ESC working group on e-cardiology position paper: use of commercially available wearable technology for heart rate and activity tracking in primary and secondary cardiovascular prevention-in collaboration with the European Heart Rhythm Association, European Association of Preventive Cardiology, Association of Cardiovascular Nursing and Allied Professionals, Patient Forum, and the Digital Health Committee

Magnus T Jensen, Roderick W Treskes, Enrico G Caiani, Ruben Casado-Arroyo, Martin R Cowie, Polychronis Dilaveris, David Duncker, Marco Di Rienzo, Ines Frederix, Natasja De Groot, Philippe H Kolh, Hareld Kemps, Mamas Mamas, Paul McGreavy, Lis Neubeck, Gianfranco Parati, Pyotr G Platonov, Arno Schmidt-Trucksäss, Mark J Schuuring, Iana Simova, Emma Svennberg, Axel Verstrael, Joost Lumens, Magnus T Jensen, Roderick W Treskes, Enrico G Caiani, Ruben Casado-Arroyo, Martin R Cowie, Polychronis Dilaveris, David Duncker, Marco Di Rienzo, Ines Frederix, Natasja De Groot, Philippe H Kolh, Hareld Kemps, Mamas Mamas, Paul McGreavy, Lis Neubeck, Gianfranco Parati, Pyotr G Platonov, Arno Schmidt-Trucksäss, Mark J Schuuring, Iana Simova, Emma Svennberg, Axel Verstrael, Joost Lumens

Abstract

Commercially available health technologies such as smartphones and smartwatches, activity trackers and eHealth applications, commonly referred to as wearables, are increasingly available and used both in the leisure and healthcare sector for pulse and fitness/activity tracking. The aim of the Position Paper is to identify specific barriers and knowledge gaps for the use of wearables, in particular for heart rate (HR) and activity tracking, in clinical cardiovascular healthcare to support their implementation into clinical care. The widespread use of HR and fitness tracking technologies provides unparalleled opportunities for capturing physiological information from large populations in the community, which has previously only been available in patient populations in the setting of healthcare provision. The availability of low-cost and high-volume physiological data from the community also provides unique challenges. While the number of patients meeting healthcare providers with data from wearables is rapidly growing, there are at present no clinical guidelines on how and when to use data from wearables in primary and secondary prevention. Technical aspects of HR tracking especially during activity need to be further validated. How to analyse, translate, and interpret large datasets of information into clinically applicable recommendations needs further consideration. While the current users of wearable technologies tend to be young, healthy and in the higher sociodemographic strata, wearables could potentially have a greater utility in the elderly and higher-risk population. Wearables may also provide a benefit through increased health awareness, democratization of health data and patient engagement. Use of continuous monitoring may provide opportunities for detection of risk factors and disease development earlier in the causal pathway, which may provide novel applications in both prevention and clinical research. However, wearables may also have potential adverse consequences due to unintended modification of behaviour, uncertain use and interpretation of large physiological data, a possible increase in social inequality due to differential access and technological literacy, challenges with regulatory bodies and privacy issues. In the present position paper, current applications as well as specific barriers and gaps in knowledge are identified and discussed in order to support the implementation of wearable technologies from gadget-ology into clinical cardiology.

Keywords: Cardiovascular; Digital health; Innovation; Prevention; Telemonitoring; Wearables.

© The Author(s) 2021. Published by Oxford University Press on behalf of the European Society of Cardiology.

Figures

Figure 1
Figure 1
Overview of opportunities and challenges in the use of commercially available wearables for the implementation into clinical care.
Figure 2
Figure 2
Recommendations for screening of atrial fibrillation.

References

    1. Global Wearable Computing Devices Market (2020 to 2025)—Growth, Trends & Forecasts. .
    1. Jang KI, Li K, Chung HU, Xu S, Jung HN, Yang Y, Kwak JW, Jung HH, Song J, Yang C, Wang A, Liu Z, Lee JY, Kim BH, Kim JH, Lee J, Yu Y, Kim BJ, Jang H, Yu KJ, Kim J, Lee JW, Jeong JW, Song YM, Huang Y, Zhang Y, Rogers JA. Self-assembled three dimensional network designs for soft electronics. Nat Commun 2017;8:15894.
    1. Jensen MT, Holtermann A, Bay H, Gyntelberg F. Cardiorespiratory fitness and death from cancer: a 42-year follow-up from the Copenhagen Male Study. Br J Sports Med 2017;51:1364–1369.
    1. Clausen JSR, Marott JL, Holtermann A, Gyntelberg F, Jensen MT. Midlife cardiorespiratory fitness and the long-term risk of mortality: 46 years of follow-up. J Am Coll Cardiol 2018;72:987–995.
    1. Varma N, Marrouche NF, Aguinaga L, Albert CM, Arbelo E,, Choi JI, Chung MK, Conte G, Dagher L, Epstein LM, Ghanbari H, Han JK, Heidbuchel H, Huang H, Lakkireddy DR, Ngarmukos T, Russo AM, Saad EB, Saenz Morales LC, Sandau KE, Sridhar ARM, Stecker EC, Varosy PD. HRS/EHRA/APHRS/LAHRS/ACC/AHA worldwide practice update for telehealth and arrhythmia monitoring during and after a pandemic. Europace 2020;22(3):450–495.
    1. Manninger M, Kosiuk J, Zweiker D, Njeim M, Antolic B, Kircanski B, Larsen JM, Svennberg E, Vanduynhoven P, Duncker D. Role of wearable rhythm recordings in clinical decision making—the wEHRAbles project. Clin Cardiol 2020;43:1032–1039.
    1. EPHO5: Disease prevention, including early detection of illness [Internet]. Last accessed: October 14th, 2020. .
    1. Allen J. Photoplethysmography and its application in clinical physiological measurement. Physiol Meas 2007;28:R1–R39.
    1. Landreani F, Caiani EG. Smartphone accelerometers for the detection of heart rate. Expert Rev Med Devices 2017;14:935–948.
    1. Henriksen A, Haugen Mikalsen M, Woldaregay AZ, Muzny M, Hartvigsen G, Hopstock LA, Grimsgaard S. Using fitness trackers and smartwatches to measure physical activity in research: analysis of consumer wrist-worn wearables. J Med Internet Res 2018;20:e110.
    1. Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Eur Heart J 1996;17:354–381.
    1. Tedesco S, Sica M, Ancillao A, Timmons S, Barton J, O'Flynn B. Accuracy of consumer-level and research-grade activity trackers in ambulatory settings in older adults. PLoS One 2019;14:e0216891.
    1. Sartor F, Gelissen J, van Dinther R, Roovers D, Papini GB, Coppola G. Wrist-worn optical and chest strap heart rate comparison in a heterogeneous sample of healthy individuals and in coronary artery disease patients. BMC Sports Sci Med Rehabil 2018;10:10.
    1. Wang R, Blackburn G, Desai M, Phelan D, Gillinov L, Houghtaling P, Gillinov M. Accuracy of wrist-worn heart rate monitors. JAMA Cardiol 2017;2:104–106.
    1. Cadmus-Bertram L, Gangnon R, Wirkus EJ, Thraen-Borowski KM, Gorzelitz-Liebhauser J. The accuracy of heart rate monitoring by some wrist-worn activity trackers. Ann Intern Med 2017;166:610–612.
    1. Koshy AN, Sajeev JK, Nerlekar N, Brown AJ, Rajakariar K, Zureik M, Wong MC, Roberts L, Street M,, Cooke J, Teh AW. Smart watches for heart rate assessment in atrial arrhythmias. Int J Cardiol 2018;266:124–127.
    1. Zhang Z, Pi Z, Liu B. TROIKA: a general framework for heart rate monitoring using wrist-type photoplethysmographic signals during intensive physical exercise. IEEE Trans Biomed Eng 2015;62:522–531.
    1. Bumgarner JM, Lambert CT, Hussein AA, Cantillon DJ, Baranowski B, Wolski K, Lindsay BD, Wazni OM, Tarakji KG. Smartwatch algorithm for automated detection of atrial fibrillation. J Am Coll Cardiol 2018;71:2381–2388.
    1. Perez MV, Mahaffey KW, Hedlin H, Rumsfeld JS, Garcia A, Ferris T, Balasubramanian V, Russo AM, Rajmane A, Cheung L, Hung G, Lee J, Kowey P, Talati N, Nag D, Gummidipundi SE, Beatty A, Hills MT, Desai S, Granger CB, Desai M,, Turakhia MP. Large-scale assessment of a smartwatch to identify atrial fibrillation. N Engl J Med 2019;381:1909–1917.
    1. Bruining N, Caiani E, Chronaki C, Guzik P, van d V. Acquisition and analysis of cardiovascular signals on smartphones: potential, pitfalls and perspectives: by the Task Force of the e-Cardiology Working Group of European Society of Cardiology. Eur. J. Prev. Cardiol 2014;21:4–13.
    1. Coppetti T, Brauchlin A, Muggler S, Attinger-Toller A, Templin C, Schonrath F, Hellermann J, Luscher TF, Biaggi P, Wyss CA. Accuracy of smartphone apps for heart rate measurement. Eur J Prev Cardiol 2017;24:1287–1293.
    1. Stahl SE, An HS, Dinkel DM, Noble JM, Lee JM. How accurate are the wrist-based heart rate monitors during walking and running activities? Are they accurate enough? BMJ Open Sport Exerc Med 2016;2:e000106.
    1. Yan BP, Lai WHS, Chan CKY, Au ACK, Freedman B,, Poh YC, Poh MZ. High-throughput, contact-free detection of atrial fibrillation from video with deep learning. JAMA Cardiol 2020;5:105–107.
    1. Yan BP, Chan CK, Li CK, To OT, Lai WH, Tse G, Poh YC, Poh MZ. Resting and postexercise heart rate detection from fingertip and facial photoplethysmography using a smartphone camera: a validation study. JMIR Mhealth Uhealth 2017;5:e33.
    1. Butler MJ, Crowe JA, Hayes-Gill BR, Rodmell PI. Motion limitations of non-contact photoplethysmography due to the optical and topological properties of skin. Physiol Meas 2016;37:N27–N37.
    1. O’Driscoll R, Turicchi J, Hopkins M, Gibbons C, Larsen SC, Palmeira AL, Heitmann BL, Horgan GW, Finlayson G, Stubbs RJ. The validity of two widely used commercial and research-grade activity monitors, during resting, household and activity behaviours. Health Technol 2020;10:637–648.
    1. Inoue T, Iseki K, Iseki C, Kinjo K. Elevated resting heart rate is associated with white blood cell count in middle-aged and elderly individuals without apparent cardiovascular disease. Angiology 2012;63:541–546.
    1. Sajadieh A, Nielsen OW, Rasmussen V, Hein HO, Abedini S, Hansen JF. Increased heart rate and reduced heart-rate variability are associated with subclinical inflammation in middle-aged and elderly subjects with no apparent heart disease. Eur Heart J 2004;25:363–370.
    1. Jensen MT, Marott JL, Allin KH, Nordestgaard BG, Jensen GB. Resting heart rate is associated with cardiovascular and all-cause mortality after adjusting for inflammatory markers: the Copenhagen City Heart Study. Eur J Prev Cardiol 2012;19:102–108.
    1. Jensen MT, Suadicani P, Hein HO, Gyntelberg F. Elevated resting heart rate, physical fitness and all-cause mortality: a 16-year follow-up in the Copenhagen Male Study. Heart 2013;99:882–887.
    1. Jensen MT. Resting heart rate and relation to disease and longevity: past, present and future. Scand J Clin Lab Invest 2019;79:108–116.
    1. Dyer AR, Persky V, Stamler J, Paul O, Shekelle RB, Berkson DM, Lepper M, Schoenberger JA, Lindberg HA. Heart rate as a prognostic factor for coronary heart disease and mortality: findings in three Chicago epidemiologic studies. Am J Epidemiol 1980;112:736–749.
    1. Kannel WB, Kannel C, Paffenbarger RS Jr, Cupples LA. Heart rate and cardiovascular mortality: the Framingham Study. Am Heart J 1987;113:1489–1494.
    1. Palatini P, Rosei EA, Casiglia E, Chalmers J, Ferrari R, Grassi G, Inoue T, Jelakovic B, Jensen MT, Julius S, Kjeldsen SE, Mancia G, Parati G, Pauletto P, Stella A, Zanchetti A. Management of the hypertensive patient with elevated heart rate: statement of the Second Consensus Conference endorsed by the European Society of Hypertension. J Hypertens 2016;34:813–821.
    1. Palatini P, Parati G, Julius S. Office and out of office heart rate measurements: which clinical value? J Hypertens 2008;26:1540–1545.
    1. Hartaigh B, Allore HG, Trentalange M, McAvay G, Pilz S, Dodson JA, Gill TM. Elevations in time-varying resting heart rate predict subsequent all-cause mortality in older adults. Eur J Prev Cardiol 2015;22:527–534.
    1. Hamill V, Ford I, Fox K, Böhm M, Borer JS, Ferrari R, Komajda M, Steg PG, Tavazzi L, Tendera M, Swedberg K. Repeated heart rate measurement and cardiovascular outcomes in left ventricular systolic dysfunction. Am J Med 2015;128:1102–1108.e6.
    1. Jensen MT, Marott JL, Lange P, Vestbo J,, Schnohr P, Nielsen OW, Jensen JS, Jensen GB. Resting heart rate is a predictor of mortality in COPD. Eur Respir J 2013;42:341–349.
    1. Hillis GS, Woodward M, Rodgers A, Chow CK, Li Q, Zoungas S, Patel A, Webster R, Batty GD, Ninomiya T, Mancia G, Poulter NR, Chalmers J. Resting heart rate and the risk of death and cardiovascular complications in patients with type 2 diabetes mellitus. Diabetologia 2012;55:1283–1290.
    1. Koopman FA, Tang MW, Vermeij J, de Hair MJ, Choi IY, Vervoordeldonk MJ, Gerlag DM, Karemaker JM, Tak PP. Autonomic dysfunction precedes development of rheumatoid arthritis: a prospective cohort study. EBioMedicine 2016;6:231–237.
    1. Parati G, Saul JP, Di Rienzo M, Mancia G. Spectral analysis of blood pressure and heart rate variability in evaluating cardiovascular regulation. A critical appraisal. Hypertension 1995;25:1276–1286.
    1. Hillebrand S, Gast KB, de Mutsert R, Swenne CA, Jukema JW, Middeldorp S, Rosendaal FR, Dekkers OM. Heart rate variability and first cardiovascular event in populations without known cardiovascular disease: meta-analysis and dose-response meta-regression. Europace 2013;15:742–749.
    1. Werhahn SM, Dathe H, Rottmann T, Franke T, Vahdat D, Hasenfuß G, Seidler T. Designing meaningful outcome parameters using mobile technology: a new mobile application for telemonitoring of patients with heart failure. ESC Heart Fail 2019;6:516–525.
    1. Sessa F, Anna V, Messina G, Cibelli G, Monda V, Marsala G, Ruberto M, Biondi A, Cascio O, Bertozzi G, Pisanelli D, Maglietta F, Messina A, Mollica MP, Salerno M. Heart rate variability as predictive factor for sudden cardiac death. Aging (Albany NY) 2018;10:166–177.
    1. Evenson KR, Goto MM, Furberg RD. Systematic review of the validity and reliability of consumer-wearable activity trackers. Int J Behav Nutr Phys Act 2015;12:159.
    1. Herkert C, Kraal JJ, van Loon EMA, van Hooff M, Kemps HMC. Usefulness of modern activity trackers for monitoring exercise behavior in chronic cardiac patients: validation study. JMIR Mhealth Uhealth 2019;7:e15045.
    1. Höchsmann C, Knaier R, Infanger D, Schmidt-Trucksäss A. Validity of smartphones and activity trackers to measure steps in a free-living setting over three consecutive days. Physiol Meas 2020;41:015001.
    1. Kraal JJ, Sartor F, Papini G, Stut W, Peek N, Kemps HM, Bonomi AG. Energy expenditure estimation in beta-blocker-medicated cardiac patients by combining heart rate and body movement data. Eur J Prev Cardiol 2016;23:1734–1742.
    1. Batty GD, Shipley MJ, Marmot M, Smith GD. Physical activity and cause-specific mortality in men: further evidence from the Whitehall study. Eur J Epidemiol 2001;17:863–869.
    1. Alosco ML, Spitznagel MB, Cohen R, Sweet LH, Hayes SM, Josephson R, Hughes J, Gunstad J. Decreases in daily physical activity predict acute decline in attention and executive function in heart failure. J Card Fail 2015;21:339–346.
    1. Parati G, Torlasco C, Omboni S, Pellegrini D. Smartphone applications for hypertension management: a potential game-changer that needs more control. Curr Hypertens Rep 2017;19:48.
    1. Guo Y, Wang H, Zhang H, Liu T, Liang Z, Xia Y, Yan L, Xing Y, Shi H, Li S, Liu Y, Liu F, Feng M, Chen Y, Lip GYH. Mobile Photoplethysmographic Technology to Detect Atrial Fibrillation. J Am Coll Cardiol 2019;74(19):2365–2375.
    1. Friberg L, Rosenqvist M, Lip GY. Evaluation of risk stratification schemes for ischaemic stroke and bleeding in 182 678 patients with atrial fibrillation: the Swedish Atrial Fibrillation cohort study. Eur Heart J 2012;33:1500–1510.
    1. Steinhubl SR, Waalen J, Edwards AM, Ariniello LM, Mehta RR, Ebner GS, Carter C, Baca-Motes K, Felicione E, Sarich T, Topol EJ. Effect of a home-based wearable continuous ECG monitoring patch on detection of undiagnosed atrial fibrillation: the mSToPS Randomized Clinical Trial. JAMA 2018;320:146–155.
    1. Aronsson M, Svennberg E, Rosenqvist M, Engdahl J, Al-Khalili F, Friberg L, Frykman-Kull V, Levin LA. Cost-effectiveness of mass screening for untreated atrial fibrillation using intermittent ECG recording. Europace 2015;17(7):1023–1029.
    1. Hindricks G, Potpara T, Dagres N, Arbelo E, Bax JJ, Blomström-Lundqvist C, Boriani G, Castella M, Dan GA, Dilaveris PE, Fauchier L, Filippatos G, Kalman JM, La Meir M, Lane DA, Lebeau JP, Lettino M, Lip GYH, Pinto FJ, Thomas GN, Valgimigli M, Van Gelder IC, Van Putte BP, Watkins CL. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association of Cardio-Thoracic Surgery (EACTS). Eur Heart J 2020;42(5):373–498.
    1. Ajijola OA, Boyle NG, Shivkumar K. Detecting and monitoring arrhythmia recurrence following catheter ablation of atrial fibrillation. Front Physiol 2015;6:90.
    1. Strik M, Caillol T, Ramirez FD, Abu-Alrub S, Marchand H, Welte N, Ritter P, Haïssaguerre M, Ploux S, Bordachar P. Validating QT-interval measurement using the Apple Watch ECG to enable remote monitoring during the COVID-19 pandemic. Circulation 2020;142:416–418.
    1. Pokushalov E, Romanov A, Corbucci G, Artyomenko S, Turov A, Shirokova N, Karaskov A. Ablation of paroxysmal and persistent atrial fibrillation: 1-year follow-up through continuous subcutaneous monitoring. J Cardiovasc Electrophysiol 2011;22:369–375.
    1. Pluymaekers N, Hermans ANL, van der Velden RMJ, Gawałko M, den Uijl DW, Buskes S, Vernooy K, Crijns H, Hendriks JM, Linz D. Implementation of an on-demand app-based heart rate and rhythm monitoring infrastructure for the management of atrial fibrillation through teleconsultation: teleCheck-AF. Europace 2020. Sep 4:euaa201. Online ahead of print.
    1. Graham I, Filippatos G, Atar D, Vardas PE, Pinto FJ, Fitzsimons D. Patient engagement. Eur Heart J 2017;38:3114–3115.
    1. Pevnick JM, Birkeland K, Zimmer R, Elad Y, Kedan I. Wearable technology for cardiology: an update and framework for the future. Trends Cardiovasc Med 2018;28:144–150.
    1. Dinh-Le C, Chuang R, Chokshi S, Mann D. Wearable health technology and electronic health record integration: scoping review and future directions. JMIR mHealth uHealth 2019;7:e12861.
    1. Hawkins RP, Kreuter M, Resnicow K, Fishbein M, Dijkstra A. Understanding tailoring in communicating about health. Health Educ Res 2008;23:454–466.
    1. Monteiro-Guerra FM, Rivera-Romero O, Luque LF, Caulfield B. Personalization in real-time physical activity coaching using mobile applications: a scoping review. IEEE J Biomed Health Inform 2020;24:1738–1751.
    1. Palatini P, Dorigatti F, Zaetta V, Mormino P, Mazzer A, Bortolazzi A, D'Este D, Pegoraro F, Milani L, Mos L. Heart rate as a predictor of development of sustained hypertension in subjects screened for stage 1 hypertension: the HARVEST Study. J Hypertens 2006;24:1873–1880.
    1. Schukat M, McCaldin D, Wang K, Schreier G, Lovell NH, Marschollek M, Redmond SJ. Unintended consequences of wearable sensor use in healthcare. Contribution of the IMIA Wearable Sensors in Healthcare WG. Yearb Med Inform 2016:73–86.
    1. Ryan J, Edney S, Maher C. Anxious or empowered? A cross-sectional study exploring how wearable activity trackers make their owners feel. BMC Psychol 2019;7:42.
    1. A Fitbit fanatic's cry for help: I'm addicted to steps. Last accessed: October 14th, 2020. .
    1. Wallen MP, Gomersall SR, Keating SE, Wisløff U, Coombes JS. Accuracy of heart rate watches: implications for weight management. PLoS One 2016;11:e0154420.
    1. Nielsen JC, Kautzner J,, Casado-Arroyo R, Burri H, Callens S, Cowie MR, Dickstein K, Drossart I, Geneste G, Erkin Z, Hyafil F, Kraus A, Kutyifa V, Marin E, Schulze C, Slotwiner D, Stein K, Zanero S, Heidbuchel H, Fraser AG. Remote monitoring of cardiac implanted electronic devices: legal requirements and ethical principles—ESC Regulatory Affairs Committee/EHRA joint task force report. Europace 2020;22(11):1742–1758.
    1. FDA. General Wellness: Policy for Low Risk Devices. Last accessed: October 14th, 2020. .
    1. FDA. Policy for Device Software Functions and Mobile Medical Applications. Last accessed: October 14th, 2020. .
    1. Mandrola J, Foy A, Naccarelli G. Screening for atrial fibrillation comes with many snags. JAMA Intern Med 2018;178:1296–1298.
    1. Sunyaev A, Dehling T, Taylor PL, Mandl KD. Availability and quality of mobile health app privacy policies. J Am Med Inform Assoc 2015;22:e28–e 33.
    1. EU. Guidance on Qualification and Classification of Software in Regulation (EU) 2017/745—MDR and Regulation (EU) 2017/746—IVDR. Last accessed: October 14th, 2020. .
    1. Ponikowski P, Voors AA,, Anker SD, Bueno H, Cleland JG, Coats AJ, Falk V, Gonzalez-Juanatey JR, Harjola VP, Jankowska EA,, Jessup M, Linde C, Nihoyannopoulos P, Parissis JT, Pieske B, Riley JP, Rosano GM, Ruilope LM, Ruschitzka F, Rutten FH, van der Meer P. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC)Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J 2016;37:2129–2200.
    1. Schuuring MJ, Backx AP, Zwart R, Veelenturf AH, Robbers-Visser D, Groenink M, Abu-Hanna A, Bruining N, Schijven MP, Mulder BJ, Bouma BJ. Mobile health in adults with congenital heart disease: current use and future needs. Neth Heart J 2016;24:647–652.
    1. Treskes RW, van Winden LAM, van Keulen N, van der Velde ET, Beeres S, Atsma DE, Schalij MJ. Effect of smartphone-enabled health monitoring devices vs regular follow-up on blood pressure control among patients after myocardial infarction: a randomized clinical trial. JAMA Netw Open 2020;3:e202165.
    1. Hermans ANL, van der Velden RMJ, Gawalko M, Verhaert DVM, Desteghe L, Duncker D, Manninger M, Heidbuchel H, Pisters R, Hemels M, Pison L, Sohaib A, Sultan A, Steven D, Wijtvliet P, Tieleman R, Gupta D, Dobrev D, Svennberg E, Crijns H, Pluymaekers N, Hendriks JM, Linz D. On-demand mobile health infrastructures to allow comprehensive remote atrial fibrillation and risk factor management through teleconsultation. Clin Cardiol 2020;43(11):1232–1239.
    1. Du Y, Tu L, Zhu P, Mu M, Wang R, Yang P, Wang X, Hu C, Ping R, Hu P, Li T, Cao F, Chang C, Hu Q, Jin Y, Xu G. Clinical features of 85 fatal cases of COVID-19 from Wuhan. A retrospective observational study. Am J Respir Crit Care Med 2020;201:1372–1379.
    1. Dorsey ER, Topol EJ. State of telehealth. N Engl J Med 2016;375:154–161.
    1. Yang C, Yang J, Zhang J, Yang J. More clinical warning indicators should be explored for monitoring COVID-19 patients' condition. Int J Cardiol 2020;310:169–169.
    1. Oran DP, Topol EJ. Prevalence of asymptomatic SARS-CoV-2 infection: a narrative review. Ann Intern Med 2020;173:362–367.
    1. Chinitz JS, Goyal R, Morales DC, Harding M, Selim S, Epstein LM. Use of a smartwatch for assessment of the QT interval in outpatients with coronavirus disease 2019. J Innov Card Rhythm Manag 2020;11:4219–4222.
    1. Zhuo K, Gao C, Wang X, Zhang C, Wang Z. Stress and sleep: a survey based on wearable sleep trackers among medical and nursing staff in Wuhan during the COVID-19 pandemic. Gen Psychiatr 2020;33:e100260.
    1. Ding XR, Clifton D, Ji N, Lovell NH, Bonato P, Chen W, Yu X, Xue Z, Xiang T, Long X, Xu K, Jiang X, Wang Q, Yin B, Feng G, Zhang Y. Wearable sensing and telehealth technology with potential applications in the coronavirus pandemic. IEEE Rev Biomed Eng 2021;14:48–70.
    1. Luks AM, Swenson ER. Pulse oximetry for monitoring patients with COVID-19 at home. Potential pitfalls and practical guidance. Ann Am Thorac Soc 2020;17:1040–1046.
    1. Pundi K, Perino AC, Harrington RA, Krumholz HM, Turakhia MP. Characteristics and strength of evidence of COVID-19 studies registered on . JAMA Intern Med 2020;180:1398–1400.

Source: PubMed

3
Iratkozz fel