Modulation of the autonomic nervous system by one session of spinal low-level laser therapy in patients with chronic colonic motility dysfunction

M Khawar Ali, Shrayasee Saha, Natalija Milkova, Lijun Liu, Kartik Sharma, Jan D Huizinga, Ji-Hong Chen, M Khawar Ali, Shrayasee Saha, Natalija Milkova, Lijun Liu, Kartik Sharma, Jan D Huizinga, Ji-Hong Chen

Abstract

Patients with a defecation disorder may not evoke a normal defecation reflex, or the reflex may be excessive, as a dysfunction of the spinal autonomic nervous system. Treatment with various forms of lumbar and sacral neuromodulation have shown symptom improvement, but potential changes in autonomic functioning are rarely studied. Here we evaluate the effects on autonomic function of a single session of low-level laser therapy (LLLT) on the lumbar and sacral spine in 41 patients with chronic gastrointestinal motor dysfunction. The LLLT protocol used red LED light at a wavelength of 660 nm for 10 min and infrared LED light at a wavelength of 840 nm for 10 min, followed by infrared laser light at a wavelength of 825 nm for 10 min. Effects on the autonomic nervous system were assessed by measuring heart rate variability (HRV) changes. Respiratory Sinus Arrhythmia (RSA) and Root Mean Square of Successive Differences (RMSSD) were used to quantify parasympathetic reactivity; the Baevsky's Stress Index (SI) reflected sympathetic activity while the ratios SI/RSA and SI/RMSSD were used to show shifts in autonomic dominance. The results indicate that lumbar and sacral neuromodulation using light arrays reduced, whereas stimulation by the laser probes significantly increased parasympathetic activity. The light arrays increased whereas the laser probes significantly decreased sympathetic activity (SI). The entire protocol shifted the autonomic balance toward parasympathetic activity. The comparison of actual vs. sham neuromodulation proved that the change in HRV parameters was due to actual light stimulation and not due to the arrays and probe touching the skin. In conclusion, a single session of LLLT markedly affects autonomic nervous system activity reflected in changes in HRV which is only possible by generating activity in the spinal autonomic nerves. These results warrant a study into the effects of LLLT on restoring autonomic dysfunction in chronic refractory colonic motility disorders.

Keywords: Baevsky stress index; autonomic nervous system; constipation; low level laser (light) therapy (LLLT); respiratory sinus arrhythmia; sacral neuromodulation.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2022 Ali, Saha, Milkova, Liu, Sharma, Huizinga and Chen.

Figures

FIGURE 1
FIGURE 1
(A) LED array placements A, B, C, and D. (B) Target areas for laser probe stimulation marked as red dots. Each point is stimulated for 20 seconds. Basic image obtained from dreamstime.com with permission.
FIGURE 2
FIGURE 2
Autonomic nervous system modulation as deduced from HRV changes during one session of low-level laser therapy, stimulating the lumbar and sacral spine. (A) RSA, (B) RMSSD, (C) SI, (D) SI/RSA, (E) SI/RMSSD, (F) HR. Average values ± SEM from 41 patients with chronic colonic motility dysfunction.
FIGURE 3
FIGURE 3
Change in RSA, SI, and SI/RSA due to laser probe stimulation and recovery in all 41 patients.
FIGURE 4
FIGURE 4
Autonomic nervous system modulation as deduced from HRV changes during the entire protocol of one session of low-level laser therapy in one patient. (A) RR Intervals time series, (B) HF band power, (C) RMSSD, (D) SI.
FIGURE 5
FIGURE 5
Autonomic nervous system modulation as deduced from HRV changes during one session of low-level laser therapy, stimulating the lumbar and sacral spine. (A) RSA, (B) RMSSD, (C) SI, (D) SI/RSA, (E) SI/RMSSD, (F) HR. Average values ± SEM from 6 healthy subjects during sham (placement of arrays and probe but no stimulation) and during actual activation of the arrays and probe.
FIGURE 6
FIGURE 6
Comparison of autonomic nervous system activity during the application of the probe procedure with and without (sham) activating the probe. (A) RR Intervals time series, (B) HF band power, (C) RMSSD, (D) SI.

References

    1. Ali M. K., Liu L., Chen J. H., Huizinga J. D. (2021). Optimizing Autonomic Function Analysis via Heart Rate Variability Associated With Motor Activity of the Human Colon. Front. Physiol. 12:619722. 10.3389/fphys.2021.619722
    1. Andreo L., Soldera C. B., Ribeiro B. G., de Matos P. R. V., Bussadori S. K., Fernandes K. P. S., et al. (2017). Effects of photobiomodulation on experimental models of peripheral nerve injury. Lasers Med. Sci. 32 2155–2165.
    1. Baevsky R. M., Chernikova A. G. (2017). Heart rate variability analysis: Physiological foundations and main methods. Cardiometry 10 66–76. 10.12710/cardiometry.2017.6676
    1. Barbier A., Chen J.-H., Huizinga J. D. (2022). Autism Spectrum Disorder in Children Is Not Associated With Abnormal Autonomic Nervous System Function: Hypothesis and Theory. Front. Psychiatry 13:830234. 10.3389/fpsyt.2022.830234
    1. Berntson G. G., Bigger J. T., Eckberg D. L., Grossman P., Kaufmann P. G., Malik M., et al. (1997). Heart rate variability: Origins, methods, and interpretive caveats. Psychophysiology 34 623–648. 10.1111/j.1469-8986.1997.tb02140.x
    1. Bharucha A. E., Camilleri M., Low P. A., Zinsmeister A. R. (1993). Autonomic dysfunction in gastrointestinal motility disorders. Gut 34 397–401.
    1. Blok B. F., Groen J., Bosch J. L., Veltman D. J., Lammertsma A. A. (2006). Different brain effects during chronic and acute sacral neuromodulation in urge incontinent patients with implanted neurostimulators. BJU Int. 98 1238–1243.
    1. Brookes S. J., Dinning P. G., Gladman M. A. (2009). Neuroanatomy and physiology of colorectal function and defaecation: From basic science to human clinical studies. Neurogastroenterol. Motil. 21 9–19. 10.1111/j.1365-2982.2009.01400.x
    1. Callaghan B., Furness J. B., Pustovit R. V. (2018). Neural pathways for colorectal control, relevance to spinal cord injury and treatment: A narrative review. Spinal Cord 56 199–205. 10.1038/s41393-017-0026-2
    1. Camilleri M., Ford A. C., Mawe G. M., Dinning P. G., Rao S. S., Chey W. D., et al. (2017). Chronic constipation. Nat. Rev. Dis. Primers 3:17095.
    1. Chen J. D., Yin J., Wei W. (2017). Electrical therapies for gastrointestinal motility disorders. Expert Rev. Gastroenterol. Hepatol. 11 407–418.
    1. Chen J.-H., Huizinga J. D. (2019). “Pathophysiology of constipation,” in McMaster Textbook of Internal Medicine, eds Jaeschke R., Gajewski P., O’Byrne P. M. (Krakow: Empendium; ), 978.
    1. Chen Y. J., Wang Y. H., Wang C. Z., Ho M. L., Kuo P. L., Huang M. H., et al. (2014). Effect of low level laser therapy on chronic compression of the dorsal root ganglion. PLoS One 9:e89894. 10.1371/journal.pone.0089894
    1. Chung H., Dai T., Sharma S. K., Huang Y. Y., Carroll J. D., Hamblin M. R. (2012). The nuts and bolts of low-level laser (light) therapy. Ann. Biomed. Eng. 40 516–533. 10.1007/s10439-011-0454-7
    1. Euteneuer F., Neuert M., Salzmann S., Fischer S., Ehlert U., Rief W. (2022). Does psychological treatment of major depression reduce cardiac risk biomarkers? An exploratory randomized controlled trial. Psychol. Med. [Epub ahead of print]. 10.1017/S0033291722000447
    1. Fowler C. J., Swinn M. J., Goodwin R. J., Oliver S., Craggs M. (2000). Studies of the latency of pelvic floor contraction during peripheral nerve evaluation show that the muscle response is reflexly mediated. J. Urol. 163 881–883.
    1. Furness J. B., Callaghan B. P., Rivera L. R. (2014). The enteric nervous system and gastrointestinal innervation: Integrated local and central control. Adv. Exp. Med. Biol. 817 39–71.
    1. Goldman H. B., Lloyd J. C., Noblett K. L., Carey M. P., Castaño Botero J. C., Gajewski J. B., et al. (2018). International Continence Society best practice statement for use of sacral neuromodulation. Neurourol. Urodyn. 37 1823–1848.
    1. Hashmi J. T., Huang Y. Y., Osmani B. Z., Sharma S. K., Naeser M. A., Hamblin M. R. (2010). Role of low-level laser therapy in neurorehabilitation. Physical Med. Rehabil. 2:S292–S305.
    1. Huang Z., Li S., Foreman R. D., Yin J., Dai N., Chen J. D. Z. (2019). Sacral nerve stimulation with appropriate parameters improves constipation in rats by enhancing colon motility mediated via the autonomic-cholinergic mechanisms. Am. J. Physiol. Gastrointest. Liver Physiol. 317:G609–G617. 10.1152/ajpgi.00150.2018
    1. Huizinga J. D., Liu L., Barbier A., Chen J. H. (2021). Distal Colon Motor Coordination: The Role of the Coloanal Reflex and the Rectoanal Inhibitory Reflex in Sampling, Flatulence, and Defecation. Front. Med. 8:720558. 10.3389/fmed.2021.720558
    1. Huizinga J. D., Mathewson K. J., Yuan Y., Chen J. (2018). Probing heart rate variability to determine parasympathetic dysfunction. Physiol. Rep. 6:e13713.
    1. Huizinga J. D., Milkova N., Chen J. H. (2020). Transient Anal Sphincter Relaxations Are a Normal Phenomenon in Healthy Subjects. J. Neurogastroenterol. Motil. 26 552–553.
    1. Jones J., Van de Putte D., De Ridder D., Knowles C., O’Connell R., Nelson D., et al. (2016). A Joint Mechanism of Action for Sacral Neuromodulation for Bladder and Bowel Dysfunction. Urology 97 13–19. 10.1016/j.urology.2016.05.032
    1. Kahn F. (2022). Reflects on 30 Years as a Leader and Innovator in Laser Therapy. Available online at: (accessed Jul 7, 2022).
    1. Kamm M. A., Dudding T. C., Melenhorst J., Jarrett M., Wang Z., Buntzen S., et al. (2010). Sacral nerve stimulation for intractable constipation. Gut 59 333–340.
    1. Karpyak V. M., Rasmussen K. G., Hammill S. C., Mrazek D. A. (2004). Changes in heart rate variability in response to treatment with electroconvulsive therapy. J. ECT 20 81–88.
    1. Kenefick N. J., Emmanuel A., Nicholls R. J., Kamm M. A. (2003). Effect of sacral nerve stimulation on autonomic nerve function. Br. J. Surg. 90 1256–1260.
    1. Khan U., Mason J. M., Mecci M., Yiannakou Y. (2014). A prospective trial of temporary sacral nerve stimulation for constipation associated with neurological disease. Colorectal Dis. 16 1001–1009.
    1. Kim J. S., Yi S. J. (2014). Effects of Low-frequency Current Sacral Dermatome Stimulation on Idiopathic Slow Transit Constipation. J. Phys. Ther. Sci. 26 831–832. 10.1589/jpts.26.831
    1. Leong L. C., Yik Y. I., Catto-Smith A. G., Robertson V. J., Hutson J. M., Southwell B. R. (2011). Long-term effects of transabdominal electrical stimulation in treating children with slow-transit constipation. J. Pediatr. Surg. 46 2309–2312.
    1. Liu L., Milkova N., Nirmalathasan S., Ali M. K., Sharma K., HuizInga J. D., et al. (2022). Diagnosis of dysmotility associated with autonomic dysfunction in patients with chronic refractory constipation. Nat. Sci. Rep. 12:12051. 10.1038/s41598-022-15945-6
    1. Mester E., Nagylucskay S., Döklen A., Tisza S. (1976). Laser stimulation of wound healing. Acta Chir. Acad. Sci. Hung. 17 49–55.
    1. Milkova N., Parsons S. P., Ratcliffe E., Huizinga J. D., Chen J. H. (2020). On the nature of high-amplitude propagating pressure waves in the human colon. Am. J. Physiol. Gastrointest. Liver Physiol. 318:G646–G660. 10.1152/ajpgi.00386.2019
    1. Ouyang X., Li S., Zhou J., Chen J. D. (2020). Electroacupuncture Ameliorates Gastric Hypersensitivity via Adrenergic Pathway in a Rat Model of Functional Dyspepsia. Neuromodulation 23 1137–1143. 10.1111/ner.13154
    1. Payne S. C., Furness J. B., Stebbing M. J. (2019). Bioelectric neuromodulation for gastrointestinal disorders: Effectiveness and mechanisms. Nat. Rev. Gastroenterol. Hepatol. 16 89–105.
    1. Rao S. S., Rattanakovit K., Patcharatrakul T. (2016). Diagnosis and management of chronic constipation in adults. Nat. Rev. Gastroenterol. Hepatol. 13 295–305.
    1. Rola P., Doroszko A., Derkacz A. (2014). The use of low-level energy laser radiation in basic and clinical research. Adv. Clin. Exp. Med. 23 835–842.
    1. Shaffer F., Ginsberg J. P. (2017). An Overview of Heart Rate Variability Metrics and Norms. Front. Public Health 5:258. 10.3389/fpubh.2017.00258
    1. Shields R. W. (2009). Heart rate variability with deep breathing as a clinical test of cardiovagal function. Cleve Clin. J. Med. 76:S37–S40.
    1. Thaha M. A., Abukar A. A., Thin N. N., Ramsanahie A., Knowles C. H. (2015). Sacral nerve stimulation for faecal incontinence and constipation in adults. Cochrane Database Syst. Rev. 2015:CD004464.
    1. Thayer J. F., Ahs F., Fredrikson M., Sollers J. J., Wager T. D. (2012). A meta-analysis of heart rate variability and neuroimaging studies: Implications for heart rate variability as a marker of stress and health. Neurosci. Biobehav. Rev. 36 747–756. 10.1016/j.neubiorev.2011.11.009
    1. Vaizey C. J., Kamm M. A., Turner I. C., Nicholls R. J., Woloszko J. (1999). Effects of short term sacral nerve stimulation on anal and rectal function in patients with anal incontinence. Gut 44 407–412.
    1. Valentino R. J., Miselis R. R., Pavcovich L. A. (1999). Pontine regulation of pelvic viscera: Pharmacological target for pelvic visceral dysfunctions. Trends Pharmacol. Sci. 20 253–260. 10.1016/s0165-6147(99)01332-2
    1. Veiga M. L., Costa E. V., Portella I., Nacif A., Martinelli Braga A. A., Barroso U. (2016). Parasacral transcutaneous electrical nerve stimulation for overactive bladder in constipated children: The role of constipation. J. Pediatr. Urol. 12 396.e1–396.e6. 10.1016/j.jpurol.2016.04.047
    1. Veiga M. L., Lordêlo P., Farias T., Barroso U. (2013). Evaluation of constipation after parasacral transcutaneous electrical nerve stimulation in children with lower urinary tract dysfunction–a pilot study. J. Pediatr. Urol. 9 622–626. 10.1016/j.jpurol.2012.06.006
    1. Wexner S. D., Coller J. A., Devroede G., Hull T., McCallum R., Chan M., et al. (2010). Sacral nerve stimulation for fecal incontinence: Results of a 120-patient prospective multicenter study. Ann. Surg. 251 441–449. 10.1097/SLA.0b013e3181cf8ed0
    1. Widmann B., Galata C., Warschkow R., Beutner U., Ögredici Ö, Hetzer F. H., et al. (2019). Success and Complication Rates After Sacral Neuromodulation for Fecal Incontinence and Constipation: A Single-center Follow-up Study. J. Neurogastroenterol. Motil. 25 159–170. 10.5056/jnm17106
    1. Yamany A. A., Sayed H. M. (2012). Effect of low level laser therapy on neurovascular function of diabetic peripheral neuropathy. J. Adv. Res. 3 21–28.
    1. Yuan Y., Ali M. K., Mathewson K. J., Sharma K., Faiyaz M., Tan W., et al. (2020). Associations between colonic motor patterns and autonomic nervous system activity assessed by high-resolution manometry and concurrent heart rate variability. Front. Neurosci. 13:1447. 10.3389/fnins.2019.01447
    1. Zheng H., Chen Q., Chen M., Wu X., She T., Li J., et al. (2019). Nonpharmacological conservative treatments for chronic functional constipation: A systematic review and network meta-analysis. Neurogastroenterol. Motil. 31:e13441.

Source: PubMed

3
Iratkozz fel