Fifteen years of urea cycle disorders brain research: Looking back, looking forward

Kuntal Sen, Matthew Whitehead, Carlos Castillo Pinto, Ljubica Caldovic, Andrea Gropman, Kuntal Sen, Matthew Whitehead, Carlos Castillo Pinto, Ljubica Caldovic, Andrea Gropman

Abstract

Urea cycle disorders (UCD) are inherited diseases resulting from deficiency in one of six enzymes or two carriers that are required to remove ammonia from the body. UCD may be associated with neurological damage encompassing a spectrum from asymptomatic/mild to severe encephalopathy, which results in most cases from Hyperammonemia (HA) and elevation of other neurotoxic intermediates of metabolism. Electroencephalography (EEG), Magnetic resonance imaging (MRI) and Proton Magnetic resonance spectroscopy (MRS) are noninvasive measures of brain function and structure that can be used during HA to guide management and provide prognostic information, in addition to being research tools to understand the pathophysiology of UCD associated brain injury. The Urea Cycle Rare disorders Consortium (UCDC) has been invested in research to understand the immediate and downstream effects of hyperammonemia (HA) on brain using electroencephalogram (EEG) and multimodal brain MRI to establish early patterns of brain injury and to track recovery and prognosis. This review highlights the evolving knowledge about the impact of UCD and HA in particular on neurological injury and recovery and use of EEG and MRI to study and evaluate prognostic factors for risk and recovery. It recognizes the work of others and discusses the UCDC's prior work and future research priorities.

Keywords: Ammonia; Brain injury; Hyperammonemia; Magnetic resonance spectroscopy; Multimodal neuroimaging; Urea cycle disorder.

Copyright © 2021 Elsevier Inc. All rights reserved.

Figures

Figure 1.
Figure 1.
The urea cycle. Abbreviations: CPS1: Carbamoyl phosphate synthetase 1; OTC: ornithine transcarbamylase deficiency; ASS: arginosuccinate synthase; ASL: arginosuccinate lyase; ARG: arginase.
Figure 2.
Figure 2.
Diffusion tensor imaging was used to evaluate the white matter tracts in a patient with arginase deficiency. Colors denote the dominant direction of the/fibers. Reduction in the volume of fibers in the patient with arginase deficiency has been observed.
Figure 3:
Figure 3:
The Glutamate-glutamine cycle. The glutamate-glutamine cycle refers to the compartmentation of glutamate and glutamine between neurons and glia such that during glutamatergic neurotransmission neurons release glutamate into the extracellular space. This results in the rapid removal of released glutamate by the glial glutamate transporters. Astrocytes are the major cells affected by hyperammonemia in the central nervous system (CNS), partially due to their proximity to the blood vessels Changes that occur in astrocytes following acute ammonia exposure, include extensive swelling, leading to cerebral edema. This cycle is the key mechanism for control of glutamatergic neurotransmission in the human brain
Figure 4:
Figure 4:
This 1H MRS spectrum shows the key differences in patients who are symptomatic and asymptomatic OTCD patients versus age matched control. Key metabolic differences include the elevated glutamine in symptomatic and to a lesser degree, in asymptomatic OTCD carriers; the low myoinositol in symptomatic and asymptomatic patients, and low choline which may be observed in both symptomatic and asymptomatic patients with OTCD.
Figure 5.
Figure 5.
NAGSko mice have seizures while on NCG and as they become hyperammonemic. Video EEG recording was reviewed for behavioral signs of seizures that were graded on a modified Racine scale, and the corresponding electrical activity. Each graph corresponds to recording of one animal and shows when did a mouse experienced a seizure and its grade/severity. X-axis in these graphs is time and the height of bars represents seizure grade (2 through 6).
Figure 6.
Figure 6.
ROI analysis results, fMRI. A) Z-scores reflecting degree of functional connectivity between pairs of ROIs in the Control group. B) Z-scores reflecting degree of functional connectivity between pairs of ROIs in OTCD patient group. C) Controls have significantly greater DMN functional connectivity than OTCD patients between ACC/mPFC node and bilateral IPL. (From: Pacheco-Colón I, Washington SD, Sprouse C, Helman G, Gropman AL, VanMeter JW. Reduced Functional Connectivity of Default Mode and Set-Maintenance Networks in Ornithine Transcarbamylase Deficiency. PLoS One. 2015;10(6):e0129595)
Figure 7.
Figure 7.
This figure illustrates our studies in UCD using multimodal imaging approach to interrogate various aspects of the pathophysiology as discussed in this manuscript.

References

    1. Helman G, Pacheco-Colon I, Gropman AL. The urea cycle disorders. Semin Neurol. 2014;34(3):341–349.
    1. Ah Mew N, Simpson KL, Gropman AL, Lanpher BC, Chapman KA, Summar ML. Urea Cycle Disorders Overview. 2003 Apr 29 [updated 2017 Jun 22]. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Mirzaa G, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993. –2021.
    1. Matsumoto S, Häberle J, Kido J, Mitsubuchi H, Endo F, Nakamura K. Urea cycle disorders-update. J Hum Genet. 2019;64(9):833–847.
    1. Haberle J, Burlina A, Chakrapani A, Dixon M, Karall D, Lindner M, Mandel H, Martinelli D, Pintos-Morell G, Santer R, Skouma A, Servais A, Tal G, Rubio V, Huemer M, Dionisi-Vici C. Suggested guidelines for the diagnosis and management of urea cycle disorders: First revision. J Inherit Metab Dis. 2019;42(6):1192–1230.
    1. Braissant O, McLin VA, Cudalbu C. Ammonia toxicity to the brain. J Inherit Metab Dis. 2013; 36(4):595–612.
    1. Ali R, Nagalli S. Hyperammonemia. 2020 Aug 10. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2021
    1. Braissant O Current concepts in the pathogenesis of urea cycle disorders. Mol Genet Metab. 2010; 100 Suppl 1:S3–12.
    1. Brusilow SW, Maestri NE. Urea cycle disorders: diagnosis, pathophysiology, and therapy. Adv Pediatr. 1996;43:127–170.
    1. Kido J, Matsumoto S, Sugawara K, Sawada T, Nakamura K. Variants associated with urea cycle disorders in Japanese patients: Nationwide study and literature review. Am J Med Genet A. 2021. April 13. doi: 10.1002/ajmg.a.62199. Epub ahead of print.
    1. Stone WL, Basit H, Jaishankar GB. Urea Cycle Disorders. 2021 Jan 24. In: StatPearls [Internet] Treasure Island (FL): StatPearls Publishing; 2021.
    1. Pontoizeau C, Roda C, Arnoux JB, Vignolo-Diard P, Brassier A, Habarou F, Barbier V, Grisel C, Abi-Warde MT, Boddaert N, Kuster A, Servais A, Kaminska A, Hennequin C, Dupic L, Lesage F, Touati G, Valayannopoulos V, Chadefaux-Vekemans B, Oualha M, Eisermann M, Ottolenghi C, de Lonlay P. Neonatal factors related to survival and intellectual and developmental outcome of patients with early-onset urea cycle disorders. Mol Genet Metab. 2020; 130(2):110–117.
    1. Posset R, Kölker S, Gleich F, Okun JG, Gropman AL, Nagamani SCS, Scharre S, Probst J, Walter ME, Hoffmann GF, Garbade SF, Zielonka M; Urea Cycle Disorders Consortium (UCDC) and the European registry and network for Intoxication type Metabolic Diseases (E-IMD) consortia study group. Severity-adjusted evaluation of newborn screening on the metabolic disease course in individuals with cytosolic urea cycle disorders. Mol Genet Metab. 2020;131(4):390–397.
    1. Willard-ms CL, Koehler RC et al. Inhibition of glutamine synthetase reduces ammonia-induced astrocyte swelling in rat. Neuroscience 1996; 71:589–599.
    1. Takahashi H, Koehler RC, Brusilow SW & Traystman RJ. Inhibition of brain glutamine accumulation prevents cerebral edema in hyperammonemic rats. Am J Physiol 1991; 261:H825–829.
    1. Tanigami H, Rebel A et al. Effect of glutamine synthetase inhibition on astrocyte swelling and altered astroglial protein expression during hyperammonemia in rats. Neuroscience 2004; 131:437–449.
    1. Gropman AL, Summar M, Leonard JV. Neurological implications of urea cycle disorders. J Inherit Metab Dis. 2007; 30:865–879.
    1. Waisbren SE, Cuthbertson D, Burgard P, Holbert A, McCarter R, Cederbaum S; Members of the Urea Cycle Disorders Consortium. Biochemical markers and neuropsychological functioning in distal urea cycle disorders. J Inherit Metab Dis. 2018;41(4):657–667.
    1. Waisbren SE, Stefanatos AK, Kok TMY, Ozturk-Hismi B. Neuropsychological attributes of urea cycle disorders: A systematic review of the literature. J Inherit Metab Dis. 2019;42(6):1176–1191.
    1. Waisbren SE, Gropman AL, Members of the Urea Cycle Disorders C, Batshaw ML. Improving long term outcomes in urea cycle disorders report from the Urea Cycle Disorders Consortium. J Inherit Metab Dis. 2016;39(4):573–584.
    1. Kido J, Matsumoto S, Ito T, Hirose S, Fukui K, Kojima-Ishii K, Mushimoto Y, Yoshida S, Ishige M, Sakai N, Nakamura K. Physical, cognitive, and social status of patients with urea cycle disorders in Japan. Mol Genet Metab Rep. 2021;27:100724.
    1. Wiwattanadittakul N, Prust M, Gaillard WD, Massaro A, Vezina G, Tsuchida TN, Gropman AL. The utility of EEG monitoring in neonates with hyperammonemia due to inborn errors of metabolism. Mol Genet Metab. 2018;125(3):235–240.
    1. McGowan M, Ferreira C, Whitehead M, Basu SK, Chang T, Gropman A. The Application of Neurodiagnostic Studies to Inform the Acute Management of a Newborn Presenting with Carbamoyl Phosphate Synthetase 1 Deficiency. Child Neurol Open. 2021;8:2329048X20985179.
    1. Prasad AN, Breen JC, Ampola MG, Rosman NP. Argininemia: a treatable genetic cause of progressive spastic diplegia simulating cerebral palsy: case reports and literature review. J Child Neurol. 1997;12(5):301–309.
    1. Jichlinski A, Clarke L, Whitehead MT, Gropman A. “Cerebral Palsy” in a Patient with Arginase Deficiency. Semin Pediatr Neurol. 2018;26:110–114.
    1. Oldham MS, VanMeter JW, Shattuck KF, Cederbaum SD, Gropman AL. Diffusion tensor imaging in arginase deficiency reveals damage to corticospinal tracts. Pediatr Neurol. 2010;42(1):49–52.
    1. Kleppe S, Mian A, Lee B. Urea Cycle Disorders. Curr Treat Options Neurol. 2003;5(4):309–319.
    1. Liu XB, Haney JR, Cantero G, Lambert JR, Otero-Garcia M, Truong B, Gropman A, Cobos I, Cederbaum SD, Lipshutz GS. Hepatic arginase deficiency fosters dysmyelination during postnatal CNS development. JCI Insight. 2019;4(17):e130260.
    1. Summar ML, Koelker S, Freedenberg D, Le Mons C, Haberle J, Lee HS, Kirmse B, European R. The incidence of urea cycle disorders. Mol Genet Metab. 2013;110(1–2):179–180.
    1. Ben-Ari Z, Dalal A, Morry A, Pitlik S, Zinger P, Cohen J, Fattal I, Galili- Mosberg R, Tessler D, Baruch RG, Nuoffer JM, Largiader CR, Mandel H. Adult-onset ornithine transcarbamylase (OTC) deficiency unmasked by the Atkins’ diet. J Hepatol. 2010; 52(2):292–295.
    1. Bezinover D, Douthitt L, McQuillan PM, Khan A, Dalal P, Stene J, Uemura T, Kadry Z, Janicki PK. Fatal hyperammonemia after renal transplant due to late-onset urea cycle deficiency: a case report. Transplant Proc. c2010; 42(5):1982–1985.
    1. Brajon D, Carassou P, Pruna L, Feillet F, Kaminsky P. Ornithine transcarbamylase deficiency in adult. Rev Med Interne. 2010; 31(10):709–711.
    1. Celik O, Buyuktas D, Aydin A, Acbay O. Ornithine transcarbamylase deficiency diagnosed in pregnancy. Gynecol Endocrinol. 2011; 27(12):1052–4.
    1. Alameri M, Shakra M, Alsaadi T. Fatal coma in a young adult due to late-onset urea cycle deficiency presenting with a prolonged seizure: a case report. J Med Case Rep. 2015; 9:267.
    1. Bijvoet GP, van der Sijs-Bos CJ, Wielders JP, Groot OA. Fatal hyperammonaemia due to late-onset ornithine transcarbamylase deficiency. Neth J Med. 2016; 74(1):36–39.
    1. Ramanathan M, Uppalapu S, Patel NM. Hiding in plain sight: a case of ornithine transcarbamylase deficiency unmasked post-liver transplantation. Am J Transplant. 2017; 17(5):1405–1408.
    1. Stepien KM, Geberhiwot T, Hendriksz CJ, Treacy EP. Challenges in diagnosing and managing adult patients with urea cycle disorders. J Inherit Metab Dis. 2019;42(6):1136–1146.
    1. Choi DE, Lee KW, Shin YT, Na KR. Hyperammonemia in a patient with late-onset ornithine carbamoyltransferase deficiency. J Korean Med Sci. 2012; 27(5):556–559.
    1. Machado MC, Fonseca GM, Jukemura J. Late-onset ornithine carbamoyltransferase deficiency accompanying acute pancreatitis and hyperammonemia. Case Rep Med. 2013;2013:903546.
    1. Pillai U, Kahlon R, Sondheimer J, Cadnapaphorncai P, Bhat Z. A rare case of hyperammonemia complication of high-protein parenteral nutrition. JPEN J Parenter Enteral Nutr. 2013;37(1):134–137.
    1. Koya Y, Shibata M, Senju M, Honma Y, Hiura M, Ishii M, Matsumoto S, Harada M. Hyperammonemia in a woman with late-onset ornithine transcarbamylase deficiency. Intern Med. 2019; 58(7):937–942.
    1. Maramattom BV, Raja R, Balagopal A. Late onset arginase deficiency presenting with encephalopathy and midbrain hyperintensity. Ann Indian Acad Neurol. 2016;19(3):392–394.
    1. Daijo K, Kawaoka T, Nakahara T, Nagaoki Y, Tsuge M, Hiramatsu A, Imamura M, Kawakami Y, Aikata H, Hara K, Tajima G, Kobayashi M, Chayama K. Late-onset ornithine transcarbamylase deficiency associated with hyperammonemia. Clin J Gastroenterol. 2017; 10(4):383–387.
    1. Cavicchi C, Chilleri C, Fioravanti A, Ferri L, Ripandelli F, Costa C, Calabresi P, Prontera P, Pochiero F, Pasquini E, Funghini S, la Marca G, Donati MA, Morrone A. Late-Onset N-Acetylglutamate Synthase Deficiency: Report of a Paradigmatic Adult Case Presenting with Headaches and Review of the Literature. Int J Mol Sci. 2018;19(2):345.
    1. Hershman M, Carmody R, Udayasankar UK. Case 252: acute hyperammonemic encephalopathy resulting from late-onset ornithine transcarbamylase deficiency. Radiology. 2018;287(1):353–359.
    1. Anstey JR, Haydon TP, Ghanpur RB, de Jong G. Initial presentation of a urea cycle disorder in adulthood: an under-recognised cause of severe neurological dysfunction. Med J Aust. 2015; 203(11):445–447
    1. Silfverberg T, Sahlander F, Enlund M, Oscarson M, Hardstedt M. Late onsethyperornithinemia-hyperammonemia-homocitrullinuria syndrome – how web searching by the family solved unexplained unconsciousness: a case report. J Med Case Rep. 2018;12(1):274.
    1. Salek J, Byrne J, Box T, Longo N, Sussman N. Recurrent liver failure in a 25-year-old female. Liver Transpl. 2010; 16(9):1049–1053.
    1. Weiss N, Mochel F, Rudler M, Demeret S, Lebray P, Conti F, Galanaud D, Ottolenghi C, Bonnefont JP, Dommergues M, Bernuau J, Thabut D. Peak hyperammonemia and atypical acute liver failure: The eruption of an urea cycle disorder during hyperemesis gravidarum. J Hepatol. 2017; 20:S0168–8278(17)32289–32284.
    1. Cartagena A, Prasad AN, Rupar CA, Strong M, Tuchman M, Ah Mew N, Prasad C. Recurrent encephalopathy: NAGS (N-acetylglutamate synthase) deficiency in adults. Can J Neurol Sci. 2013;40(1):3–9.
    1. Sakamoto S, Shinno H, Ikeda M, Miyoshi H, Nakamura Y. A patient with type II citrullinemia who developed refractory complex seizure. Gen Hosp Psychiatry. 2013;35(1):103.
    1. Cowley DM, Bowling FG, McGill JJ, van Dongen J, Morris D. Adult-onset arginase deficiency. J Inherit Metab Dis. 1998;21(6):677–678.
    1. Rimbaux S, Hommet C, Perrier D, Cottier JP, Legras A, Labarthe F, Lemarcis L, Autret A, Maillot F. Adult onset ornithine transcarbamylase deficiency: an unusual cause of semantic disorders. J Neurol Neurosurg Psychiatry 2004; 75(7): 1073–1075.
    1. Hershman M, Carmody R, Udayasankar UK. Case 252: acute hyperammonemic encephalopathy resulting from late-onset ornithine transcarbamylase deficiency. Radiology 2018; 287:353–359.
    1. Elgudin L, Hall Y, Schubert D. Ammonia induced encephalopathy from valproic acid in a bipolar patient: case report. Int J Psychiatry Med. 2003;33(1):91–96.
    1. Fassier T, Guffon N, Acquaviva C, D’Amato T, Durand DV, Domenech P. Misdiagnosed postpartum psychosis revealing a late-onset urea cycle disorder. Am J Psychiatry. 2011; 168(6):576–580.
    1. Barkovich E, Gropman AL. Late Onset Ornithine Transcarbamylase Deficiency Triggered by an Acute Increase in Protein Intake: A Review of 10 Cases Reported in the Literature. Case Rep Genet. 2020; 2020:7024735.
    1. Wells DL, Thomas JB, Sacks GS, Zouhary LA. Late-onset urea cycle disorder in adulthood unmasked by severe malnutrition. Nutrition. 2014; 30(7–8):943–947.
    1. Bireley WR, Van Hove JL, Gallagher RC, Fenton LZ. Urea cycle disorders: brain MRI and neurological outcome. Pediatr Radiol. 2012; 42(4):455–462.
    1. Sen K, Castillo Pinto C, Gropman AL. Expanding Role of Proton Magnetic Resonance Spectroscopy: Timely Diagnosis and Treatment Initiation in Partial Ornithine Transcarbamylase Deficiency. J Pediatr Genet. 2021;10(1):77–80.
    1. Stergachis AB, Krier JB, Merugumala SK, Berry GT, Lin AP. Clinical utility of brain MRS imaging of patients with adult-onset non-cirrhotic hyperammonemia. Mol Genet Metab Rep. 2021;27:100742.
    1. Felipo V, Butterworth RF. Neurobiology of ammonia. Prog Neurobiol. 2002;67:259–279.
    1. Butterworth RF. Hepatic Encephalopathy in Cirrhosis: Pathology and Pathophysiology. Drugs. 2019;79(Suppl 1):17–21.
    1. Braissant O Ammonia toxicity to the brain: effects on creatine metabolism and transport and protective roles of creatine. Mol Genet Metab. 2010;100 Suppl 1:S53–8.
    1. Holcek M Evidence of a vicious cycle in glutamine synthesis and breakdown in pathogenesis of hepatic encephalopathy-therapeutic perspectives. Metab Brain Dis. 2014;29(1):9–17.
    1. Braissant O, Cagnon L et al. Ammonium alters creatine transport and synthesis in a 3D culture of developing brain cells, resulting in secondary cerebral creatine deficiency. Eur J Neurosci 27, 1673–1685.
    1. Cagnon L & Braissant O CNTF protects oligodendrocytes from ammonia toxicity: intracellular signaling pathways involved. Neurobiol Dis 2009; 33:133–142.
    1. Cagnon L & Braissant O Role of caspases, calpain and cdk5 in ammonia-induced cell death in developing brain cells. Neurobiol Dis 2008; 32:281–292.
    1. Dolman CL, Clasen RA, Dorovini-Zis K. Severe cerebral damage in ornithine transcarbamylase deficiency. Clin Neuropathol. 1988;7(1):10–5.
    1. Msall M, Batshaw ML, Suss R, Brusilow SW, Mellits ED. Neurologic outcome in children with inborn errors of urea synthesis. Outcome of urea-cycle enzymopathies. N Engl J Med. 1984. June 7;310(23):1500–1505.
    1. Nagata N, Matsuda I, Matsuura T, Oyanagi K, Tada K, Narisawa K, Kitagawa T, Sakiyama T, Yamashita F, Yoshino M. Retrospective survey of urea cycle disorders: Part 2. Neurological outcome in forty-nine Japanese patients with urea cycle enzymopathies. Am J Med Genet. 1991;40(4):477–481.
    1. Verma NP, Hart ZH, Kooi KA. Electroencephalographic findings in urea-cycle disorders. Electroencephalogr Clin Neurophysiol. 1984; 57(2):105–112.
    1. Rangroo Thrane V, Thrane AS et al. Ammonia triggers neuronal disinhibition and seizures by impairing astrocyte potassium buffering. Nat Med 2013; 19:1643–1648.
    1. Iyer RK, Yoo PK et al. Mouse model for human arginase deficiency. Mol Cell Biol 2002; 22:4491–4498.
    1. Robinson MB, Hopkins K, Batshaw ML, McLaughlin BA, Heyes MP, Oster-Granite ML. Evidence of excitotoxicity in the brain of the ornithine carbamoyltransferase deficient sparse fur mouse. Brain Res Dev Brain Res 1995;90(1–2):35–44.
    1. Senkevitch E, Cabrera-Luque J, Morizono H, Caldovic L, Tuchman M. A novel biochemically salvageable animal model of hyperammonemia devoid of N-acetylglutamate synthase. Mol Genet Metab 2012; 106:160–168.
    1. Suarez I, Bodega G & Fernandez B Modulation of AMPA receptor subunits GluR1 and GluR2/3 in the rat cerebellum in an experimental hepatic encephalopathy model. Brain Res 1997; 778:346–353.
    1. Walker V Ammonia toxicity and its prevention in inherited defects of the urea cycle, Diabetes Obes. Metab 2009; 11: 823–835.
    1. Leonard JV, Ward Platt MP, Morris AA. Hypothesis: proposals for the management of a neonate at risk of hyperammonaemia due to a urea cycle disorder, Eur. J. Pediatr 2008; 167: 305–309.
    1. Brusilow SW, Valle DL, Batshaw M. New pathways of nitrogen excretion in inborn errors of urea synthesis, Lancet 1979; 2:452–454.
    1. Häberle J, Boddaert N, Burlina A, Chakrapani A, Dixon M, Huemer M, et al. Suggested guidelines for the diagnosis and management of urea cycle disorders. Orphanet J Rare Dis. 2012; 7–32.
    1. Schubiger G, Bachmann C, Barben P, Colombo JP, Tönz O, Schüpbach D. N-acetylglutamate synthetase deficiency: diagnosis, management and follow-up of a rare disorder of ammonia detoxication. Eur J Pediatr. 1991. March;150(5):353–356.
    1. Stevenson T, Millan MT et al. Long-term outcome following pediatric liver transplantation for metabolic disorders. Pediatric transplantation 2010; 14:268–275.
    1. Whitington PF, Alonso EM et al. Liver transplantation for the treatment of urea cycle disorders. J Inherit Metab Dis 1998; 21 Suppl 1:112–118.
    1. Sprouse C, King J, Helman G, Pacheco-Colón I, Shattuck K, Breeden A, Seltzer R, VanMeter JW, Gropman AL. Investigating neurological deficits in carriers and affected patients with ornithine transcarbamylase deficiency. Mol Genet Metab. 2014; 113(1–2):136–141.
    1. Gropman AL, Fricke ST, Seltzer RR, Hailu A, Adeyemo A, Sawyer A, van Meter J, Gaillard WD, McCarter R, Tuchman M, Batshaw M; Urea Cycle Disorders Consortium. 1H MRS identifies symptomatic and asymptomatic subjects with partial ornithine transcarbamylase deficiency. Mol Genet Metab. 2008;95(1–2):21–30.
    1. Gropman AL, Seltzer RR, Yudkoff M, Sawyer A, VanMeter J, Fricke ST. 1H MRS allows brain phenotype differentiation in sisters with late onset ornithine transcarbamylase deficiency (OTCD) and discordant clinical presentations. Mol Genet Metab. 2008;94(1):52–60.
    1. Sen K, Whitehead MT, Gropman AL. Multimodal imaging in urea cycle-related neurological disease - What can imaging after hyperammonemia teach us? Transl Sci Rare Dis. 2020. August 3;5(1–2):87–95.
    1. Seminara J, Tuchman M, Krivitzky L, Krischer J, Lee HS, Lemons C, Baumgartner M, Cederbaum S, Diaz GA, Feigenbaum A, Gallagher RC, Harding CO, Kerr DS, Lanpher B, Lee B, Lichter-Konecki U, McCandless SE, Merritt JL, Oster-Granite ML, Seashore MR, Stricker T, Summar M, Waisbren S, Yudkoff M, Batshaw ML. Establishing a consortium for the study of rare diseases: The Urea Cycle Disorders Consortium. Mol Genet Metab. 2010;100 Suppl 1(Suppl 1):S97–105.
    1. Batshaw ML, Tuchman M, Summar M & Seminara J A longitudinal study of urea cycle disorders. Mol Genet Metab 2014; 113:127–130.
    1. Monfort P, Montoliu C, Hermenegildo C, Munoz M & Felipo V Differential effects of acute and chronic hyperammonemia on signal transduction pathways associated to NMDA receptors. Neurochem Int 2000; 37:249–253.
    1. Norenberg MD, Huo Z, Neary JT Roig-Cantesano A. The glial glutamate transporter in hyperammonemia and hepatic encephalopathy: relation to energy metabolism and glutamatergic neurotransmission. Glia 21 1997; 124–133.
    1. Marcaida G, Felipo V, Hermenegildo C, Minana MD Grisolia S. Acute ammonia toxicity is mediated by the NMDA type of glutamate receptors. FEBS Lett 1992; 296:67–68.
    1. Jayakumar AR, Rao KV, Murthy Ch, R & Norenberg MD. Glutamine in the mechanism of ammonia-induced astrocyte swelling. Neurochem Int 2006; 48, 623–628.
    1. Manto A, De Gennaro A, Serino A, Cozzolino A, Colasante AG, La Rocca MR. MRI in a woman with late onset ornithine transcarbamylase deficiency. Neuroradiol J. 2010. 23(4):398–401.
    1. Pacheco-Colón I, Fricke S, VanMeter J, Gropman AL. Advances in urea cycle neuroimaging: Proceedings from the 4th International Symposium on urea cycle disorders, Barcelona, Spain, September 2013. Mol Genet Metab. 2014; 113(1–2):118–26.
    1. Gropman AL, Gertz B, Shattuck K, Kahn IL, Seltzer R, Krivitsky L, Van Meter J. Diffusion tensor imaging detects areas of abnormal white matter microstructure in patients with partial ornithine transcarbamylase deficiency. AJNR Am J Neuroradiol. 2010;31(9):1719–1723.
    1. Connelly A, Cross JH et al. Magnetic resonance spectroscopy shows increased brain glutamine in ornithine carbamoyl transferase deficiency. Pediatr Res 1993; 33:77–81.
    1. Choi CG, Yoo HW. Localized proton MR spectroscopy in infants with urea cycle defect. AJNR Am J Neuroradiol. 2001;22(5):834–7.
    1. Takanashi J, Barkovich AJ et al. Brain MR imaging in neonatal hyperammonemic encephalopathy resulting from proximal urea cycle disorders. AJNR Am J Neuroradiol 2003; 24:1184–1187.
    1. Okada T, Kuribayashi H, Kaiser LG, Urushibata Y, Salibi N, Seethamraju RT, Ahn S, Thuy DHD, Fujimoto K, Isa T. Repeatability of proton magnetic resonance spectroscopy of the brain at 7 T: effect of scan time on semi-localized by adiabatic selective refocusing and short-echo time stimulated echo acquisition mode scans and their comparison. Quant Imaging Med Surg. 2021;11(1):9–20.
    1. Gropman A Brain imaging in urea cycle disorders. Mol Genet Metab. 2010;100 Suppl 1(Suppl 1):S20–30.
    1. Kanamori K, Ross BD. Kinetics of glial glutamine efflux and the mechanism of neuronal uptake studied in vivo in mildly hyperammonemic rat brain. J Neurochem. 2006;99(4):1103–1113.
    1. Lanz B, Rackayova V, Braissant O, Cudalbu C. MRS studies of neuroenergetics and glutamate/glutamine exchange in rats: Extensions to hyperammonemic models. Anal Biochem. 2017. July 15;529:245–269.
    1. Ross BD, Danielsen ER, Blüml S. Proton magnetic resonance spectroscopy: the new gold standard for diagnosis of clinical and subclinical hepatic encephalopathy? Dig Dis. 1996;14 Suppl 1:30–9.
    1. Gropman AL, Sailasuta N, Harris KC, Abulseoud O, Ross BD. Ornithine transcarbamylase deficiency with persistent abnormality in cerebral glutamate metabolism in adults. Radiology. 2009;252(3):833–841.
    1. Gropman AL, Shattuck K, Prust MJ, Seltzer RR, Breeden AL AL, Hailu A, Rigas A, Hussain R, VanMeter JJ. Altered neural activation in ornithine transcarbamylase deficiency during executive cognition: an fMRI study. Hum Brain Mapp. 2013; 34:753–761.
    1. Anderson A, Gropman A, Le Mons C, Stratakis C, Gandjbakhche A. Evaluation of neurocognitive function of prefrontal cortex in ornithine transcarbamylase deficiency. Mol Genet Metab. 2020;129(3):207–212.
    1. Herman ST, Abend NS, Bleck TP, Chapman KE, Drislane FW, Emerson RG, Gerard EE, Hahn CD, Husain AM, Kaplan PW, LaRoche SM, Nuwer MR, Quigg M, Riviello JJ, Schmitt SE, Simmons LA, Tsuchida TN, Hirsch LJ; Critical Care Continuous EEG Task Force of the American Clinical Neurophysiology Society. Consensus statement on continuous EEG in critically ill adults and children, part I: indications. J Clin Neurophysiol. 2015;32(2):87–95.
    1. Pontoizeau C, Roda C, Arnoux JB, Vignolo-Diard P, Brassier A, Habarou F, Barbier V, Grisel C, Abi-Warde MT, Boddaert N, Kuster A, Servais A, Kaminska A, Hennequin C, Dupic L, Lesage F, Touati G, Valayannopoulos V, Chadefaux-Vekemans B, Oualha M, Eisermann M, Ottolenghi C, de Lonlay P. Neonatal factors related to survival and intellectual and developmental outcome of patients with early-onset urea cycle disorders. Mol Genet Metab. 2020. June;130(2):110–117.
    1. Picca S, Dionisi-Vici C, Abeni D, Pastore A, Rizzo C, Orzalesi M, Sabetta G, Rizzoni G, Bartuli A. Extracorporeal dialysis in neonatal hyperammonemia: modalities and prognostic indicators. Pediatr Nephrol. 2001. November;16(11):862–867.
    1. Bachmann C Outcome and survival of 88 patients with urea cycle disorders: a retrospective evaluation. Eur J Pediatr. 2003. June;162(6):410–416.
    1. Gropman AL, Anderson A Novel imaging technology for genetic diagnoses in the inborn errors of metabolism. Journal of Translational Genetics and Genomics 2020; 4(4): 429–445.
    1. Lockwood AH, McDonald JM, Reiman RE, Gelbard AS, Laughlin JS, Duffy TE, Plum F. The dynamics of ammonia metabolism in man. Effects of liver disease and hyperammonemia. J Clin Invest. 1979. March;63(3):449–60.
    1. Rao KV, Norenberg MD. Cerebral energy metabolism in hepatic encephalopathy and hyperammonemia. Metab Brain Dis. 2001. June;16(1–2):67–78.
    1. Strauss GI, Møller K, Larsen FS, Kondrup J, Knudsen GM. Cerebral glucose and oxygen metabolism in patients with fulminant hepatic failure. Liver Transpl. 2003;9(12):1244–1252.
    1. Gjedde A, Lockwood AH, Duffy TE, Plum F. Cerebral blood flow and metabolism in chronically hyperammonemic rats: effect of an acute ammonia challenge. Ann Neurol. 1978; 3(4):325–330.
    1. Cooper AJ, Mora SN, Cruz NF, Gelbard AS. Cerebral ammonia metabolism in hyperammonemic rats. J Neurochem. 1985. June;44(6):1716–1723.
    1. Cooper AJ, Lai JC. Cerebral ammonia metabolism in normal and hyperammonemic rats. Neurochem Pathol. 1987. Feb-Apr;6(1–2):67–95.
    1. Qureshi IA, Rao KV. Sparse-fur (spf) mouse as a model of hyperammonemia: alterations in the neurotransmitter systems. Adv Exp Med Biol. 1997;420:143–158.
    1. Master S, Gottstein J, Blei AT. Cerebral blood flow and the development of ammonia-induced brain edema in rats after portacaval anastomosis. Hepatology. 1999;30(4):876–880.
    1. Bosoi CR, Rose CF. Identifying the direct effects of ammonia on the brain. Metab Brain Dis. 2009;24(1):95–102.
    1. Larsen FS. Cerebral blood flow in hyperammonemia: heterogeneity and starling forces in capillaries. Metab Brain Dis. 2002;17(4):229–235.
    1. Su PH, Chen JY, Chen YJ, Niu DM, Hsu JH, Lee IC. Electroencephalography and transcranial Doppler ultrasonography in neonatal citrullinemia. J Formos Med Assoc. 2014. November;113(11):857–861.
    1. Savy N, Brossier D, Brunel-Guitton C, Ducharme-Crevier L, Du Pont-Thibodeau G, Jouvet P. Acute pediatric hyperammonemia: current diagnosis and management strategies. Hepat Med. 2018. September 12;10:105–115.
    1. Zeiler FA, Thelin EP, Helmy A, Czosnyka M, Hutchinson PJA, Menon DK. A systematic review of cerebral microdialysis and outcomes in TBI: relationships to patient functional outcome, neurophysiologic measures, and tissue outcome. Acta Neurochir (Wien). 2017. December;159(12):2245–2273.
    1. Murphy N, Auzinger G, Bernel W, Wendon J. The effect of hypertonic sodium chloride on intracranial pressure in patients with acute liver failure. Hepatology. 2004. February;39(2):464–470.
    1. Bjerring PN, Hauerberg J, Frederiksen HJ, Jorgensen L, Hansen BA, Tofteng F, Larsen FS. Cerebral glutamine concentration and lactate-pyruvate ratio in patients with acute liver failure. Neurocrit Care. 2008;9(1):3–7.
    1. Richards DA, Tolias CM, Sgouros S, Bowery NG. Extracellular glutamine to glutamate ratio may predict outcome in the injured brain: a clinical microdialysis study in children. Pharmacol Res. 2003. July;48(1):101–109.
    1. Charalambides C, Sgouros S, Sakas D. Intracerebral microdialysis in children. Childs Nerv Syst. 2010. February;26(2):215–20. doi: 10.1007/s00381-009-1031-3. Epub 2009 Nov 26.

Source: PubMed

3
Iratkozz fel