamma‐tACS on working memory performance in healthy controls. Brain and Cognition, 101, 51–56.
    1. Hoy, K. E. , Bailey, N. , Michael, M. , Fitzgibbon, B. , Rogasch, N. C. , Saeki, T. , & Fitzgerald, P. B. (2016). Enhancement of working memory and task‐related oscillatory activity following intermittent theta burst stimulation in healthy controls. Cerebral Cortex, 26, 4563–4573.
    1. Hsieh, L. T. , & Ranganath, C. (2014). Frontal midline theta oscillations during working memory maintenance and episodic encoding and retrieval. NeuroImage, 85(Pt 2), 721–729.
    1. Hyvarinen, A. , & Oja, E. (2000). Independent component analysis: Algorithms and applications. Neural Networks, 13, 411–430.
    1. Jensen, O. , & Tesche, C. D. (2002). Frontal theta activity in humans increases with memory load in a working memory task. The European Journal of Neuroscience, 15, 1395–1399.
    1. Jokisch, D. , & Jensen, O. (2007). Modulation of gamma and alpha activity during a working memory task engaging the dorsal or ventral stream. The Journal of Neuroscience, 27, 3244–3251.
    1. Jones, K. T. , Johnson, E. L. , & Berryhill, M. E. (2020). Frontoparietal theta‐gamma interactions track working memory enhancement with training and tDCS. NeuroImage, 211, 116615.
    1. Kirchner, W. K. (1958). Age differences in short‐term retention of rapidly changing information. Journal of Experimental Psychology, 55, 352–358.
    1. Kucewicz, M. T. , Berry, B. M. , Kremen, V. , Brinkmann, B. H. , Sperling, M. R. , Jobst, B. C. , … Worrell, G. A. (2017). Dissecting gamma frequency activity during human memory processing. Brain, 140, 1337–1350.
    1. Kucewicz, M. T. , Berry, B. M. , Kremen, V. , Miller, L. R. , Khadjevand, F. , Ezzyat, Y. , … Worrell, G. A. (2018). Electrical stimulation modulates high γ activity and human memory performance. Eneuro, 5, 0369–0317.
    1. Lachaux, J. P. , Axmacher, N. , Mormann, F. , Halgren, E. , & Crone, N. E. (2012). High‐frequency neural activity and human cognition: Past, present and possible future of intracranial EEG research. Progress in Neurobiology, 98, 279–301.
    1. Lisman, J. E. , & Jensen, O. (2013). The theta‐gamma neural code. Neuron, 77, 1002–1016.
    1. Liu, Q. , Balsters, J. H. , Baechinger, M. , van der Groen, O. , Wenderoth, N. , & Mantini, D. (2015). Estimating a neutral reference for electroencephalographic recordings: The importance of using a high‐density montage and a realistic head model. Journal of Neural Engineering, 12, 056012.
    1. Liu, Q. , Farahibozorg, S. , Porcaro, C. , Wenderoth, N. , & Mantini, D. (2017). Detecting large‐scale networks in the human brain using high‐density electroencephalography. Human Brain Mapping, 38, 4631–4643.
    1. Liu, Q. , Ganzetti, M. , Wenderoth, N. , & Mantini, D. (2018). Detecting large‐scale brain networks using EEG: Impact of electrode density, head modeling and source localization. Frontiers in Neuroinformatics, 12, 4.
    1. Lundqvist, M. , Herman, P. , & Lansner, A. (2011). Theta and gamma power increases and alpha/beta power decreases with memory load in an attractor network model. Journal of Cognitive Neuroscience, 23, 3008–3020.
    1. Lundqvist, M. , Herman, P. , Warden, M. R. , Brincat, S. L. , & Miller, E. K. (2018). Gamma and beta bursts during working memory readout suggest roles in its volitional control. Nature Communications, 9, 394.
    1. Lundqvist, M. , Rose, J. , Herman, P. , Brincat, S. L. , Buschman, T. J. , & Miller, E. K. (2016). Gamma and Beta bursts underlie working memory. Neuron, 90, 152–164.
    1. Mantini, D. , Franciotti, R. , Romani, G. L. , & Pizzella, V. (2008). Improving MEG source localizations: An automated method for complete artifact removal based on independent component analysis. NeuroImage, 40, 160–173.
    1. Mencarelli, L. , Neri, F. , Momi, D. , Menardi, A. , Rossi, S. , Rossi, A. , & Santarnecchi, E. (2019). Stimuli, presentation modality, and load‐specific brain activity patterns during n‐back task. Human Brain Mapping, 40, 3810–3831.
    1. Michel, C. M. , & Murray, M. M. (2012). Towards the utilization of EEG as a brain imaging tool. NeuroImage, 61(2), 371–385. 10.1016/j.neuroimage.2011.12.039.
    1. Miller, E. K. , Lundqvist, M. , & Bastos, A. M. (2018). Working memory 2.0. Neuron, 100, 463–475.
    1. Moore, C. D. , Cohen, M. X. , & Ranganath, C. (2006). Neural mechanisms of expert skills in visual working memory. The Journal of Neuroscience, 26, 11187–11196.
    1. Oostenveld, R. , & Praamstra, P. (2001). The five percent electrode system for high‐resolution EEG and ERP measurements. Clinical Neurophysiology: Official Journal of the International Federation of Clinical Neurophysiology, 112, 713–719.
    1. Osipova, D. , Takashima, A. , Oostenveld, R. , Fernandez, G. , Maris, E. , & Jensen, O. (2006). Theta and gamma oscillations predict encoding and retrieval of declarative memory. The Journal of Neuroscience, 26, 7523–7531.
    1. Palva, S. , Kulashekhar, S. , Hamalainen, M. , & Palva, J. M. (2011). Localization of cortical phase and amplitude dynamics during visual working memory encoding and retention. The Journal of Neuroscience, 31, 5013–5025.
    1. Pascual‐Marqui, R. D. , Lehmann, D. , Koukkou, M. , Kochi, K. , Anderer, P. , Saletu, B. , … Kinoshita, T. (2011). Assessing interactions in the brain with exact low‐resolution electromagnetic tomography. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 369, 3768–3784.
    1. Pfurtscheller, G. (2001). Functional brain imaging based on ERD/ERS. Vision Research, 41, 1257–1260.
    1. Price, C. J. , & Devlin, J. T. (2011). The interactive account of ventral occipitotemporal contributions to reading. Trends in Cognitive Sciences, 15, 246–253.
    1. Reinhart, R. M. G. , & Nguyen, J. A. (2019). Working memory revived in older adults by synchronizing rhythmic brain circuits. Nature Neuroscience, 22, 820–827.
    1. Roux, F. , & Uhlhaas, P. J. (2014). Working memory and neural oscillations: Alpha‐gamma versus theta‐gamma codes for distinct WM information? Trends in Cognitive Sciences, 18, 16–25.
    1. Roux, F. , Wibral, M. , Mohr, H. M. , Singer, W. , & Uhlhaas, P. J. (2012). Gamma‐band activity in human prefrontal cortex codes for the number of relevant items maintained in working memory. The Journal of Neuroscience, 32, 12411–12420.
    1. Sakai, K. , Rowe, J. B. , & Passingham, R. E. (2002). Active maintenance in prefrontal area 46 creates distractor‐resistant memory. Nature Neuroscience, 5, 479–484.
    1. Sarnthein, J. , Petsche, H. , Rappelsberger, P. , Shaw, G. L. , & von Stein, A. (1998). Synchronization between prefrontal and posterior association cortex during human working memory. Proceedings of the National Academy of Sciences of the United States of America, 95, 7092–7096.
    1. Schmahmann, J. D. , & Pandya, D. N. (1997). The cerebrocerebellar system. International Review of Neurobiology, 41, 31–60.
    1. Singer, W. (2009). Distributed processing and temporal codes in neuronal networks. Cognitive Neurodynamics, 3, 189–196.
    1. Strick, P. L. , Dum, R. P. , & Fiez, J. A. (2009). Cerebellum and nonmotor function. Annual Review of Neuroscience, 32, 413–434.
    1. Tallon‐Baudry, C. , Bertrand, O. , Peronnet, F. , & Pernier, J. (1998). Induced gamma‐band activity during the delay of a visual short‐term memory task in humans. The Journal of Neuroscience, 18, 4244–4254.
    1. Tesche, C. D. , & Karhu, J. (2000). Theta oscillations index human hippocampal activation during a working memory task. Proceedings of the National Academy of Sciences of the United States of America, 97, 919–924.
    1. Thorpe, S. , Fize, D. , & Marlot, C. (1996). Speed of processing in the human visual system. Nature, 381, 520–522.
    1. von Stein, A. , & Sarnthein, J. (2000). Different frequencies for different scales of cortical integration: From local gamma to long range alpha/theta synchronization. International Journal of Psychophysiology, 38, 301–313.
    1. Wandell, B. A. (2011). The neurobiological basis of seeing words. Annals of the New York Academy of Sciences, 1224, 63–80.
    1. Womelsdorf, T. , Schoffelen, J. M. , Oostenveld, R. , Singer, W. , Desimone, R. , Engel, A. K. , & Fries, P. (2007). Modulation of neuronal interactions through neuronal synchronization. Science, 316, 1609–1612.
    1. Yao, D. (2001). A method to standardize a reference of scalp EEG recordings to a point at infinity. Physiological Measurement, 22, 693–711.
    1. Yao, D. , Wang, L. , Oostenveld, R. , Nielsen, K. D. , Arendt‐Nielsen, L. , & Chen, A. C. (2005). A comparative study of different references for EEG spectral mapping: The issue of the neutral reference and the use of the infinity reference. Physiological Measurement, 26, 173–184.
    1. Zavala, B. , Zaghloul, K. , & Brown, P. (2015). The subthalamic nucleus, oscillations, and conflict. Movement Disorders, 30, 328–338.
    1. Zavala, B. A. , Jang, A. I. , & Zaghloul, K. A. (2017). Human subthalamic nucleus activity during non‐motor decision making. eLife, 6.
    1. Zhao, L. , Chen, C. , Shao, L. , Wang, Y. , Xiao, X. , Chen, C. , … Xue, G. (2017). Orthographic and phonological representations in the fusiform cortex. Cerebral Cortex, 27, 5197–5210.
    1. Zhao, M. , Marino, M. , Samogin, J. , Swinnen, S. P. , & Mantini, D. (2019). Hand, foot and lip representations in primary sensorimotor cortex: A high‐density electroencephalography study. Scientific Reports, 9, 19464.

Source: PubMed

3
Iratkozz fel