A Predictive Model and Risk Factors for Case Fatality of COVID-19

Melchor Álvarez-Mon, Miguel A Ortega, Óscar Gasulla, Jordi Fortuny-Profitós, Ferran A Mazaira-Font, Pablo Saurina, Jorge Monserrat, María N Plana, Daniel Troncoso, José Sanz Moreno, Benjamin Muñoz, Alberto Arranz, Jose F Varona, Alejandro Lopez-Escobar, Angel Asúnsolo-Del Barco, Melchor Álvarez-Mon, Miguel A Ortega, Óscar Gasulla, Jordi Fortuny-Profitós, Ferran A Mazaira-Font, Pablo Saurina, Jorge Monserrat, María N Plana, Daniel Troncoso, José Sanz Moreno, Benjamin Muñoz, Alberto Arranz, Jose F Varona, Alejandro Lopez-Escobar, Angel Asúnsolo-Del Barco

Abstract

This study aimed to create an individualized analysis model of the risk of intensive care unit (ICU) admission or death for coronavirus disease 2019 (COVID-19) patients as a tool for the rapid clinical management of hospitalized patients in order to achieve a resilience of medical resources. This is an observational, analytical, retrospective cohort study with longitudinal follow-up. Data were collected from the medical records of 3489 patients diagnosed with COVID-19 using RT-qPCR in the period of highest community transmission recorded in Europe to date: February-June 2020. The study was carried out in in two health areas of hospital care in the Madrid region: the central area of the Madrid capital (Hospitales de Madrid del Grupo HM Hospitales (CH-HM), n = 1931) and the metropolitan area of Madrid (Hospital Universitario Príncipe de Asturias (MH-HUPA) n = 1558). By using a regression model, we observed how the different patient variables had unequal importance. Among all the analyzed variables, basal oxygen saturation was found to have the highest relative importance with a value of 20.3%, followed by age (17.7%), lymphocyte/leukocyte ratio (14.4%), CRP value (12.5%), comorbidities (12.5%), and leukocyte count (8.9%). Three levels of risk of ICU/death were established: low-risk level (<5%), medium-risk level (5-20%), and high-risk level (>20%). At the high-risk level, 13% needed ICU admission, 29% died, and 37% had an ICU-death outcome. This predictive model allowed us to individualize the risk for worse outcome for hospitalized patients affected by COVID-19.

Keywords: C-reactive protein; COVID-19; ICU; death; oxygen saturation; predictive model.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Graphic representation to classify the importance of the study variables in relation to admission to the ICU and death. Three levels of risk are described in this model: low (<5%), moderate (5–20%), and high (>20%). The results are expressed as mean (standard deviation). CRP = C-reactive protein mean, ICU = intensive care unit.

References

    1. Zhou P., Yang X.-L., Wang X.-G., Hu B., Zhang L., Zhang W., Si H.-R., Zhu Y., Li B., Huang C.-L., et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579:270–273. doi: 10.1038/s41586-020-2012-7.
    1. Lai C.-C., Wang C.-Y., Wang Y.-H., Hsueh S.-C., Ko W.-C., Hsueh P.-R. Global epidemiology of coronavirus disease 2019 (COVID-19): Disease incidence, daily cumulative index, mortality, and their association with country healthcare resources and economic status. Int. J. Antimicrob. Agents. 2020;55:105946. doi: 10.1016/j.ijantimicag.2020.105946.
    1. Ceylan Z. Estimation of COVID-19 prevalence in Italy, Spain, and France. Sci. Total. Environ. 2020;729:138817. doi: 10.1016/j.scitotenv.2020.138817.
    1. Guan W.J., Ni Z.Y., Hu Y., Liang W.H., Ou C.Q., He J.X., Liu L., Shan H., Lei C.L., Hui D.S.C., et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 2020;382:1708–1720. doi: 10.1056/NEJMoa2002032.
    1. Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., Zhang L., Fan G., Xu J., Gu X., et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497–506. doi: 10.1016/S0140-6736(20)30183-5.
    1. Mo P., Xing Y., Xiao Y., Deng L., Zhao Q., Wang H., Xiong Y., Cheng Z., Gao S., Liang K., et al. Clinical characteristics of refractory COVID-19 pneumonia in Wuhan, China. Clin. Infect. Dis. 2020 doi: 10.1093/cid/ciaa270.
    1. Peng Y.D., Meng K., Guan H.Q. Clinical characteristics and outcomes of 112 cardiovascular disease patients infected by 2019-nCoV. Zhonghua Xin Xue Guan Bing Za Zhi. 2020;48:E004. doi: 10.3760/cma.j.cn112148-20200220-00105.
    1. [(accessed on 5 November 2020)]; Available online: .
    1. Nicola M., Alsafi Z., Sohrabi C., Kerwan A., Al-Jabir A., Iosifidis C., Agha M., Agha R. The socio-economic implications of the coronavirus pandemic (COVID-19): A review. Int. J. Surg. 2020;78:185–193. doi: 10.1016/j.ijsu.2020.04.018.
    1. Zheng Z., Peng F., Xu B., Zhao J., Liu H., Peng J., Li Q., Jiang C., Zhou Y., Liu S., et al. Risk factors of critical & mortal COVID-19 cases: A systematic literature review and meta-analysis. J. Infect. 2020;81:e16–e25. doi: 10.1016/j.jinf.2020.04.021.
    1. Li K., Wu J., Wu F., Guo D., Chen L., Fang Z., Li C. The Clinical and Chest CT Features Associated With Severe and Critical COVID-19 Pneumonia. Investig. Radiol. 2020;55:327–331. doi: 10.1097/RLI.0000000000000672.
    1. Pourbagheri-Sigaroodi A., Bashash D., Fateh F., Abolghasemi H. Laboratory findings in COVID-19 diagnosis and prognosis. Clin. Chim. Acta. 2020;510:475–482. doi: 10.1016/j.cca.2020.08.019.
    1. Shen B., Yi X., Sun Y., Bi X., Du J., Zhang C., Quan S., Zhang F., Sun R., Qian L., et al. Proteomic and Metabolomic Characterization of COVID-19 Patient Sera. Cell. 2020;182:59–72. doi: 10.1016/j.cell.2020.05.032.
    1. Cevik M., Bamford C., Ho A. COVID-19 pandemic—A focused review for clinicians. Clin. Microbiol. Infect. 2020;26:842–847. doi: 10.1016/j.cmi.2020.04.023.
    1. Cuñarro-López Y., Cano-Valderrama Ó., Pintado-Recarte P., Cueto-Hernández I., González-Garzón B., García-Tizón S., Buján J., Asúnsolo Á., Ortega M.A., De León-Luis J.A. Maternal and Perinatal Outcomes in Patients with Suspected COVID-19 and Their Relationship with a Negative RT-PCR Result. J. Clin. Med. 2020;9:3552. doi: 10.3390/jcm9113552.
    1. Dixon B.E., Wools-Kaloustian K., Fadel W.F., Duszynski T.J., Yiannoutsos C., Halverson P.K., Menachemi N. Symptoms and symptom clusters associated with SARS-CoV-2 infection in community-based populations: Results from a statewide epidemiological study. medRxiv. 2020 doi: 10.1101/2020.10.11.20210922.
    1. Swann O.V., Holden K.A., Turtle L.C.W., Pollock L., Fairfield C.J., Drake T.M., Seth S., Fegan C., Hardwick H.E., Halpin S., et al. Clinical characteristics of children and young people admitted to hospital with covid-19 in United Kingdom: Prospective multicentre observational cohort study. BMJ. 2020;370 doi: 10.1136/bmj.m3249.
    1. Rubio-Rivas M., Corbella X., Mora-Luján J.M., Loureiro-Amigo J., Sampalo A.L., Bergua C.Y., Atiénzar P.J.E., García L.F.D., Ferrer R.G., Canteli S.P., et al. Predicting Clinical Outcome with Phenotypic Clusters in COVID-19 Pneumonia: An Analysis of 12,066 Hospitalized Patients from the Spanish Registry SEMI-COVID-19. J. Clin. Med. 2020;9:3488. doi: 10.3390/jcm9113488.
    1. Initiative F.T.S., Altman D.G., Egger M., Pocock S.J., Gøtzsche P.C., Vandenbroucke J.P. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: Guidelines for reporting observational studies. Int. J. Surg. 2014;12:1495–1499. doi: 10.1016/j.ijsu.2014.07.013.
    1. Lescure F.-X., Bouadma L., Nguyen D., Parisey M., Wicky P.-H., Behillil S., Gaymard A., Bouscambert-Duchamp M., Donati F., Le Hingrat Q., et al. Clinical and virological data of the first cases of COVID-19 in Europe: A case series. Lancet Infect. Dis. 2020;20:697–706. doi: 10.1016/S1473-3099(20)30200-0.
    1. Lagergren J., Brusselaers N. The Charlson Comorbidity Index in Registry-based Research. Methods Inf. Med. 2017;56:401–406. doi: 10.3414/ME17-01-0051.
    1. Elixhauser A., Steiner C., Harris D.R., Coffey R.M. Comorbidity Measures for Use with Administrative Data. Med. Care. 1998;36:8–27. doi: 10.1097/00005650-199801000-00004.
    1. Lundberg S.M., Lee S. A unified approach to interpreting model predictions. Adv. Neural Inf. Process. Syst. 2017;30:1–10.
    1. Escobar G.J., Liu V.X., Schuler A., Lawson B., Greene J.D., Kipnis P. Automated Identification of Adults at Risk for In-Hospital Clinical Deterioration. N. Engl. J. Med. 2020;383:1951–1960. doi: 10.1056/NEJMsa2001090.
    1. Allenbach Y., Saadoun D., Maalouf G., Vieira M., Hellio A., Boddaert J., Gros H., Salem J.E., Rigon M.R., Menyssa C., et al. Development of a multivariate prediction model of intensive care unit transfer or death: A French prospective cohort study of hospitalized COVID-19 patients. PLoS ONE. 2020;15:e0240711. doi: 10.1371/journal.pone.0240711.
    1. Xie J., Hungerford D., Chen H., Abrams S.T., Li S., Wang G., Wang Y., Kang H., Bonnett L., Zheng R., et al. 2020. Development and external validation of a prognostic multivariable model on admission for hospitalized patients with COVID-19. [(accessed on 7 November 2020)];MedRxiv. 2020 3:20045997. Available online: .
    1. Velavan T.P., Meyer C.G. Mild versus severe COVID-19: Laboratory markers. Int. J. Infect. Dis. 2020;95:304–307. doi: 10.1016/j.ijid.2020.04.061.
    1. Akhavan A.R., Habboushe J.P., Gulati R., Iheagwara O., Watterson J., Thomas S., Swartz J.L., Koziatek C.A., Lee D.C. Risk Stratification of COVID-19 Patients Using Ambulatory Oxygen Saturation in the Emergency Department. West. J. Emerg. Med. 2020;21:5–14. doi: 10.5811/westjem.2020.8.48701.
    1. O’Carroll O., MacCann R., O’Reilly A., Dunican E.M., Feeney E.R., Ryan S., Cotter A., Mallon P.W., Keane M.P., Butler M.W., et al. Remote monitoring of oxygen saturation in individuals with COVID-19 pneumonia. Eur. Respir. J. 2020;56:2001492. doi: 10.1183/13993003.01492-2020.
    1. Bhatraju P.K., Ghassemieh B.J., Nichols M., Kim R., Jerome K.R., Nalla A.K., Greninger A.L., Pipavath S., Wurfel M.M., Evans L., et al. Covid-19 in Critically Ill Patients in the Seattle Region—Case Series. N. Engl. J. Med. 2020;382:2012–2022. doi: 10.1056/NEJMoa2004500.
    1. Zhao Z., Chen A., Hou W., Graham J.M., Li H., Richman P.S., Thode H.C., Singer A.J., Duong T. Prediction model and risk scores of ICU admission and mortality in COVID-19. PLoS ONE. 2020;15:e0236618. doi: 10.1371/journal.pone.0236618.
    1. Luo X., Zhou W., Yan X., Guo T., Wang B., Xia H., Ye L., Xiong J., Jiang Z., Liu Y., et al. Prognostic Value of C-Reactive Protein in Patients With Coronavirus 2019. Clin. Infect. Dis. 2020;71:2174–2179. doi: 10.1093/cid/ciaa641.
    1. Koozi H., Lengquist M., Frigyesi A. C-reactive protein as a prognostic factor in intensive care admissions for sepsis: A Swedish multicenter study. J. Crit. Care. 2020;56:73–79. doi: 10.1016/j.jcrc.2019.12.009.
    1. Liu F., Li L., Xu M., Wu J., Luo D., Zhu Y., Li B., Song X., Zhou X. Prognostic value of interleukin-6, C-reactive protein, and procalcitonin in patients with COVID-19. J. Clin. Virol. 2020;127:104370. doi: 10.1016/j.jcv.2020.104370.
    1. Tan C., Huang Y., Shi F., Tan K., Ma Q., Chen Y., Jiang X., Li X. C-reactive protein correlates with computed tomographic findings and predicts severe COVID-19 early. J. Med. Virol. 2020;92:856–862. doi: 10.1002/jmv.25871.
    1. Wang L. C-reactive protein levels in the early stage of COVID-19. Médecine Mal. Infect. 2020;50:332–334. doi: 10.1016/j.medmal.2020.03.007.
    1. Bastug A., Bodur H., Erdogan S., Gokcinar D., Kazancioglu S., Kosovali B.D., Ozbay B.O., Gok G., Turan I.O., Yilmaz G., et al. Clinical and laboratory features of COVID-19: Predictors of severe prognosis. Int. Immunopharmacol. 2020;88:106950. doi: 10.1016/j.intimp.2020.106950.
    1. Larsson E., Brattström O., Agvald-Öhman C., Grip J., Jalde F.C., Strålin K., Nauclér P., Oldner A., Konrad D., Persson B.P., et al. Characteristics and outcomes of patients with COVID-19 admitted to ICU in a tertiary hospital in Stockholm, Sweden. Acta Anaesthesiol. Scand. 2021;65:76–81. doi: 10.1111/aas.13694.
    1. Krieger N., Waterman P.D., Chen J.T. COVID-19 and Overall Mortality Inequities in the Surge in Death Rates by Zip Code Characteristics: Massachusetts, January 1 to May 19, 2020. Am. J. Public Health. 2020;110:e1–e3. doi: 10.2105/AJPH.2020.305989.
    1. Krieger N., Chen J.T., Waterman P.D. Excess mortality in men and women in Massachusetts during the COVID-19 pandemic. Lancet. 2020;395:1829. doi: 10.1016/S0140-6736(20)31234-4.
    1. Sanyaolu A.O., Okorie C., Marinkovic A., Patidar R., Younis K., Desai P., Hosein Z., Padda I., Mangat J., Altaf M. Comorbidity and its Impact on Patients with COVID-19. SN Compr. Clin. Med. 2020;2:1069–1076. doi: 10.1007/s42399-020-00363-4.
    1. Słomka A., Kowalewski M., Żekanowska E. Coronavirus Disease 2019 (COVID–19): A Short Review on Hematological Manifestations. Pathogens. 2020;9:493. doi: 10.3390/pathogens9060493.
    1. Haase N., Plovsing R., Christensen S., Poulsen L.M., Brøchner A.C., Rasmussen B.S., Helleberg M., Jensen J.U.S., Andersen L.P.K., Siegel H., et al. Characteristics, interventions, and longer term outcomes of COVID-19 ICU patients in Denmark—A nationwide, observational study. Acta Anaesthesiol. Scand. 2021;65:68–75. doi: 10.1111/aas.13701.
    1. Roncon L., Zuin M., Rigatelli G., Zuliani G. Diabetic patients with COVID-19 infection are at higher risk of ICU admission and poor short-term outcome. J. Clin. Virol. 2020;127:104354. doi: 10.1016/j.jcv.2020.104354.
    1. Grasselli G., Zangrillo A., Zanella A., Antonelli M., Cabrini L., Castelli A., Cereda D., Coluccello A., Foti G., Fumagalli R., et al. Baseline Characteristics and Outcomes of 1591 Patients Infected with SARS-CoV-2 Admitted to ICUs of the Lombardy Region, Italy. JAMA. 2020;323:1574–1581. doi: 10.1001/jama.2020.5394.
    1. Palaiodimos L., Kokkinidis D.G., Li W., Karamanis D., Ognibene J., Arora S., Southern W.N., Mantzoros C.S. Severe obesity, increasing age and male sex are independently associated with worse in-hospital outcomes, and higher in-hospital mortality, in a cohort of patients with COVID-19 in the Bronx, New York. Metabolism. 2020;108:154262. doi: 10.1016/j.metabol.2020.154262.
    1. Gebhard C., Regitz-Zagrosek V., Neuhauser H.K., Morgan R., Klein S.L. Impact of sex and gender on COVID-19 outcomes in Europe. Biol. Sex Differ. 2020;11:1–13. doi: 10.1186/s13293-020-00304-9.
    1. Klok F.A., Kruip M.J.H.A., van der Meer N.J.M., Arbous M.S., Gommers D.A.M.P.J., Kant K.M., Kaptein F.H.J., van Paassen J., Stals M.A.M., Huisman M.V., et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb. Res. 2020;191:145–147. doi: 10.1016/j.thromres.2020.04.013.
    1. Helms J., Tacquard C., Severac F., Leonard-Lorant I., Ohana M., Delabranche X., Merdji H., Clere-Jehl R., Schenck M., Gandet F.F., et al. High risk of thrombosis in patients with severe SARS-CoV-2 infection: A multicenter prospective cohort study. Intensiv. Care Med. 2020;46:1089–1098. doi: 10.1007/s00134-020-06062-x.
    1. Zhang L., Yan X., Fan Q., Liu H., Liu X., Liu Z., Zhang Z. D-dimer levels on admission to predict in-hospital mortality in patients with Covid-19. J. Thromb. Haemost. 2020;18:1324–1329. doi: 10.1111/jth.14859.
    1. Thierry A.R. Host/genetic factors associated with COVID-19 call for precision medicine. Precis. Clin. Med. 2020;3:228–234. doi: 10.1093/pcmedi/pbaa026.
    1. Thierry A.R., Roch B. Neutrophil Extracellular Traps and By-Products Play a Key Role in COVID-19: Pathogenesis, Risk Factors, and Therapy. J. Clin. Med. 2020;9:2942. doi: 10.3390/jcm9092942.
    1. Liu J., Han P., Wu J., Gong J., Tian D.-A. Prevalence and predictive value of hypocalcemia in severe COVID-19 patients. J. Infect. Public Health. 2020;13:1224–1228. doi: 10.1016/j.jiph.2020.05.029.

Source: PubMed

3
Iratkozz fel