Hesperidin Effects on Gut Microbiota and Gut-Associated Lymphoid Tissue in Healthy Rats

Sheila Estruel-Amades, Malén Massot-Cladera, Francisco J Pérez-Cano, Àngels Franch, Margarida Castell, Mariona Camps-Bossacoma, Sheila Estruel-Amades, Malén Massot-Cladera, Francisco J Pérez-Cano, Àngels Franch, Margarida Castell, Mariona Camps-Bossacoma

Abstract

Hesperidin, found in citrus fruits, has shown a wide range of biological properties. Nonetheless, a more in-depth investigation is required on the effects on the immune system, and in particular, on the gut-associated lymphoid tissue, together with its relationship with the gut microbiota. Therefore, we aimed to establish the influence of oral hesperidin administration on the intestinal lymphoid tissue and on the gut microbiota composition in healthy animals. Lewis rats were orally administrated 100 or 200 mg/kg hesperidin three times per week for four weeks. Microbiota composition and IgA-coated bacteria were determined in caecal content. Mesenteric lymph node lymphocyte (MLNL) composition and functionality were assessed. IgA, cytokines, and gene expression in the small intestine were quantified. Hesperidin administration resulted in a higher number of bacteria and IgA-coated bacteria, with changes in microbiota composition such as higher Lactobacillus proportion. Hesperidin was also able to increase the small intestine IgA content. These changes in the small intestine were accompanied by a decrease in interferon-γ and monocyte chemotactic protein-1 concentration. In addition, hesperidin increased the relative proportion of TCRαβ+ lymphocytes in MLNL. These results show the immunomodulatory actions of hesperidin on the gut-associated lymphoid tissue and reinforce its role as a prebiotic.

Keywords: flavanone; flavonoids; immunoglobulin A; intestinal immunity; polyphenol; prebiotic.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Effect of hesperidin administration on total polyphenol content in urine. Data are expressed as mean ± standard error (n = 5–6). Statistical difference: * p < 0.05 versus REF group, δp < 0.05 versus H100 group (one-way ANOVA).
Figure 2
Figure 2
Effect of hesperidin administration on bacterial groups determined by FISH-FCM in caecal homogenates. (a) Counts of total bacteria; (b) counts of IgA-coated bacteria; (c) proportion of IgA-coated bacteria; proportions of (d) Streptococcus spp.; (e) Clostridium coccoides/Eubacterium rectale; (f) Lactobacillus/Enterococcus; (g) Sstaphylococcus spp.; (h) Clostridium histolyticum/Clostridium perfringens; (i) Bacteroides/Prevotella; (j) Bifidobacterium; and (k) Escherichia coli. Data are expressed as mean ± standard error (n = 5–6). Statistical difference: * p < 0.05 versus REF group (one-way ANOVA).
Figure 3
Figure 3
Effect of hesperidin administration on the proportion of mesenteric lymph node lymphocytes. (a) TCRαβ+, TCRγδ+ and CD45RA+ lymphocytes; (b) TCRαβ+/CD45RA+ ratio; (c) Th (TCRαβ+CD4+) and Tc (TCRαβ+CD8+) lymphocytes; and (d) Th/Tc ratio. Data are expressed as mean ± standard error (n = 5–6). Statistical difference: * p < 0.05 versus REF group (one-way ANOVA).
Figure 4
Figure 4
Effect of hesperidin administration on (a) the mesenteric lymph node lymphocyte (MLNL) proliferative activity; and (bf) cytokine release by MLNL after anti-CD3/CD28 stimulation. Data are expressed as mean ± standard error (n = 5–6).
Figure 5
Figure 5
Effect of hesperidin administration on the cytokine concentration in the small intestine washes (ae). Data are expressed as mean ± standard error (n = 5–6). Statistical difference: * p < 0.05 versus REF group (Mann–Whitney U test).
Figure 6
Figure 6
Effect of hesperidin administration on (a) IgA concentration in faeces collected throughout the study; (b) caecum content; (c) small intestine wash; and on (d) IgM concentration in the small intestine wash. Data are expressed as mean ± standard error (n = 5–6). Statistical difference: * p < 0.05 versus REF group (one-way ANOVA).
Figure 7
Figure 7
Effect of hesperidin administration throughout the study on serum (a) IgG; (b) IgA; and (c) IgM. Data are expressed as mean ± standard error (n = 5–6). Statistical difference: * p < 0.05 versus REF group, δp < 0.05 versus H100 group (Mann–Whitney U test).

References

    1. Tsao R. Chemistry and biochemistry of dietary polyphenols. Nutrients. 2010;2:1231–1246. doi: 10.3390/nu2121231.
    1. Romier B., Schneider Y.J., Larondelle Y., During A. Dietary polyphenols can modulate the intestinal inflammatory response. Nutr. Rev. 2009;67:363–378. doi: 10.1111/j.1753-4887.2009.00210.x.
    1. Kawser Hossain M., Abdal Dayem A., Han J., Yin Y., Kim K., Kumar Saha S., Yang G.-M., Choi H., Cho S.-G. Molecular mechanisms of the anti-obesity and anti-diabetic properties of flavonoids. Int. J. Mol. Sci. 2016;17:569. doi: 10.3390/ijms17040569.
    1. González-Gallego J., García-Mediavilla M.V., Sánchez-Campos S., Tuñón M.J. Fruit polyphenols, immunity and inflammation. Br. J. Nutr. 2010;104:S15–S27. doi: 10.1017/S0007114510003910.
    1. Williamson G. The role of polyphenols in modern nutrition. Nutr. Bull. 2017;42:226–235. doi: 10.1111/nbu.12278.
    1. Mkhize N.V.P., Qulu L., Mabandla M.V. The effect of quercetin on pro- and anti-inflammatory cytokines in a prenatally stressed rat model of febrile seizures. J. Exp. Neurosci. 2017;11:1–8. doi: 10.1177/1179069517704668.
    1. Ota A., Ulrih N.P. An overview of herbal products and secondary metabolites used for management of type two diabetes. Front. Pharmacol. 2017;8:436. doi: 10.3389/fphar.2017.00436.
    1. Pérez-Cano F.J., Massot-Cladera M., Rodríguez-Lagunas M., Castell M. Flavonoids affect host-microbiota crosstalk through TLR modulation. Antioxidants. 2014;3:649–670. doi: 10.3390/antiox3040649.
    1. Parhiz H., Roohbakhsh A., Soltani F., Rezaee R., Iranshahi M. Antioxidant and anti-inflammatory properties of the citrus flavonoids hesperidin and hesperetin: An updated review of their molecular mechanisms and experimental models. Phyther. Res. 2015;29:323–331. doi: 10.1002/ptr.5256.
    1. Vallejo F., Larrosa M., Escudero E., Zafrilla M.P., Cerdá B., Boza J., García-Conesa M.T., Espín J.C., Tomás-Barberán F.A. Concentration and solubility of flavanones in orange beverages affect their bioavailability in humans. J. Agric. Food Chem. 2010;58:6516–6524. doi: 10.1021/jf100752j.
    1. Kobayashi S., Konishi Y. Transepithelial transport of flavanone in intestinal Caco-2 cell monolayers. Biochem. Biophys. Res. Commun. 2008;368:23–29. doi: 10.1016/j.bbrc.2007.12.185.
    1. Garg A., Garg S., Zaneveld L.J., Singla A.K. Chemistry and pharmacology of the citrus bioflavonoid hesperidin. Phyther. Res. 2001;15:655–669. doi: 10.1002/ptr.1074.
    1. Bhullar K.S., Rupasinghe H.P.V. Polyphenols: Multipotent therapeutic agents in neurodegenerative diseases. Oxid. Med. Cell. Longev. 2013;2013:891748. doi: 10.1155/2013/891748.
    1. Raza S.S., Khan M.M., Ahmad A., Ashafaq M., Khuwaja G., Tabassum R., Javed H., Siddiqui M.S., Safhi M.M., Islam F. Hesperidin ameliorates functional and histological outcome and reduces neuroinflammation in experimental stroke. Brain Res. 2011;1420:93–105. doi: 10.1016/j.brainres.2011.08.047.
    1. Tanaka T., Tanaka T., Tanaka M., Kuno T. Cancer chemoprevention by citrus pulp and juices containing high amounts of β-cryptoxanthin and hesperidin. J. Biomed. Biotechnol. 2012;2012:516981. doi: 10.1155/2012/516981.
    1. Bentli R., Ciftci O., Cetin A., Unlu M., Basak N., Çay M. Oral administration of hesperidin, a citrus flavonone, in rats counteracts the oxidative stress, the inflammatory cytokine production, and the hepatotoxicity induced by the ingestion of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) Eur. Cytokine Netw. 2013;24:91–96.
    1. Antunes M.S., Jesse C.R., Ruff J.R., de Oliveira Espinosa D., Gomes N.S., Altvater E.E.T., Donato F., Giacomeli R., Boeira S.P. Hesperidin reverses cognitive and depressive disturbances induced by olfactory bulbectomy in mice by modulating hippocampal neurotrophins and cytokine levels and acetylcholinesterase activity. Eur. J. Pharmacol. 2016;789:411–420. doi: 10.1016/j.ejphar.2016.07.042.
    1. Ahmadi A., Shadboorestan A. Oxidative stress and cancer; the role of hesperidin, a citrus natural bioflavonoid, as a cancer chemoprotective agent. Nutr. Cancer. 2015;68:29–39. doi: 10.1080/01635581.2015.1078822.
    1. Allam G., Abuelsaad A.S.A. Differential effect of hesperidin on Th1, Th2, Th17, and proinflammatory cytokines production from splenocyte of Schistosoma mansoni-infected mice. Cent. Eur. J. Immunol. 2013;38:29–36. doi: 10.5114/ceji.2013.34355.
    1. Wei D., Ci X., Chu X., Wei M., Hua S., Deng X. Hesperidin suppresses ovalbumin-induced airway inflammation in a mouse allergic asthma model. Inflammation. 2012;35:114–121. doi: 10.1007/s10753-011-9295-7.
    1. Kim S.-H., Kim B.-K., Lee Y.-C. Antiasthmatic effects of hesperidin, a potential Th2 cytokine antagonist, in a mouse model of allergic asthma. Mediators Inflamm. 2011;2011:485402. doi: 10.1155/2011/485402.
    1. Abuelsaad A.S.A., Allam G., Al-Solumani A.A.A. Hesperidin inhibits inflammatory response induced by Aeromonas hydrophila infection and alters CD4+/CD8+ T cell ratio. Mediators Inflamm. 2014;2014:393217. doi: 10.1155/2014/393217.
    1. Camps-Bossacoma M., Franch À., Pérez-Cano F.J., Castell M. Influence of hesperidin on the systemic and intestinal rat immune response. Nutrients. 2017;9:580. doi: 10.3390/nu9060580.
    1. Unno T., Hisada T., Takahashi S. Hesperetin modifies the composition of fecal microbiota and increases cecal levels of short-chain fatty acids in rats. J. Agric. Food Chem. 2015;63:7952–7957. doi: 10.1021/acs.jafc.5b02649.
    1. Cianci R., Pagliari D., Piccirillo C.A., Fritz J.H., Gambassi G. The microbiota and immune system crosstalk in health and disease. Mediators Inflamm. 2018;2018:1–3. doi: 10.1155/2018/2912539.
    1. Forchielli M.L., Walker W.A. The role of gut-associated lymphoid tissues and mucosal defence. Br. J. Nutr. 2005;93:S41. doi: 10.1079/BJN20041356.
    1. Ramiro-Puig E., Pérez-Cano F.J., Ramos-Romero S., Pérez-Berezo T., Castellote C., Permanyer J., Franch A., Izquierdo-Pulido M., Castell M. Intestinal immune system of young rats influenced by cocoa-enriched diet. J. Nutr. Biochem. 2008;19:555–565. doi: 10.1016/j.jnutbio.2007.07.002.
    1. Camps-Bossacoma M., Abril-Gil M., Saldaña-Ruiz S., Franch À., Pérez-Cano F.J., Castell M. Cocoa diet prevents antibody synthesis and modifies lymph node composition and functionality in a rat oral sensitization model. Nutrients. 2016;8:242. doi: 10.3390/nu8040242.
    1. Martín-Peláez S., Camps-Bossacoma M., Massot-Cladera M., Rigo-Adrover M., Franch À., Pérez-Cano F.J., Castell M. Effect of cocoa’s theobromine on intestinal microbiota of rats. Mol. Nutr. Food Res. 2017;201700238:1700238. doi: 10.1002/mnfr.201700238.
    1. Massot-Cladera M., Abril-Gil M., Torres S., Franch À., Castell M., Pérez-Cano F.J. Impact of cocoa polyphenol extracts on the immune system and microbiota in two strains of young rats. Br. J. Nutr. 2014;112:1944–1954. doi: 10.1017/S0007114514003080.
    1. Massot-Cladera M., Pérez-Berezo T., Franch A., Castell M., Pérez-Cano F.J. Cocoa modulatory effect on rat faecal microbiota and colonic crosstalk. Arch. Biochem. Biophys. 2012;527:105–112. doi: 10.1016/j.abb.2012.05.015.
    1. Lay C., Sutren M., Rochet V., Saunier K., Doré J., Rigottier-Gois L. Design and validation of 16S rRNA probes to enumerate members of the Clostridium leptum subgroup in human faecal microbiota. Environ. Microbiol. 2005;7:933–946. doi: 10.1111/j.1462-2920.2005.00763.x.
    1. Harmsen H.J.M., Gibson G.R., Elfferich P., Raangs G.C., Wildeboer-Veloo A.C., Argaiz A., Roberfroid M.B., Welling G.W. Comparison of viable cell counts and fluorescence in situ hybridization using specific rRNA-based probes for the quantification of human fecal bacteria. FEMS Microbiol. Lett. 2000;183:125–129. doi: 10.1111/j.1574-6968.2000.tb08945.x.
    1. Harmsen H.J.M., Elfferich P., Schut F., Welling G.W. A 16S rRNA-targeted probe for detection of lactobacilli and enterococci in faecal samples by fluorescent in situ hybridization. Microb. Ecol. Health Dis. 1999;11:3–12.
    1. Trebesius K., Leitritz L., Adler K., Schubert S., Autenrieth I.B., Heesemann J. Culture independent and rapid identification of bacterial pathogens in necrotising fasciitis and streptococcal toxic shock syndrome by fluorescence in situ hybridisation. Med. Microbiol. Immunol. 2000;188:169–175. doi: 10.1007/s004300000035.
    1. Manz W., Amann R., Ludwig W., Vancanneyt M., Schleifer K.H. Application of a suite of 16S rRNA-specific oligonucleotide probes designed to investigate bacteria of the phylum cytophaga-flavobacter-bacteroides in the natural environment. Microbiology. 1996;142:1097–1106. doi: 10.1099/13500872-142-5-1097.
    1. Langendijk P.S., Schut F., Jansen G.J., Raangs G.C., Kamphuis G.R., Wilkinson M.H., Welling G.W. Quantitative fluorescence in situ hybridization of Bifidobacterium spp. with genus-specific 16S rRNA-targeted probes and its application in fecal samples. Appl. Environ. Microbiol. 1995;61:3069–3075.
    1. Poulsen L.K., Lan F., Kristensen C.S., Hobolth P., Molin S., Krogfelt K.A. Spatial distribution of Escherichia coli in the mouse large intestine inferred from rRNA in situ hybridization. Infect. Immun. 1994;62:5191–5194.
    1. Grases-Pintó B., Abril-Gil M., Rodríguez-Lagunas M.J., Castell M., Pérez-Cano F.J., Franch À. Leptin and adiponectin supplementation modifies mesenteric lymph node lymphocyte composition and functionality in suckling rats. Br. J. Nutr. 2018;119:486–495. doi: 10.1017/S0007114517003786.
    1. Camps-Bossacoma M., Abril-Gil M., Franch A., Perez-Cano F., Castell M. Induction of an oral sensitization model in rats. Clin. Immunol. Endocr. Metab. Drugs. 2014;1:89–101. doi: 10.2174/2212707002666150402225609.
    1. Reagan-Shaw S., Nihal M., Ahmad N. Dose translation from animal to human studies revisited. FASEB J. 2008;22:659–661. doi: 10.1096/fj.07-9574LSF.
    1. Perche O., Vergnaud-Gauduchon J., Morand C., Dubray C., Mazur A., Vasson M.P. Orange juice and its major polyphenol hesperidin consumption do not induce immunomodulation in healthy well-nourished humans. Clin. Nutr. 2014;33:130–135. doi: 10.1016/j.clnu.2013.03.012.
    1. Alard J., Peucelle V., Boutillier D., Breton J., Kuylle S., Pot B., Holowacz S., Grangette C. New probiotic strains for inflammatory bowel disease management identified by combining in vitro and in vivo approaches. Benef. Microbes. 2018;9:317–331. doi: 10.3920/BM2017.0097.
    1. Tankou S.K., Regev K., Healy B.C., Cox L.M., Tjon E., Kivisakk P., Vanande I.P., Cook S., Gandhi R., Glanz B., et al. Investigation of probiotics in multiple sclerosis. Mult. Scler. J. 2018;24:58–63. doi: 10.1177/1352458517737390.
    1. An H.M., Lee D.K., Kim J.R., Lee S.W., Cha M.K., Lee K.O., Ha N.J. Antiviral activity of Bifidobacterium adolescentis SPM 0214 against herpes simplex virus type 1. Arch. Pharm. Res. 2012;35:1665–1671. doi: 10.1007/s12272-012-0918-9.
    1. Sabico S., Al-Mashharawi A., Al-Daghri N.M., Yakout S., Alnaami A.M., Alokail M.S., McTernan P.G. Effects of a multi-strain probiotic supplement for 12 weeks in circulating endotoxin levels and cardiometabolic profiles of medication naïve T2DM patients: A randomized clinical trial. J. Transl. Med. 2017;15:249. doi: 10.1186/s12967-017-1354-x.
    1. Pereira-Caro G., Fernández-Quirós B., Ludwig I.A., Pradas I., Crozier A., Moreno-Rojas J.M. Catabolism of citrus flavanones by the probiotics Bifidobacterium longum and Lactobacillus rhamnosus. Eur. J. Nutr. 2018;57:231–242. doi: 10.1007/s00394-016-1312-z.
    1. Duda-Chodak A. The inhibitory effect of polyphenols on human gut microbiota. J. Physiol. Pharmacol. 2012;63:497–503.
    1. Daly K., Darby A.C., Hall N., Nau A., Bravo D., Shirazi-Beechey S.P. Dietary supplementation with lactose or artificial sweetener enhances swine gut Lactobacillus population abundance. Br. J. Nutr. 2014;111:S30–S35. doi: 10.1017/S0007114513002274.
    1. Puupponen-Pimiä R., Nohynek L., Hartmann-Schmidlin S., Kähkönen M., Heinonen M., Määttä-Riihinen K., Oksman-Caldentey K.M. Berry phenolics selectively inhibit the growth of intestinal pathogens. J. Appl. Microbiol. 2005;98:991–1000. doi: 10.1111/j.1365-2672.2005.02547.x.
    1. Camps-Bossacoma M., Pérez-Cano F.J., Franch À., Castell M. Gut microbiota in a rat oral sensitization model: Effect of a cocoa-enriched diet. Oxid. Med. Cell. Longev. 2017;2017:1–12. doi: 10.1155/2017/7417505.
    1. Massot-Cladera M., Costabile A., Childs C.E., Yaqoob P., Franch À., Castell M., Pérez-Cano F.J. Prebiotic effects of cocoa fibre on rats. J. Funct. Foods. 2015;19:341–352. doi: 10.1016/j.jff.2015.09.021.
    1. Yeom M., Sur B.J., Park J., Cho S.G., Lee B., Kim S.T., Kim K.S., Lee H., Hahm D.H. Oral administration of Lactobacillus casei variety rhamnosus partially alleviates TMA-induced atopic dermatitis in mice through improving intestinal microbiota. J. Appl. Microbiol. 2015;119:560–570. doi: 10.1111/jam.12844.
    1. Macpherson A.J., Yilmaz B., Limenitakis J.P., Ganal-Vonarburg S.C. IgA function in relation to the intestinal microbiota. Annu. Rev. Immunol. 2018;36:359–381. doi: 10.1146/annurev-immunol-042617-053238.
    1. Okazaki Y., Han Y., Kayahara M., Watanabe T., Arishige H., Kato N. Consumption of curcumin elevates fecal immunoglobulin A, an index of intestinal immune function, in rats fed a high-fat diet. J. Nutr. Sci. Vitaminol. (Tokyo) 2010;56:68–71. doi: 10.3177/jnsv.56.68.
    1. Taira T., Yamaguchi S., Takahashi A., Okazaki Y., Yamaguchi A., Sakaguchi H., Chiji H. Dietary polyphenols increase fecal mucin and immunoglobulin A and ameliorate the disturbance in gut microbiota caused by a high fat diet. J. Clin. Biochem. Nutr. 2015;57:212–216. doi: 10.3164/jcbn.15-15.
    1. Xiao S., Liu W., Bi J., Liu S., Zhao H., Gong N., Xing D. Anti-inflammatory effect of hesperidin enhances chondrogenesis of human mesenchymal stem cells for cartilage tissue repair. J. Inflamm. 2018;15:1–8. doi: 10.1186/s12950-018-0190-y.
    1. Chang J.H. Anti-inflammatory effects and its mechanisms of hesperidin in an asthmatic mouse model induced by ovalbumin. J. Exp. Biomed. Sci. 2010;16:83–90.

Source: PubMed

3
Iratkozz fel