Empagliflozin normalizes the size and number of mitochondria and prevents reduction in mitochondrial size after myocardial infarction in diabetic hearts

Masashi Mizuno, Atsushi Kuno, Toshiyuki Yano, Takayuki Miki, Hiroto Oshima, Tatsuya Sato, Kei Nakata, Yukishige Kimura, Masaya Tanno, Tetsuji Miura, Masashi Mizuno, Atsushi Kuno, Toshiyuki Yano, Takayuki Miki, Hiroto Oshima, Tatsuya Sato, Kei Nakata, Yukishige Kimura, Masaya Tanno, Tetsuji Miura

Abstract

To explore mechanisms by which SGLT2 inhibitors protect diabetic hearts from heart failure, we examined the effect of empagliflozin (Empa) on the ultrastructure of cardiomyocytes in the noninfarcted region of the diabetic heart after myocardial infarction (MI). OLETF, a rat model of type 2 diabetes, and its nondiabetic control, LETO, received a sham operation or left coronary artery ligation 12 h before tissue sampling. Tissues were sampled from the posterior ventricle (i.e., the remote noninfarcted region in rats with MI). The number of mitochondria was larger and small mitochondria were more prevalent in OLETF than in LETO. Fis1 expression level was higher in OLETF than in LETO, while phospho-Ser637-Drp1, total Drp1, Mfn1/2, and OPA1 levels were comparable. MI further reduced the size of mitochondria with increased Drp1-Ser616 phosphorylation in OLETF. The number of autophagic vacuoles was unchanged after MI in LETO but was decreased in OLETF. Lipid droplets in cardiomyocytes and tissue triglycerides were increased in OLETF. Empa administration (10 mg/kg per day) reduced blood glucose and triglycerides and paradoxically increased lipid droplets in cardiomyocytes in OLETF. Empa suppressed Fis1 upregulation, increased Bnip3 expression, and prevented reduction in both mitochondrial size and autophagic vacuole number after MI in OLETF. Together with the results of our parallel study showing upregulation of SOD2 and catalase by Empa, the results indicate that Empa normalizes the size and number of mitochondria in diabetic hearts and that diabetes-induced excessive reduction in mitochondrial size after MI was prevented by Empa via suppression of ROS and restoration of autophagy.

Keywords: Acute myocardial infarction; SGLT2 inhibitor; diabetes mellitus; empagliflozin; mitochondria.

© 2018 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

Figures

Figure 1
Figure 1
Effects of myocardial infarction and empagliflozin on mitochondrial number and size in the noninfarcted region of LETO and OLETF. (A) Representative electron micrographs from the noninfarcted myocardium of LETO, OLETF treated with a vehicle, and OLETF treated with empagliflozin (Empa) that were subjected to a sham operation or coronary artery ligation (MI). Scale bar = 2 μm. Summary data of the percentage of total mitochondrial area (B), mitochondrial number per area (C), and the area of individual mitochondria (D) in 6 groups are shown. Ten images were taken from each heart, and data for 5–6 rats in each group were analyzed. *P < 0.05.
Figure 2
Figure 2
Frequency distribution analysis of individual mitochondrial areas: LETO versus OLETF. (A) Frequency distributions of areas of individual mitochondria in rats subjected to a sham operation. Pie charts show the proportion of mitochondria less than 0.20 μm2 in each group. *P < 0.05 by the z‐test. (B) Frequency distributions of areas of individual mitochondria in rats subjected to coronary artery ligation (MI). Pie charts show proportion of mitochondria less than 0.54 μm2 in each group. In each group, 2364 (LETO Sham), 2505 (OLETF Sham), 2466 (OLETF‐Empa‐Sham), 2546 (LETO‐MI), 2269 (OLETF‐MI), and 2201 (OLETF‐Empa‐MI) mitochondria from 50 to 60 images were analyzed. *P < 0.05 by the z‐test. NS = not significant.
Figure 3
Figure 3
Frequency distribution analysis of impacts of myocardial infarction on mitochondrial size in the noninfarcted myocardium in LETO and OLETF. Comparisons of frequency distribution of individual mitochondrial area between the sham and myocardial infarction (MI) groups in LETO (A), OLETF treated with a vehicle (B), and empagliflozin (Empa)‐treated OLETF (C). Vertical dashed lines indicate a median value (0.54 μm2) of mitochondrial size in the LETO sham group, and pie charts show the proportion of mitochondria less than 0.54 μm2 in each group. As in Figure 2, 2364 (LETO Sham), 2505 (OLETF Sham), 2466 (OLETF‐Empa‐Sham), 2.546 (LETO‐MI), 2269 (OLETF‐MI), and 2201 (OLETF‐Empa‐MI) mitochondria from 50 to 60 images were analyzed in each group. *P < 0.05 by the z‐test. NS, not significant.
Figure 4
Figure 4
Effect of empagliflozin on autophagic vacuoles in noninfarcted myocardium. (A and B) Representative electron micrographs of autophagic vacuoles in the myocardium observed in LETO after the sham operation (A) and OLETF treated with a vehicle after the sham operation (B). Arrows indicate autophagic vacuoles. N = nucleus. (C) Average of the number of autophagic vacuoles per area in the myocardium from six groups of rats. Five images were taken from each heart, and data for five or six rats in each group were analyzed. *P < 0.05.
Figure 5
Figure 5
Effects of myocardial infarction on regulatory factors of mitochondrial fission. (A) Representative immunoblots for Fis1 in the noninfarct remote myocardium from LETO, OLETF treated with a vehicle, and OLETF treated with empagliflozin (Empa) that were subjected to a sham operation or coronary artery ligation (MI). (B) Summary data of Fis1 protein level normalized to vinculin. (C) Representative immunoblots for phospho‐Ser616‐Drp1 and total Drp1 in the noninfarcted myocardium from rats of six groups. (D) Summary data of levels of phospho‐Ser616‐Drp1 and total Drp1. (E) Representative immunoblots for phospho‐Ser637‐Drp1 and total Drp1. (F) Summary data of phospho‐Ser637‐Drp1 and total Drp1 normalized to vinculin level. N = 8 in each group. *P < 0.05. a.u., arbitrary unit.
Figure 6
Figure 6
Effects of myocardial infarction on regulatory factors of mitochondrial fusion. (A) Representative immunoblots for mitofusin 1 (Mfn1) in the noninfarcted myocardium in LETO and in OLETF treated with either a vehicle or empagliflozin (Empa) that were subjected to a sham operation or coronary ligation (MI). (B) Summary data of Mfn1 protein levels normalized to vinculin. (C) Representative immunoblots for Mfn2. (D) Summary data of Mfn2 protein levels. (E) Representative immunoblot for OPA1. L‐OPA1: longer form of OPA1. S‐OPA1: shorter and soluble form of OPA1. The blot of vinculin is identical to that in (C) because blots of both Mfn2 and OPA1 were from the same membrane. (F) Summary data for quantification of L‐OPA1 and S‐OPA1 normalized to vinculin. N = 8 in each group.
Figure 7
Figure 7
Alterations in Bnip3 and Parkin after myocardial infarction. (A) Representative immunoblots for Bnip3 in the noninfarcted myocardium in LETO and in OLETF treated with either a vehicle or empagliflozin (Empa) that were subjected to a sham operation or coronary ligation (MI). (B) Summary data of Bnip3 protein levels normalized to vinculin. N = 8 in each group. (C) Quantification of mRNA levels of Bnip3 in the myocardium. N = 8 in each group. (D) Parkin mRNA levels determined by a quantitative RT‐PCR method. *P < 0.05. a.u, arbitrary unit.
Figure 8
Figure 8
Lipid droplets in cardiomyocytes and tissue triglyceride levels: LETO versus OLETF. (A) Representative electron micrographs for lipid droplets (arrowheads) in the myocardium from LETO, OLETF treated with a vehicle, and OLETF treated with empagliflozin (Empa) that were subjected to a sham operation or coronary artery ligation (MI). Scale bar = 2 μm. Data for the percentage of total area of lipid droplets (B), number of lipid droplets per area (C), and size of lipid droplets (D) in six groups are shown. Ten images were taken from each heart, and data for five or six rats in each group were analyzed. (E) Myocardial triglyceride levels (μg/mg cardiac tissue) in the noninfarct myocardium. N = 9 in each group. *P < 0.05.

References

    1. Barba, I. , Chavarria L., Ruiz‐Meana M., Mirabet M., Agullo E., and Garcia‐Dorado D.. 2009. Effect of intracellular lipid droplets on cytosolic Ca2+ and cell death during ischaemia‐reperfusion injury in cardiomyocytes. J. Physiol. 587:1331–1341.
    1. Bertero, E. , Prates Roma L., Ameri P., and Maack C.. 2017. Cardiac effects of SGLT2 inhibitors: the sodium hypothesis. Cardiovasc. Res. 114:12–18.
    1. Boudina, S. , Sena S., Theobald H., Sheng X., Wright J. J., Hu X. X., et al. 2007. Mitochondrial energetics in the heart in obesity‐related diabetes: direct evidence for increased uncoupled respiration and activation of uncoupling proteins. Diabetes 56:2457–2466.
    1. Bugger, H. , and Abel E. D.. 2010. Mitochondria in the diabetic heart. Cardiovasc. Res. 88:229–240.
    1. Bugger, H. , Boudina S., Hu X. X., Tuinei J., Zaha V. G., Theobald H. A., et al. 2008. Type 1 diabetic akita mouse hearts are insulin sensitive but manifest structurally abnormal mitochondria that remain coupled despite increased uncoupling protein 3. Diabetes 57:2924–2932.
    1. Cherney, D. Z. , Perkins B. A., Soleymanlou N., Har R., Fagan N., Johansen O. E., et al. 2014. The effect of empagliflozin on arterial stiffness and heart rate variability in subjects with uncomplicated type 1 diabetes mellitus. Cardiovasc. Diabetol. 13:28.
    1. Dabkowski, E. R. , Williamson C. L., Bukowski V. C., Chapman R. S., Leonard S. S., Peer C. J., et al. 2009. Diabetic cardiomyopathy‐associated dysfunction in spatially distinct mitochondrial subpopulations. Am. J. Physiol. Heart Circ. Physiol. 296:H359–H369.
    1. De Luca, G. , Dirksen M. T., Spaulding C., Kelbaek H., Schalij M., Thuesen L., et al. 2013. Impact of diabetes on long‐term outcome after primary angioplasty: insights from the DESERT cooperation. Diabetes Care 36:1020–1025.
    1. Dorn, G. II . 2016. Mitochondrial fission/fusion and cardiomyopathy. Curr. Opin. Genet. Dev. 38:38–44.
    1. Ferrannini, E. , Muscelli E., Frascerra S., Baldi S., Mari A., Heise T., et al. 2014. Metabolic response to sodium‐glucose cotransporter 2 inhibition in type 2 diabetic patients. J. Clin. Invest. 124:499–508.
    1. Galan, D. T. , Bito V., Claus P., Holemans P., Abi‐Char J., Nagaraju C. K., et al. 2016. Reduced mitochondrial respiration in the ischemic as well as in the remote nonischemic region in postmyocardial infarction remodeling. Am. J. Physiol. Heart Circ. Physiol. 311:H1075–H1090.
    1. Galloway, C. A. , and Yoon Y.. 2012. Perspectives on: SGP symposium on mitochondrial physiology and medicine: what comes first, misshape or dysfunction? The view from metabolic excess. J. Gen. Physiol. 139:455–463.
    1. Guglielmino, K. , Jackson K., Harris T. R., Vu V., Dong H., Dutrow G., et al. 2012. Pharmacological inhibition of soluble epoxide hydrolase provides cardioprotection in hyperglycemic rats. Am. J. Physiol. Heart Circ. Physiol. 303:H853–H862.
    1. Habibi, J. , Aroor A. R., Sowers J. R., Jia G., Hayden M. R., Garro M., et al. 2017. Sodium glucose transporter 2 (SGLT2) inhibition with empagliflozin improves cardiac diastolic function in a female rodent model of diabetes. Cardiovasc. Diabetol. 16:9.
    1. Hammoudi, N. , Jeong D., Singh R., Farhat A., Komajda M., Mayoux E., et al. 2017. Empagliflozin improves left ventricular diastolic dysfunction in a genetic model of type 2 diabetes. Cardiovasc. Drugs Ther. 31:233–246.
    1. Hayashi, T. , Mori T., Sohmiya K., Okada Y., Inamoto S., Okuda N., et al. 2003. Efficacy of edaravone, a free radical scavenger, on left ventricular function and structure in diabetes mellitus. J. Cardiovasc. Pharmacol. 41:923–929.
    1. Hearse, D. J. , Richard V., Yellon D. M., and Kingma J. G. Jr. 1988. Evolving myocardial infarction in the rat in vivo: an inappropriate model for the investigation of drug‐induced infarct size limitation during sustained regional ischaemia. J. Cardiovasc. Pharmacol. 11:701–710.
    1. Hotta, H. , Miura T., Miki T., Togashi N., Maeda T., Kim S. J., et al. 2010. Angiotensin II type 1 receptor‐mediated upregulation of calcineurin activity underlies impairment of cardioprotective signaling in diabetic hearts. Circ. Res. 106:129–132.
    1. Huang, Q. , Zhan L., Cao H., Li J., Lyu Y., Guo X., et al. 2016. Increased mitochondrial fission promotes autophagy and hepatocellular carcinoma cell survival through the ROS‐modulated coordinated regulation of the NFKB and TP53 pathways. Autophagy 12:999–1014.
    1. Ide, T. , Tsutsui H., Hayashidani S., Kang D., Suematsu N., Nakamura K., et al. 2001. Mitochondrial DNA damage and dysfunction associated with oxidative stress in failing hearts after myocardial infarction. Circ. Res. 88:529–535.
    1. Ito, D. , Shimizu S., Inoue K., Saito D., Yanagisawa M., Inukai K., et al. 2017. Comparison of ipragliflozin and pioglitazone effects on nonalcoholic fatty liver disease in patients with type 2 diabetes: a randomized, 24‐week, open‐label, active‐controlled trial. Diabetes Care 40:1364–1372.
    1. Jezek, J. , Cooper K. F., and Strich R.. 2018. Reactive oxygen species and mitochondrial dynamics: the yin and yang of mitochondrial dysfunction and cancer progression. Antioxidants (Basel) 7:E13.
    1. Joubert, M. , Jagu B., Montaigne D., Marechal X., Tesse A., Ayer A., et al. 2017. The Sodium‐Glucose Cotransporter 2 Inhibitor Dapagliflozin Prevents Cardiomyopathy in a Diabetic Lipodystrophic Mouse Model. Diabetes 66:1030–1040.
    1. Kouzu, H. , Miki T., Tanno M., Kuno A., Yano T., Itoh T., et al. 2015. Excessive degradation of adenine nucleotides by up‐regulated AMP deaminase underlies afterload‐induced diastolic dysfunction in the type 2 diabetic heart. J. Mol. Cell. Cardiol. 80:136–145.
    1. Kuramoto, K. , Okamura T., Yamaguchi T., Nakamura T. Y., Wakabayashi S., Morinaga H., et al. 2012. Perilipin 5, a lipid droplet‐binding protein, protects heart from oxidative burden by sequestering fatty acid from excessive oxidation. J. Biol. Chem. 287:23852–23863.
    1. de Leeuw, A. E. , and de Boer R. A.. 2016. Sodium‐glucose cotransporter 2 inhibition: cardioprotection by treating diabetes‐a translational viewpoint explaining its potential salutary effects. Eur. Heart J. Cardiovasc Pharmacother. 2:244–255.
    1. Liesa, M. , Palacin M., and Zorzano A.. 2009. Mitochondrial dynamics in mammalian health and disease. Physiol. Rev. 89:799–845.
    1. Listenberger, L. L. , Han X., Lewis S. E., Cases S., Farese R. V. Jr, Ory D. S., et al. 2003. Triglyceride accumulation protects against fatty acid‐induced lipotoxicity. Proc. Natl Acad. Sci. USA 100:3077–3082.
    1. Loson, O. C. , Song Z., Chen H., and Chan D. C.. 2013. Fis1, Mff, MiD49, and MiD51 mediate Drp1 recruitment in mitochondrial fission. Mol. Biol. Cell 24:659–667.
    1. Luo, M. , Guan X., Luczak E. D., Lang D., Kutschke W., Gao Z., et al. 2013. Diabetes increases mortality after myocardial infarction by oxidizing CaMKII. J. Clin. Invest. 123:1262–1274.
    1. MacDonald, J. R. , Oellermann M., Rynbeck S., Chang G., Ruggiero K., Cooper G. J., et al. 2011. Transmural differences in respiratory capacity across the rat left ventricle in health, aging, and streptozotocin‐induced diabetes mellitus: evidence that mitochondrial dysfunction begins in the subepicardium. Am. J. Physiol. Cell Physiol. 300:C246–C255.
    1. MacVicar, T. , and Langer T.. 2016. OPA1 processing in cell death and disease ‐ the long and short of it. J. Cell Sci. 129:2297–2306.
    1. Marso, S. P. , Miller T., Rutherford B. D., Gibbons R. J., Qureshi M., Kalynych A., et al. 2007. Comparison of myocardial reperfusion in patients undergoing percutaneous coronary intervention in ST‐segment elevation acute myocardial infarction with versus without diabetes mellitus (from the EMERALD Trial). Am. J. Cardiol. 100:206–210.
    1. Maxwell, M. P. , Hearse D. J., and Yellon D. M.. 1987. Species variation in the coronary collateral circulation during regional myocardial ischaemia: a critical determinant of the rate of evolution and extent of myocardial infarction. Cardiovasc. Res. 21:737–746.
    1. Mellor, H. R. , Rouschop K. M., Wigfield S. M., Wouters B. G., and Harris A. L.. 2010. Synchronised phosphorylation of BNIP3, Bcl‐2 and Bcl‐xL in response to microtubule‐active drugs is JNK‐independent and requires a mitotic kinase. Biochem. Pharmacol. 79:1562–1572.
    1. Miki, T. , Miura T., Hotta H., Tanno M., Yano T., Sato T., et al. 2009. Endoplasmic reticulum stress in diabetic hearts abolishes erythropoietin‐induced myocardial protection by impairment of phospho‐glycogen synthase kinase‐3beta‐mediated suppression of mitochondrial permeability transition. Diabetes 58:2863–2872.
    1. Mizushima, N. , Ohsumi Y., and Yoshimori T.. 2002. Autophagosome formation in mammalian cells. Cell Struct. Funct. 27:421–429.
    1. Montaigne, D. , Marechal X., Coisne A., Debry N., Modine T., Fayad G., et al. 2014. Myocardial contractile dysfunction is associated with impaired mitochondrial function and dynamics in type 2 diabetic but not in obese patients. Circulation 130:554–564.
    1. Mudaliar, S. , Alloju S., and Henry R. R.. 2016. Can a shift in fuel energetics explain the beneficial cardiorenal outcomes in the EMPA‐REG OUTCOME Study? a unifying hypothesis. Diabetes Care 39:1115–1122.
    1. Murase, H. , Kuno A., Miki T., Tanno M., Yano T., Kouzu H., et al. 2015. Inhibition of DPP‐4 reduces acute mortality after myocardial infarction with restoration of autophagic response in type 2 diabetic rats. Cardiovasc. Diabetol. 14:103.
    1. Muratsubaki, S. , Kuno A., Tanno M., Miki T., Yano T., Sugawara H., et al. 2017. Suppressed autophagic response underlies augmentation of renal ischemia/reperfusion injury by type 2 diabetes. Sci. Rep. 7:5311.
    1. Neal, B. , Perkovic V., Mahaffey K. W., de Zeeuw D., Fulcher G., Erondu N., et al. 2017. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N. Engl. J. Med. 377:644–657.
    1. Nguyen, T. N. , Padman B. S., and Lazarou M.. 2016. Deciphering the molecular signals of PINK1/Parkin mitophagy. Trends Cell Biol. 26:733–744.
    1. Oelze, M. , Kroller‐Schon S., Welschof P., Jansen T., Hausding M., Mikhed Y., et al. 2014. The sodium‐glucose co‐transporter 2 inhibitor empagliflozin improves diabetes‐induced vascular dysfunction in the streptozotocin diabetes rat model by interfering with oxidative stress and glucotoxicity. PLoS ONE 9:e112394.
    1. Oshima, H. , Mizuno M., Miki T., Kuno A., Nakata K., Kimura Y., et al. 2017. Empagliflozin, an SGLT2 inhibitor, improves survival after myocardial infarction in diabetic rats by up‐regulating anti‐oxidative stress proteins. Diabetologia 60:(Supple I), S32.
    1. Picard, M. , Azuelos I., Jung B., Giordano C., Matecki S., Hussain S., et al. 2015. Mechanical ventilation triggers abnormal mitochondrial dynamics and morphology in the diaphragm. J. Appl. Physiol. (1985) 118:1161–1171.
    1. Prieto, J. , Leon M., Ponsoda X., Sendra R., Bort R., Ferrer‐Lorente R., et al. 2016. Early ERK1/2 activation promotes DRP1‐dependent mitochondrial fission necessary for cell reprogramming. Nat. Commun. 7:11124.
    1. Qi, X. , Disatnik M. H., Shen N., Sobel R. A., and Mochly‐Rosen D.. 2011. Aberrant mitochondrial fission in neurons induced by protein kinase C{delta} under oxidative stress conditions in vivo. Mol. Biol. Cell 22:256–265.
    1. Schulze, P. C. , Drosatos K., and Goldberg I. J.. 2016. Lipid Use and Misuse by the Heart. Circ. Res. 118:1736–1751.
    1. Shenouda, S. M. , Widlansky M. E., Chen K., Xu G., Holbrook M., Tabit C. E., et al. 2011. Altered mitochondrial dynamics contributes to endothelial dysfunction in diabetes mellitus. Circulation 124:444–453.
    1. Shirakabe, A. , Zhai P., Ikeda Y., Saito T., Maejima Y., Hsu C. P., et al. 2016. Drp1‐dependent mitochondrial autophagy plays a protective role against pressure overload‐induced mitochondrial dysfunction and heart failure. Circulation 133:1249–1263.
    1. Singh, M. V. , Swaminathan P. D., Luczak E. D., Kutschke W., Weiss R. M., and Anderson M. E.. 2012. MyD88 mediated inflammatory signaling leads to CaMKII oxidation, cardiac hypertrophy and death after myocardial infarction. J. Mol. Cell. Cardiol. 52:1135–1144.
    1. Suzuki, M. , Takeda M., Kito A., Fukazawa M., Yata T., Yamamoto M., et al. 2014. Tofogliflozin, a sodium/glucose cotransporter 2 inhibitor, attenuates body weight gain and fat accumulation in diabetic and obese animal models. Nutr. Diabetes 4:e125.
    1. Taguchi, N. , Ishihara N., Jofuku A., Oka T., and Mihara K.. 2007. Mitotic phosphorylation of dynamin‐related GTPase Drp1 participates in mitochondrial fission. J. Biol. Chem. 282:11521–11529.
    1. Takada, A. , Miki T., Kuno A., Kouzu H., Sunaga D., Itoh T., et al. 2012. Role of ER stress in ventricular contractile dysfunction in type 2 diabetes. PLoS ONE 7:e39893.
    1. Tanajak, P. , Sa‐Nguanmoo P., Sivasinprasasn S., Thummasorn S., Siri‐Angkul N., Chattipakorn S. C., et al. 2018. Cardioprotection of dapagliflozin and vildagliptin in rats with cardiac ischemia‐reperfusion injury. J. Endocrinol. 236:69–84.
    1. Tsushima, K. , Bugger H., Wende A. R., Soto J., Jenson G. A., Tor A. R., et al. 2017. Mitochondrial reactive oxygen species in lipotoxic hearts induce post‐translational modifications of AKAP121, DRP1, and OPA1 that promote mitochondrial fission. Circ. Res. 122:58–73.
    1. Xia, Y. , Chen Z., Chen A., Fu M., Dong Z., Hu K., et al. 2017. LCZ696 improves cardiac function via alleviating Drp1‐mediated mitochondrial dysfunction in mice with doxorubicin‐induced dilated cardiomyopathy. J. Mol. Cell. Cardiol. 108:138–148.
    1. Xu, S. , Wang P., Zhang H., Gong G., Gutierrez Cortes N., Zhu W., et al. 2016. CaMKII induces permeability transition through Drp1 phosphorylation during chronic beta‐AR stimulation. Nat. Commun. 7:13189.
    1. Yokono, M. , Takasu T., Hayashizaki Y., Mitsuoka K., Kihara R., Muramatsu Y., et al. 2014. SGLT2 selective inhibitor ipragliflozin reduces body fat mass by increasing fatty acid oxidation in high‐fat diet‐induced obese rats. Eur. J. Pharmacol. 727:66–74.
    1. Zhu, Y. , Massen S., Terenzio M., Lang V., Chen‐Lindner S., Eils R., et al. 2013. Modulation of serines 17 and 24 in the LC3‐interacting region of Bnip3 determines pro‐survival mitophagy versus apoptosis. J. Biol. Chem. 288:1099‐1113.
    1. Zinman, B. , Wanner C., Lachin J. M., Fitchett D., Bluhmki E., Hantel S., et al. 2015. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N. Engl. J. Med. 373:2117–2128.

Source: PubMed

3
Iratkozz fel