Assessment of the Effectiveness of Rehabilitation after Total Knee Replacement Surgery Using Sample Entropy and Classical Measures of Body Balance

Anna Hadamus, Dariusz Białoszewski, Michalina Błażkiewicz, Aleksandra J Kowalska, Edyta Urbaniak, Kamil T Wydra, Karolina Wiaderna, Rafał Boratyński, Agnieszka Kobza, Wojciech Marczyński, Anna Hadamus, Dariusz Białoszewski, Michalina Błażkiewicz, Aleksandra J Kowalska, Edyta Urbaniak, Kamil T Wydra, Karolina Wiaderna, Rafał Boratyński, Agnieszka Kobza, Wojciech Marczyński

Abstract

Exercises in virtual reality (VR) have recently become a popular form of rehabilitation and are reported to be more effective than a standard rehabilitation protocol alone. The aim of this study was to assess the efficacy of adjunct VR training in improving postural control in patients after total knee replacement surgery (TKR). Forty-two patients within 7-14 days of TKR were enrolled and divided into a VR group and a control group (C). The C group underwent standard postoperative rehabilitation. The VR group additionally attended twelve 30-min exercise sessions using the Virtual Balance Clinic prototype system. Balance was assessed on the AMTI plate in bipedal standing with and without visual feedback before and after the four-week rehabilitation. Linear measures and sample entropy of CoP data were analyzed. After four weeks of rehabilitation, a significant reduction in parameters in the sagittal plane and ellipse area was noted while the eyes remained open. Regression analysis showed that sample entropy depended on sex, body weight, visual feedback and age. Based on the sample entropy results, it was concluded that the complexity of the body reaction had not improved. The standing-with-eyes-closed test activates automatic balance mechanisms and offers better possibilities as a diagnostic tool.

Keywords: body balance; knee arthroplasty; osteoarthritis; sample entropy; total knee replacement surgery; virtual reality.

Conflict of interest statement

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Figures

Figure 1
Figure 1
Regression analysis results: (a) Empirical (from experiment) and aligned (from model) values of sample entropy versus age, (b) Empirical (from experiment) and aligned (from model) values of sample entropy versus body mass.

References

    1. Horak F.B. Postural Orientation and Equilibrium: What Do We Need to Know About Neural Control of Balance to Prevent Falls? Age Ageing. 2006;35:ii7–ii11. doi: 10.1093/ageing/afl077.
    1. DiDomenico A., Strang A., McGorry R.W. Changes in Postural Sway Related to Age in Adults 18–65 Years Old. ISB; Brussels, Belgium: 2011.
    1. Bobowik P., Wiszomirska I. Diagnostic Dependence of Muscle Strength Measurements and the Risk of Falls in the Elderly. Int. J. Rehabil. Res. 2020;43:330–336. doi: 10.1097/MRR.0000000000000430.
    1. Bednarczuk G. Changes in Balance and Fall Risk in Female Members of the Third Age University Aged 60 and Older. Adv. Rehabil. 2020;34:15–21. doi: 10.5114/areh.2020.99032.
    1. Petersson I.F., Jacobsson L.T.H. Osteoarthritis of the Peripheral Joints. Best Pr. Res. Clin. Rheumatol. 2002;16:741–760. doi: 10.1053/berh.2002.0266.
    1. Hong S., Lee G. Effects of an Immersive Virtual Reality Environment on Muscle Strength, Proprioception, Balance, and Gait of a Middle-Aged Woman Who Had Total Knee Replacement: A Case Report. Am. J. Case Rep. 2019;20:1636–1642. doi: 10.12659/AJCR.918521.
    1. Gumaa M., Rehan Y.A. Is Virtual Reality Effective in Orthopedic Rehabilitation? A Systematic Review and Meta-Analysis. Phys. Ther. 2019;99:1304–1325. doi: 10.1093/ptj/pzz093.
    1. Bragonzoni L., Rovini E., Barone G., Cavallo F., Zaffagnini S., Benedetti M.G. How Proprioception Changes before and after Total Knee Arthroplasty: A Systematic Review. Gait Posture. 2019;72:1–11. doi: 10.1016/j.gaitpost.2019.05.005.
    1. Gianola S., Stucovitz E., Castellini G., Mascali M., Vanni F., Tramacere I., Banfi G., Tornese D. Effects of Early Virtual Reality-Based Rehabilitation in Patients with Total Knee Arthroplasty: A Randomized Controlled Trial. Medicine. 2020;99:e19136. doi: 10.1097/MD.0000000000019136.
    1. Lee M., Suh D., Son J., Kim J., Eun S.D., Yoon B. Patient Perspectives on Virtual Reality-Based Rehabilitation after Knee Surgery: Importance of Level of Difficulty. J. Rehabil. Res. Dev. 2016;53:239–252. doi: 10.1682/JRRD.2014.07.0164.
    1. Kim J., Son J., Ko N., Yoon B. Unsupervised Virtual Reality-Based Exercise Program Improves Hip Muscle Strength and Balance Control in Older Adults: A Pilot Study. Arch. Phys. Med. Rehabil. 2013;94:937–943. doi: 10.1016/j.apmr.2012.12.010.
    1. Juras G., Brachman A., Michalska J., Kamieniarz A., Pawlowski M., Hadamus A., Bialoszewski D., Blaszczyk J., Slomka K.J. Standards of Virtual Reality Application in Balance Training Programs in Clinical Practice: A Systematic Review. Games Health J. 2019;8:101–111. doi: 10.1089/g4h.2018.0034.
    1. Prvu Bettger J., Green C.L., Holmes D.N., Chokshi A., Mather R.C., 3rd, Hoch B.T., De Leon A.J., Aluisio F., Seyler T.M., Del Gaizo D.J., et al. Effects of Virtual Exercise Rehabilitation in-Home Therapy Compared with Traditional Care after Total Knee Arthroplasty: Veritas, a Randomized Controlled Trial. J. Bone Jt. Surg. Am. 2020;102:101–109. doi: 10.2106/JBJS.19.00695.
    1. Phu S., Vogrin S., Al Saedi A., Duque G. Balance Training Using Virtual Reality Improves Balance and Physical Performance in Older Adults at High Risk of Falls. Clin. Interv. Aging. 2019;14:1567–1577. doi: 10.2147/CIA.S220890.
    1. Donker S.F., Roerdink M., Greven A.J., Beek P. Regularity of Center-of-Pressure Trajectories Depends on the Amount of Attention Invested in Postural Control. Exp. Brain Res. 2007;181:1–11. doi: 10.1007/s00221-007-0905-4.
    1. Roerdink M., Hlavackova P., Vuillerme N. Center-of-Pressure Regularity as a Marker for Attentional Investment in Postural Control: A Comparison between Sitting and Standing Postures. Hum. Mov. Sci. 2011;30:203–212. doi: 10.1016/j.humov.2010.04.005.
    1. Schmit J.M., Regis D.I., A Riley M. Dynamic Patterns of Postural Sway in Ballet Dancers and Track Athletes. Exp. Brain Res. 2005;163:370–378. doi: 10.1007/s00221-004-2185-6.
    1. Ramdani S., Tallon G., Bernard P.L., Blain H. Recurrence Quantification Analysis of Human Postural Fluctuations in Older Fallers and Non-Fallers. Ann. Biomed. Eng. 2013;41:1713–1725. doi: 10.1007/s10439-013-0790-x.
    1. Rigoldi C., Cimolin V., Camerota F., Celletti C., Albertini G., Mainardi L., Galli M. Measuring Regularity of Human Postural Sway Using Approximate Entropy and Sample Entropy in Patients with Ehlers-Danlos Syndrome Hypermobility Type. Res. Dev. Disabil. 2013;34:840–846. doi: 10.1016/j.ridd.2012.11.007.
    1. Janura M., Procházková M., Svoboda Z., Bizovská L., Jandová S., Konečný P. Standing Balance of Professional Ballet Dancers and Non-Dancers under Different Conditions. PLoS ONE. 2019;14:e0224145. doi: 10.1371/journal.pone.0224145.
    1. Hansen C., Wei Q., Shieh J.S., Fourcade P., Isableu B., Majed L. Sample Entropy, Univariate, and Multivariate Multi-Scale Entropy in Comparison with Classical Postural Sway Parameters in Young Healthy Adults. Front. Hum. Neurosci. 2017;11:206. doi: 10.3389/fnhum.2017.00206.
    1. Montesinos L., Castaldo R., Pecchia L. On the Use of Approximate Entropy and Sample Entropy with Centre of Pressure Time-Series. J. Neuroeng. Rehabil. 2018;15:116. doi: 10.1186/s12984-018-0465-9.
    1. Mei Z., Zhao G., Ivanov K., Guo Y., Zhu Q., Zhou Y., Wang L. Sample Entropy Characteristics of Movement for Four Foot Types Based on Plantar Centre of Pressure During Stance Phase. Biomed. Eng. Online. 2013;12:101. doi: 10.1186/1475-925X-12-101.
    1. Mei Z., Ivanov K., Zhao G., Li H., Wang L. An Explorative Investigation of Functional Differences in Plantar Center of Pressure of Four Foot Types Using Sample Entropy Method. Med. Biol. Eng. Comput. 2017;55:537–548. doi: 10.1007/s11517-016-1532-7.
    1. Blazkiewicz M. Nonlinear Measures in Posturography as Compared to Linear Measures in Base on Yoga Poses Performance. Acta Bioeng. Biomech. 2020;22:4.
    1. Michalska J., Kamieniarz A., Fredyk A., Bacik B., Juras G., Słomka K.J. Effect of Expertise in Ballet Dance on Static and Functional Balance. Gait Posture. 2018;64:68–74. doi: 10.1016/j.gaitpost.2018.05.034.
    1. Franco C., Fleury A., Diot B., Vuillerme N. Applying Entropy to Human Center of Foot Pressure Data to Assess Attention Investment in Balance Control. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2018;2018:5586–5589.
    1. Kupper C., Roemer K., Jusko E., Zentgraf K. Distality of Attentional Focus and Its Role in Postural Balance Control. Front. Psychol. 2020;11:125. doi: 10.3389/fpsyg.2020.00125.
    1. Suresh K. An Overview of Randomization Techniques: An Unbiased Assessment of Outcome in Clinical Research. J. Hum. Reprod. Sci. 2011;4:8–11. doi: 10.4103/0974-1208.82352.
    1. Maurer C., Peterka R.J. A New Interpretation of Spontaneous Sway Measures Based on a Simple Model of Human Postural Control. J. Neurophysiol. 2005;93:189–200. doi: 10.1152/jn.00221.2004.
    1. Goldberger A.L., Amaral L.A., Glass L., Hausdorff J.M., Ivanov P.C., Mark R.G., Mietus J.E., Moody G.B., Peng C.K., Stanley H.E. Physiobank, Physiotoolkit, and Physionet: Components of a New Research Resource for Complex Physiologic Signals. Circulation. 2000;101:E215–E220. doi: 10.1161/01.CIR.101.23.e215.
    1. Słupik A., Kowalski M., Białoszewski D. Clinical Usefulness of the Staffelstein-Score in the Functional Assessment in Knee Arthroplasty Patients. Ortop. Traumatol. Rehabil. 2014;16:17–31. doi: 10.5604/15093492.1097486.
    1. Wei L., Li Y., Ye J., Yang X., Wang J. Emotion-Induced Higher Wavelet Entropy in the Eeg with Depression During a Cognitive Task. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2009;2009:5018–5021.
    1. Schniepp R., Wuehr M., Pradhan C., Novozhilov S., Krafczyk S., Brandt T., Jahn K. Nonlinear Variability of Body Sway in Patients with Phobic Postural Vertigo. Front. Neurol. 2013;4:115. doi: 10.3389/fneur.2013.00115.
    1. Ghofrani M., Olyaei G., Talebian S., Bagheri H., Malmir K. Test-Retest Reliability of Linear and Nonlinear Measures of Postural Stability During Visual Deprivation in Healthy Subjects. J. Phys. Ther. Sci. 2017;29:1766–1771. doi: 10.1589/jpts.29.1766.
    1. Huisinga J., Yentes J.M., Filipi M.L., Stergiou N. Postural Control Strategy During Standing Is Altered in Patients with Multiple Sclerosis. Neurosci. Lett. 2012;524:124–128. doi: 10.1016/j.neulet.2012.07.020.
    1. Kedziorek J., Blazkiewicz M. Nonlinear Measures to Evaluate Upright Postural Stability: A Systematic Review. Entropy. 2020;22:1357. doi: 10.3390/e22121357.
    1. Ramdani S., Seigle B., Varoqui D., Bouchara F., Blain H., Bernard P.L. Characterizing the Dynamics of Postural Sway in Humans Using Smoothness and Regularity Measures. Ann. Biomed. Eng. 2011;39:161–171. doi: 10.1007/s10439-010-0137-9.
    1. Potvin-Desrochers A., Richer N., Lajoie Y. Cognitive Tasks Promote Automatization of Postural Control in Young and Older Adults. Gait Posture. 2017;57:40–45. doi: 10.1016/j.gaitpost.2017.05.019.

Source: PubMed

3
Iratkozz fel