Immune function parameters as markers of biological age and predictors of longevity

Irene Martínez de Toda, Ianire Maté, Carmen Vida, Julia Cruces, Mónica De la Fuente, Irene Martínez de Toda, Ianire Maté, Carmen Vida, Julia Cruces, Mónica De la Fuente

Abstract

Chronological age is not a good indicator of how each individual ages and thus how to maintain good health. Due to the long lifespan in humans and the consequent difficulty of carrying out longitudinal studies, finding valid biomarkers of the biological age has been a challenge both for research and clinical studies. The aim was to identify and validate several immune cell function parameters as markers of biological age. Adult, mature, elderly and long-lived human volunteers were used. The chemotaxis, phagocytosis, natural killer activity and lymphoproliferation in neutrophils and lymphocytes of peripheral blood were analyzed. The same functions were measured in peritoneal immune cells from mice, at the corresponding ages (adult, mature, old and long lived) in a longitudinal study. The results showed that the evolution of these functions was similar in humans and mice, with a decrease in old subjects. However, the long-lived individuals maintained values similar to those in adults. In addition, the values of these functions in adult prematurely aging mice were similar to those in chronologically old animals, and they died before their non-prematurely aging mice counterparts. Thus, the parameters studied are good markers of the rate of aging, allowing the determination of biological age.

Keywords: aging; biological age; biomarker; immune function; longevity.

Conflict of interest statement

The authors have no conflict of interests to declare.

Figures

Figure 1. Age-related changes in immune functions…
Figure 1. Age-related changes in immune functions in peripheral blood leukocytes from humans and in peritoneal leukocytes from mice
(A) Phagocytic Index: number of latex beads ingested per 100 human neutrophils (A.1) or mouse macrophages (A.2 and A.3); (B) Chemotaxis Index: number of phagocytes on the filter, human neutrophils (B.1) or mouse macrophages (B.2 and B.3); (C) NK cytotoxic activity (percentage of lysis of tumor cells) of human leukocytes (C.1) or mouse leukocytes (C.2 and C.3). (D) Chemotaxis Index: number of human lymphocytes on the filter (D.1) or mouse lymphocytes (D.2 and D.3); (E) Percentage of proliferation of lymphocytes in response to the mitogen Phytohaemagglutinin in the case of humans (E.1) and in response to Concanavalin A in the case of mice (E.2 and E.3). The results corresponding to peritoneal leukocytes from adult prematurely-aging mice (PAM) and non-prematurely-aging mice (NPAM) are shown in A.3, B.3, C.3, D.3, and E.3. A: Adult; M: Mature; O: Old; L: Long-Lived; a: P < 0.05; aa: P < 0.01; aaa: P < 0.001 with respect to the value in adults. b: P < 0.05; bb: P < 0.01; bbb: P < 0.001 with respect to the value in mature individuals. c: P < 0.05; cc: P < 0.01; ccc: P < 0.001 with respect to the value in old subjects. d: P < 0.05; dd: P < 0.01; ddd: P < 0.001 with respect to the value in NPAM.
Figure 2. Kaplan-Meier cumulative survival of prematurely…
Figure 2. Kaplan-Meier cumulative survival of prematurely aging mice: PAM (solid line) and non-prematurely aging mice: NPAM (dashed line)
**: P < 0.01.

References

    1. Finkel D, Whitfield K, McGue M. Genetic and environmental influences on functional age: a twin study. J Gerontol B Psychol Sci Soc Sci. 1995;50:104–13. doi: 10.1093/geronb/50B.2.P104.
    1. Borkan GA, Norris AH. Assessment of biological age using a profile of physical parameters. J Gerontol. 1980;35:177–84. doi: 10.1093/geronj/35.2.177.
    1. Anstey KJ, Lord SR, Smith GA. Measuring human functional age: a review of empirical findings. Exp Aging Res. 1996;22:245–66. doi: 10.1080/03610739608254010.
    1. Mitnitski AB, Graham JE, Mogilner AJ, Rockwood K. Frailty, fitness and late-life mortality in relation to chronological and biological age. BMC Geriatr. 2002;2:1. doi: 10.1186/1471-2318-2-1.
    1. Comfort A. Test-battery to measure ageing-rate in man. Lancet. 1969;2:1411–14. doi: 10.1016/S0140-6736(69)90950-7.
    1. Benfante R, Reed D, Brody J. Biological and social predictors of health in an aging cohort. J Chronic Dis. 1985;38:385–95. doi: 10.1016/0021-9681(85)90134-1.
    1. Nakamura E, Miyao K. A method for identifying biomarkers of aging and constructing an index of biological age in humans. J Gerontol A Biol Sci Med Sci. 2007;62:1096–105. doi: 10.1093/gerona/62.10.1096.
    1. Bae CY, Kang YG, Kim S, Cho C, Kang HC, Yu BY, Lee SW, Cho KH, Lee DC, Lee K, Kim JS, Shin KK. Development of models for predicting biological age (BA) with physical, biochemical, and hormonal parameters. Arch Gerontol Geriatr. 2008;47:253–65. doi: 10.1016/j.archger.2007.08.009.
    1. Bulpitt CJ, Antikainen RL, Markowe HL, Shipley MJ. Mortality according to a prior assessment of biological age. Curr Aging Sci. 2009;2:193–99. doi: 10.2174/1874609810902030193.
    1. Belsky DW, Caspi A, Houts R, Cohen HJ, Corcoran DL, Danese A, Harrington H, Israel S, Levine ME, Schaefer JD, Sugden K, Williams B, Yashin AI, et al. Quantification of biological aging in young adults. Proc Natl Acad Sci USA. 2015;112:E4104–10. doi: 10.1073/pnas.1506264112.
    1. Srettabunjong S, Satitsri S, Thongnoppakhun W, Tirawanchai N. The study on telomere length for age estimation in a Thai population. Am J Forensic Med Pathol. 2014;35:148–53. doi: 10.1097/PAF.0000000000000095.
    1. Horvath S. DNA methylation age of human tissues and cell types. Genome Biol. 2013;14:R115. doi: 10.1186/gb-2013-14-10-r115.
    1. Fulop T, Larbi A, Kotb R, de Angelis F, Pawelec G. Aging, immunity, and cancer. Discov Med. 2011;11:537–50.
    1. Dewan SK, Zheng SB, Xia SJ, Bill K. Senescent remodeling of the immune system and its contribution to the predisposition of the elderly to infections. Chin Med J (Engl) 2012;125:3325–31.
    1. Wayne SJ, Rhyne RL, Garry PJ, Goodwin JS. Cell-mediated immunity as a predictor of morbidity and mortality in subjects over 60. J Gerontol. 1990;45:M45–48. doi: 10.1093/geronj/45.2.M45.
    1. De la Fuente M, Miquel J. An update of the oxidation-inflammation theory of aging: the involvement of the immune system in oxi-inflamm-aging. Curr Pharm Des. 2009;15:3003–26. doi: 10.2174/138161209789058110.
    1. Ferguson FG, Wikby A, Maxson P, Olsson J, Johansson B. Immune parameters in a longitudinal study of a very old population of Swedish people: a comparison between survivors and nonsurvivors. J Gerontol A Biol Sci Med Sci. 1995;50:B378–82. doi: 10.1093/gerona/50A.6.B378.
    1. Ogata K, Yokose N, Tamura H, An E, Nakamura K, Dan K, Nomura T. Natural killer cells in the late decades of human life. Clin Immunol Immunopathol. 1997;84:269–75. doi: 10.1006/clin.1997.4401.
    1. DelaRosa O, Pawelec G, Peralbo E, Wikby A, Mariani E, Mocchegiani E, Tarazona R, Solana R. Immunological biomarkers of ageing in man: changes in both innate and adaptive immunity are associated with health and longevity. Biogerontology. 2006;7:471–81. doi: 10.1007/s10522-006-9062-6.
    1. Guayerbas N, Puerto M, Víctor VM, Miquel J, De la Fuente M. Leukocyte function and life span in a murine model of premature immunosenescence. Exp Gerontol. 2002;37:249–56. doi: 10.1016/S0531-5565(01)00190-5.
    1. Guayerbas N, De La Fuente M. An impairment of phagocytic function is linked to a shorter life span in two strains of prematurely aging mice. Dev Comp Immunol. 2003;27:339–50. doi: 10.1016/S0145-305X(02)00103-9.
    1. De Martinis M, Franceschi C, Monti D, Ginaldi L. Inflammation markers predicting frailty and mortality in the elderly. Exp Mol Pathol. 2006;80:219–27. doi: 10.1016/j.yexmp.2005.11.004.
    1. Viveros MP, Arranz L, Hernanz A, Miquel J, De la Fuente M. A model of premature aging in mice based on altered stress-related behavioral response and immunosenescence. Neuroimmunomodulation. 2007;14:157–62. doi: 10.1159/000110640.
    1. De la Fuente M. Murine models of premature ageing for the study of diet-induced immune changes: improvement of leucocyte functions in two strains of old prematurely ageing mice by dietary supplementation with sulphur-containing antioxidants. Proc Nutr Soc. 2010;69:651–59. doi: 10.1017/S0029665110003848.
    1. Arranz L, Caamaño JH, Lord JM, De la Fuente M. Preserved immune functions and controlled leukocyte oxidative stress in naturally long-lived mice: possible role of nuclear factor kappa B. J Gerontol A Biol Sci Med Sci. 2010;65:941–50. doi: 10.1093/gerona/glq101.
    1. Simon AK, Hollander GA, McMichael A. Evolution of the immune system in humans from infancy to old age. Proc Biol Sci. 2015;282:20143085. doi: 10.1098/rspb.2014.3085.
    1. Sowell ER, Thompson PM, Holmes CJ, Jernigan TL, Toga AW. In vivo evidence for post-adolescent brain maturation in frontal and striatal regions. Nat Neurosci. 1999;2:859–61. doi: 10.1038/13154.
    1. Giedd JN. Structural magnetic resonance imaging of the adolescent brain. Ann N Y Acad Sci. 2004;1021:77–85. doi: 10.1196/annals.1308.009.
    1. Leowattana W. DHEA(S): the fountain of youth. J Med Assoc Thai. 2001;84(Suppl 2):S605–12.
    1. Vénéreau E, Ceriotti C, Bianchi ME. DAMPs from cell death to new life. Front Immunol. 2015;6:422. doi: 10.3389/fimmu.2015.00422.
    1. Bauer ME, Fuente ML. The role of oxidative and inflammatory stress and persistent viral infections in immunosenescence. Mech Ageing Dev. 2016;158:27–37. doi: 10.1016/j.mad.2016.01.001.
    1. Alonso-Fernández P, Puerto M, Maté I, Ribera JM, de la Fuente M. Neutrophils of centenarians show function levels similar to those of young adults. J Am Geriatr Soc. 2008;56:2244–51. doi: 10.1111/j.1532-5415.2008.02018.x.
    1. De la Fuente M. Role of neuroimmunomodulation in aging. Neuroimmunomodulation. 2008;15:213–23. doi: 10.1159/000156465.
    1. Pawelec G. Immunity and ageing in man. Exp Gerontol. 2006;41:1239–42. doi: 10.1016/j.exger.2006.09.005.
    1. Solana R, Mariani E. NK and NK/T cells in human senescence. Vaccine. 2000;18:1613–20. doi: 10.1016/S0264-410X(99)00495-8.
    1. Hazeldine J, Lord JM. The impact of ageing on natural killer cell function and potential consequences for health in older adults. Ageing Res Rev. 2013;12:1069–78. doi: 10.1016/j.arr.2013.04.003.
    1. Bürkle A, Moreno-Villanueva M, Bernhard J, Blasco M, Zondag G, Hoeijmakers JH, Toussaint O, Grubeck-Loebenstein B, Mocchegiani E, Collino S, Gonos ES, Sikora E, Gradinaru D, et al. MARK-AGE biomarkers of ageing. Mech Ageing Dev. 2015;151:2–12. doi: 10.1016/j.mad.2015.03.006.
    1. Kirkwood TB. Gerontology: healthy old age. Nature. 2008;455:739–40. doi: 10.1038/455739a.
    1. De la Fuente M, Cruces J, Hernandez O, Ortega E. Strategies to improve the functions and redox state of the immune system in aged subjects. Curr Pharm Des. 2011;17:3966–93. doi: 10.2174/138161211798764861.
    1. De la Fuente M, Hernanz A, Guayerbas N, Victor VM, Arnalich F. Vitamin E ingestion improves several immune functions in elderly men and women. Free Radic Res. 2008;42:272–80. doi: 10.1080/10715760801898838.

Source: PubMed

3
Iratkozz fel