ASL expression in ALDH1A1+ neurons in the substantia nigra metabolically contributes to neurodegenerative phenotype

Shaul Lerner, Raya Eilam, Lital Adler, Julien Baruteau, Topaz Kreiser, Michael Tsoory, Alexander Brandis, Tevie Mehlman, Mina Ryten, Juan A Botia, Sonia Garcia Ruiz, Alejandro Cisterna Garcia, Carlo Dionisi-Vici, Giusy Ranucci, Marco Spada, Ram Mazkereth, Robert McCarter, Rima Izem, Thomas J Balmat, Rachel Richesson, Members of the UCDC, Ehud Gazit, Sandesh C S Nagamani, Ayelet Erez, Matthias R Baumgartner, Jirair K Bedoyan, Gerard Berry, Susan A Berry, Peter Burgard, Lindsay Burrage, Curtis Coughlin, George A Diaz, Gregory Enns, Renata C Gallagher, Andrea Gropman, Cary O Harding, Georg Hoffmann, Cynthia Le Mons, Shawn E McCandless, J Lawrence Merritt 2nd, Sandesh C S Nagamani, Andreas Schulze, Jennifer Seminara, Tamar Stricker, Mendel Tuchman, Susan Waisbren, James D Weisfeld-Adams, Derek Wong, Marc Yudkoff, Shaul Lerner, Raya Eilam, Lital Adler, Julien Baruteau, Topaz Kreiser, Michael Tsoory, Alexander Brandis, Tevie Mehlman, Mina Ryten, Juan A Botia, Sonia Garcia Ruiz, Alejandro Cisterna Garcia, Carlo Dionisi-Vici, Giusy Ranucci, Marco Spada, Ram Mazkereth, Robert McCarter, Rima Izem, Thomas J Balmat, Rachel Richesson, Members of the UCDC, Ehud Gazit, Sandesh C S Nagamani, Ayelet Erez, Matthias R Baumgartner, Jirair K Bedoyan, Gerard Berry, Susan A Berry, Peter Burgard, Lindsay Burrage, Curtis Coughlin, George A Diaz, Gregory Enns, Renata C Gallagher, Andrea Gropman, Cary O Harding, Georg Hoffmann, Cynthia Le Mons, Shawn E McCandless, J Lawrence Merritt 2nd, Sandesh C S Nagamani, Andreas Schulze, Jennifer Seminara, Tamar Stricker, Mendel Tuchman, Susan Waisbren, James D Weisfeld-Adams, Derek Wong, Marc Yudkoff

Abstract

Argininosuccinate lyase (ASL) is essential for the NO-dependent regulation of tyrosine hydroxylase (TH) and thus for catecholamine production. Using a conditional mouse model with loss of ASL in catecholamine neurons, we demonstrate that ASL is expressed in dopaminergic neurons in the substantia nigra pars compacta, including the ALDH1A1 + subpopulation that is pivotal for the pathogenesis of Parkinson disease (PD). Neuronal loss of ASL results in catecholamine deficiency, in accumulation and formation of tyrosine aggregates, in elevation of α-synuclein, and phenotypically in motor and cognitive deficits. NO supplementation rescues the formation of aggregates as well as the motor deficiencies. Our data point to a potential metabolic link between accumulations of tyrosine and seeding of pathological aggregates in neurons as initiators for the pathological processes involved in neurodegeneration. Hence, interventions in tyrosine metabolism via regulation of NO levels may be therapeutic beneficial for the treatment of catecholamine-related neurodegenerative disorders.

Conflict of interest statement

The authors declare no conflict of interest.

© 2021. The Author(s).

Figures

Fig. 1
Fig. 1
ASL co-localizes with TH and ALDH1A1 in the SNc, and its deficiency is associated with decreased TH expression and catecholamine synthesis. A VTA and SNcM dopaminergic regions are demonstrated in a scheme of coronal midbrain section (bregma -3.65 mm) (top panel left) and by TH staining (top panel middle, green) (Scale bar = 500 µm). Magnification of the box area indicates TH (top panel right, green), ALDH1A1 (lower panel left, cyan), ASL (lower panel middle, red), and their co-staining (lower panel right). Dashed lines differentiate the SNcM and VTA subregions (Scale bar = 250 µm). Arrows point to representative cells co-expressing the three proteins. B Quantification of TH mRNA in the SNcM and VTA regions of Aslf/f; TH Cre+/− and in Aslf/f control mice as measured by RT-PCR with specific TaqMan probes (n = 7 mice in each group). C, D Quantification of TH immunostaining of TH- ALDH1A1+ neurons in the SNc medial (SNcM) (C) and striatum (D) of Aslf/f; TH Cre+/− and Aslf/f control mice (n = 5). E Measurement of SNcM catecholamine levels shows a reduction in both dopamine (left) and norepinephrine (right) in Aslf/f; TH Cre+/− as compared to Aslf/f control mice (n ≥ 9 mice in each group). SNCD-SNc dorsal, PBP-parabrachial pigmented nucleus. Data represent mean ± s.e.m. (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001; ns not significant)
Fig. 2
Fig. 2
ASL deficiency results in motor dysfunctions in both humans and rodents. AH Gait analysis in Aslf/f;TH Cre+/− and Aslf/f control mice. Dynamic paw parameters included: A Cadence. B Run duration. C Maximum variation. D Swing speed. E Stride length F Duty cycle. G Step cycle. H Paws support. (n≥ 10). I Pie charts demonstrating the percentage of subjects with tremors in ASLD (left part) and ASS1D (right part) patients with or without documented episode of HA. Data represent mean ± s.e.m. (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001; ns not significant)
Fig. 3
Fig. 3
Adult Aslf/f; TH Cre+/− mice display cognitive deficits that can be partially rescued with NO donors. A Adult Aslf/f control group exhibit strong preference to the target quarter on probe day (left panel) and two weeks later (right panel), in comparison to adult Aslf/f; TH Cre+/− mice. Acute treatment with NO donor did not rescue the performance of Aslf/f; TH Cre+/− mice. The dashed line indicates the time expected by chance. B Adult control mice trained for the fear conditioning paradigm and tested for demonstrating freezing responses to context (left panel) and cue (tone) challenges (right panel), froze significantly more than adult Aslf/f;TH Cre+/− mice. Acute treatment with NO donor rescues the performance of Aslf/f;TH Cre+/− mice. C Two weeks following the first fear-conditioning assessment, mice were tested again and showed the same trend in both the context (left panel) and cue (right panel) tests. (n ≥8). Data represent mean ± s.e.m. (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001; ns not significant)
Fig. 4
Fig. 4
ASL deficiency in human patients associates with tyrosine accumulation and α-synuclein aggregation. A Tyrosine levels in the CSF (left panel) and plasma (right panel) of ASLD patients underwent liver transplantation. Dashed lines indicate the normal level range (n = 8 for CSF, n = 4 for plasma) (p < 0.02 for CSF, p = 0.56 for plasma). B SH-SY5Y neurons were stained with anti-tyrosine aggregates antibodies and visualized using confocal microscopy. Representative staining of DAPI (blue) and anti-tyrosine staining (red) are shown (Scale bars = 10 µm). A representative 3D volume reconstruction of the Z-series with XZ-slice projection staining of control shGFP neurons (left panel) and shASL neurons (middle panel) (Interval between individual Z-stack serial images = 0.5 µm). Right panel: quantification of the fluorescence intensity of the anti-tyrosine aggregates staining of shGFP and shASL neurons supplemented with or without NO donors (n ≥ 14) (One-way ANOVA with Bonferroni). C Measurements of neuronal cell viability following the addition of the XTT reagent (n = 4). D Quantification of α-synuclein protein levels from SH-SY5Y neuronal cells (n = 4). Lower panel: representative western blot for α- synuclein levels. E ASL is located close to a PD locus variant identified by recent GWAS studies from the iPDGC Locus Browser v1.5 (59). The lead single nucleotide polymorphism (SNP) at this locus is rs76949143 (purple). Recombination rate peaks are marked in blue, and variants are colored by their r2 linkage disequilibrium values. Data represent mean ± s.e.m. (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001; ns not significant). F A summary model of our findings demonstrating that ASL loss leads to decreased TH activity, subsequently causing decreased catecholamine (CA) levels and accumulation of tyrosine which together with elevation of α- synuclein may predispose to aggregate formation

References

    1. Erez A, Nagamani SC, Lee B. Argininosuccinate lyase deficiency-argininosuccinic aciduria and beyond. Am J Med Genet C Semin Med Genet. 2011;157(1):45–53. doi: 10.1002/ajmg.c.30289.
    1. Nagamani SCS, Erez A, Lee B (1993) Argininosuccinate Lyase Deficiency. In: Pagon RA, Bird TD, Dolan CR, Stephens K, Adam MP, editors. GeneReviews. Seattle (WA)
    1. Tuchman M, Lee B, Lichter-Konecki U, Summar ML, Yudkoff M, Cederbaum SD, et al. Cross-sectional multicenter study of patients with urea cycle disorders in the United States. Mol Genet Metab. 2008;94(4):397–402. doi: 10.1016/j.ymgme.2008.05.004.
    1. Kolker S, Valayannopoulos V, Burlina AB, Sykut-Cegielska J, Wijburg FA, Teles EL, et al. The phenotypic spectrum of organic acidurias and urea cycle disorders. Part 2: the evolving clinical phenotype. J Inherit Metab Dis. 2015;38(6):1059–1074. doi: 10.1007/s10545-015-9840-x.
    1. Erez A, Nagamani SC, Shchelochkov OA, Premkumar MH, Campeau PM, Chen Y, et al. Requirement of argininosuccinate lyase for systemic nitric oxide production. Nat Med. 2011;17(12):1619–1626. doi: 10.1038/nm.2544.
    1. Mori M, Gotoh T. Arginine metabolic enzymes, nitric oxide and infection. J Nutr. 2004;134(10 Suppl):2820S–S2825. doi: 10.1093/jn/134.10.2820S.
    1. Nagamani SC, Campeau PM, Shchelochkov OA, Premkumar MH, Guse K, Brunetti-Pierri N, et al. Nitric-oxide supplementation for treatment of long-term complications in argininosuccinic aciduria. Am J Hum Genet. 2012;90(5):836–846. doi: 10.1016/j.ajhg.2012.03.018.
    1. Lerner S, Anderzhanova E, Verbitsky S, Eilam R, Kuperman Y, Tsoory M, et al. ASL metabolically regulates tyrosine hydroxylase in the nucleus locus coeruleus. Cell Rep. 2019;29(8):2144–53 e7. doi: 10.1016/j.celrep.2019.10.043.
    1. Wise RA. Dopamine, learning and motivation. Nat Rev Neurosci. 2004;5(6):483–494. doi: 10.1038/nrn1406.
    1. Sara SJ. The locus coeruleus and noradrenergic modulation of cognition. Nat Rev Neurosci. 2009;10(3):211–223. doi: 10.1038/nrn2573.
    1. Chrousos GP. Stress and disorders of the stress system. Nat Rev Endocrinol. 2009;5(7):374–381. doi: 10.1038/nrendo.2009.106.
    1. Miller DB, O'Callaghan JP. Biomarkers of Parkinson's disease: present and future. Metabolism. 2015;64(3 Suppl 1):S40–S46. doi: 10.1016/j.metabol.2014.10.030.
    1. Schapira AHV, Chaudhuri KR, Jenner P. Non-motor features of Parkinson disease. Nat Rev Neurosci. 2017;18(7):435–450. doi: 10.1038/nrn.2017.62.
    1. Hassani OK, Rymar VV, Nguyen KQ, Huo L, Cloutier JF, Miller FD, et al. The noradrenergic system is necessary for survival of vulnerable midbrain dopaminergic neurons: implications for development and Parkinson's disease. Neurobiol Aging. 2020;85:22–37. doi: 10.1016/j.neurobiolaging.2019.09.014.
    1. Srinivasan J, Schmidt WJ. Potentiation of parkinsonian symptoms by depletion of locus coeruleus noradrenaline in 6-hydroxydopamine-induced partial degeneration of substantia nigra in rats. Eur J Neurosci. 2003;17(12):2586–2592. doi: 10.1046/j.1460-9568.2003.02684.x.
    1. Rommelfanger KS, Weinshenker D, Miller GW. Reduced MPTP toxicity in noradrenaline transporter knockout mice. J Neurochem. 2004;91(5):1116–1124. doi: 10.1111/j.1471-4159.2004.02785.x.
    1. Kalia LV, Lang AE. Parkinson's disease. Lancet. 2015;386(9996):896–912. doi: 10.1016/S0140-6736(14)61393-3.
    1. Liu G, Yu J, Ding J, Xie C, Sun L, Rudenko I, et al. Aldehyde dehydrogenase 1 defines and protects a nigrostriatal dopaminergic neuron subpopulation. J Clin Invest. 2014;124(7):3032–3046. doi: 10.1172/JCI72176.
    1. Poulin JF, Zou J, Drouin-Ouellet J, Kim KY, Cicchetti F, Awatramani RB. Defining midbrain dopaminergic neuron diversity by single-cell gene expression profiling. Cell Rep. 2014;9(3):930–943. doi: 10.1016/j.celrep.2014.10.008.
    1. Cai H, Liu G, Sun L, Ding J. Aldehyde Dehydrogenase 1 making molecular inroads into the differential vulnerability of nigrostriatal dopaminergic neuron subtypes in Parkinson's disease. Transl Neurodegener. 2014;3:27. doi: 10.1186/2047-9158-3-27.
    1. Galter D, Buervenich S, Carmine A, Anvret M, Olson L. ALDH1 mRNA: presence in human dopamine neurons and decreases in substantia nigra in Parkinson's disease and in the ventral tegmental area in schizophrenia. Neurobiol Dis. 2003;14(3):637–647. doi: 10.1016/j.nbd.2003.09.001.
    1. Wu J, Kung J, Dong J, Chang L, Xie C, Habib A, et al. Distinct connectivity and functionality of aldehyde dehydrogenase 1a1-positive nigrostriatal dopaminergic neurons in motor learning. Cell Rep. 2019;28(5):1167–81 e7. doi: 10.1016/j.celrep.2019.06.095.
    1. Grunblatt E, Zehetmayer S, Jacob CP, Muller T, Jost WH, Riederer P. Pilot study: peripheral biomarkers for diagnosing sporadic Parkinson's disease. J Neural Transm (Vienna) 2010;117(12):1387–1393. doi: 10.1007/s00702-010-0509-1.
    1. Devine MJ, Gwinn K, Singleton A, Hardy J. Parkinson's disease and alpha-synuclein expression. Mov Disord. 2011;26(12):2160–2168. doi: 10.1002/mds.23948.
    1. Irwin DJ, Lee VM, Trojanowski JQ. Parkinson's disease dementia: convergence of alpha-synuclein, tau and amyloid-beta pathologies. Nat Rev Neurosci. 2013;14(9):626–636. doi: 10.1038/nrn3549.
    1. Dickson DW. Neuropathology of Parkinson disease. Parkinsonism Relat Disord. 2018;46(Suppl 1):S30–S33. doi: 10.1016/j.parkreldis.2017.07.033.
    1. Wong YC, Krainc D. alpha-synuclein toxicity in neurodegeneration: mechanism and therapeutic strategies. Nat Med. 2017;23(2):1–13. doi: 10.1038/nm.4269.
    1. Buxbaum JN, Linke RP. A molecular history of the amyloidoses. J Mol Biol. 2012;421(2–3):142–159. doi: 10.1016/j.jmb.2012.01.024.
    1. Tavassoly O, Sade D, Bera S, Shaham-Niv S, Vocadlo DJ, Gazit E. Quinolinic acid amyloid-like fibrillar assemblies seed alpha-synuclein aggregation. J Mol Biol. 2018;430(20):3847–3862. doi: 10.1016/j.jmb.2018.08.002.
    1. Giguere N, Burke Nanni S, Trudeau LE. On cell loss and selective vulnerability of neuronal populations in Parkinson's Disease. Front Neurol. 2018;9:455. doi: 10.3389/fneur.2018.00455.
    1. Sgobio C, Wu J, Zheng W, Chen X, Pan J, Salinas AG, et al. Aldehyde dehydrogenase 1-positive nigrostriatal dopaminergic fibers exhibit distinct projection pattern and dopamine release dynamics at mouse dorsal striatum. Sci Rep. 2017;7(1):5283. doi: 10.1038/s41598-017-05598-1.
    1. Boix J, von Hieber D, Connor B. Gait analysis for early detection of motor symptoms in the 6-OHDA rat model of Parkinson's Disease. Front Behav Neurosci. 2018;12:39. doi: 10.3389/fnbeh.2018.00039.
    1. Wang XH, Lu G, Hu X, Tsang KS, Kwong WH, Wu FX, et al. Quantitative assessment of gait and neurochemical correlation in a classical murine model of Parkinson's disease. BMC Neurosci. 2012;13:142. doi: 10.1186/1471-2202-13-142.
    1. Stettner N, Rosen C, Bernshtein B, Gur-Cohen S, Frug J, Silberman A, et al. Induction of nitric-oxide metabolism in enterocytes alleviates colitis and inflammation-associated colon cancer. Cell Rep. 2018;23(7):1962–1976. doi: 10.1016/j.celrep.2018.04.053.
    1. Kho J, Tian X, Wong WT, Bertin T, Jiang MM, Chen S, et al. Argininosuccinate lyase deficiency causes an endothelial-dependent form of hypertension. Am J Hum Genet. 2018;103(2):276–287. doi: 10.1016/j.ajhg.2018.07.008.
    1. Harraz MM, Snyder SH. Nitric oxide-GAPDH transcriptional signaling mediates behavioral actions of cocaine. CNS Neurol Disord Drug Targets. 2015;14(6):757–763. doi: 10.2174/1871527314666150529150143.
    1. McDowell K, Chesselet MF. Animal models of the non-motor features of Parkinson's disease. Neurobiol Dis. 2012;46(3):597–606. doi: 10.1016/j.nbd.2011.12.040.
    1. Mor DE, Daniels MJ, Ischiropoulos H. The usual suspects, dopamine and alpha-synuclein, conspire to cause neurodegeneration. Mov Disord. 2019;34(2):167–179. doi: 10.1002/mds.27607.
    1. Zaguri D, Kreiser T, Shaham-Niv S, Gazit E (2018) Antibodies towards tyrosine amyloid-like fibrils allow toxicity modulation and cellular imaging of the assemblies. Molecules 23(6)
    1. Mittal S, Bjornevik K, Im DS, Flierl A, Dong X, Locascio JJ, et al. beta2-Adrenoreceptor is a regulator of the alpha-synuclein gene driving risk of Parkinson's disease. Science. 2017;357(6354):891–898. doi: 10.1126/science.aaf3934.
    1. Nalls MA, Blauwendraat C, Vallerga CL, Heilbron K, Bandres-Ciga S, Chang D, et al. Identification of novel risk loci, causal insights, and heritable risk for Parkinson's disease: a meta-analysis of genome-wide association studies. Lancet Neurol. 2019;18(12):1091–1102. doi: 10.1016/S1474-4422(19)30320-5.
    1. Baruteau J, Jameson E, Morris AA, Chakrapani A, Santra S, Vijay S, et al. Expanding the phenotype in argininosuccinic aciduria: need for new therapies. J Inherit Metab Dis. 2017;40(3):357–368. doi: 10.1007/s10545-017-0022-x.
    1. Kolker S, Garcia-Cazorla A, Valayannopoulos V, Lund AM, Burlina AB, Sykut-Cegielska J, et al. The phenotypic spectrum of organic acidurias and urea cycle disorders. Part 1: the initial presentation. J Inherit Metab Dis. 2015;38(6):1041–1057. doi: 10.1007/s10545-015-9839-3.
    1. Waisbren SE, Gropman AL, Members of the Urea Cycle Disorders C. Batchaw ML. Improving long term outcomes in urea cycle disorders-report from the urea cycle disorders consortium. J Inherit Metab Dis. 2016;39(4):573–584. doi: 10.1007/s10545-016-9942-0.
    1. Baruteau J, Perocheau DP, Hanley J, Lorvellec M, Rocha-Ferreira E, Karda R, et al. Argininosuccinic aciduria fosters neuronal nitrosative stress reversed by Asl gene transfer. Nat Commun. 2018;9(1):3505. doi: 10.1038/s41467-018-05972-1.
    1. Jin Z, Kho J, Dawson B, Jiang MM, Chen-Evenson Y, Ali S, et al (2020) Nitric oxide modulates bone anabolism through regulation of osteoblast glycolysis and differentiation. J Clin Invest
    1. Baruteau J, Diez-Fernandez C, Lerner S, Ranucci G, Gissen P, Dionisi-Vici C, et al. Argininosuccinic aciduria: recent pathophysiological insights and therapeutic prospects. J Inherit Metab Dis. 2019;42(6):1147–1161. doi: 10.1002/jimd.12047.
    1. Premkumar MH, Sule G, Nagamani SC, Chakkalakal S, Nordin A, Jain M, et al. Argininosuccinate lyase in enterocytes protects from development of necrotizing enterocolitis. Am J Physiol Gastrointest Liver Physiol. 2014;307(3):G347–G354. doi: 10.1152/ajpgi.00403.2013.
    1. Wang Y, Sung CC, Chung KK. Novel enhancement mechanism of tyrosine hydroxylase enzymatic activity by nitric oxide through S-nitrosylation. Sci Rep. 2017;7:44154. doi: 10.1038/srep44154.
    1. Jimenez-Jimenez FJ, Alonso-Navarro H, Herrero MT, Garcia-Martin E, Agundez JA. An Update on the Role of Nitric Oxide in the Neurodegenerative Processes of Parkinson's Disease. Curr Med Chem. 2016;23(24):2666–2679. doi: 10.2174/0929867323666160812151356.
    1. Good PF, Hsu A, Werner P, Perl DP, Olanow CW. Protein nitration in Parkinson's disease. J Neuropathol Exp Neurol. 1998;57(4):338–342. doi: 10.1097/00005072-199804000-00006.
    1. Shaham-Niv S, Adler-Abramovich L, Schnaider L, Gazit E. Extension of the generic amyloid hypothesis to nonproteinaceous metabolite assemblies. Sci Adv. 2015;1(7):e1500137. doi: 10.1126/sciadv.1500137.
    1. Anand BG, Dubey K, Shekhawat DS, Kar K. Intrinsic property of phenylalanine to trigger protein aggregation and hemolysis has a direct relevance to phenylketonuria. Sci Rep. 2017;7(1):11146. doi: 10.1038/s41598-017-10911-z.
    1. Sade D, Shaham-Niv S, Arnon ZA, Tavassoly O, Gazit E (2018) Seeding of proteins into amyloid structures by metabolite assemblies may clarify certain unexplained epidemiological associations. Open Biol 8(1)
    1. Disorders of tyrosine metabolism Br Med J. 1968;3(5617):511–512.
    1. D'Andrea G, Pizzolato G, Gucciardi A, Stocchero M, Giordano G, Baraldi E, et al. Different circulating trace amine profiles in de novo and treated Parkinson's disease patients. Sci Rep. 2019;9(1):6151. doi: 10.1038/s41598-019-42535-w.
    1. Jimenez-Jimenez FJ, Alonso-Navarro H, Garcia-Martin E, Agundez JAG. Cerebrospinal and blood levels of amino acids as potential biomarkers for Parkinson's disease: review and meta-analysis. Eur J Neurol. 2020;27(11):2336–2347. doi: 10.1111/ene.14470.
    1. Erez A, DeBerardinis RJ. Metabolic dysregulation in monogenic disorders and cancer—finding method in madness. Nat Rev Cancer. 2015;15(7):440–448. doi: 10.1038/nrc3949.
    1. Grenn FP, Kim JJ, Makarious MB, Iwaki H, Illarionova A, Brolin K, et al. The Parkinson's disease genome-wide association study locus browser. Mov Disord. 2020;35(11):2056–2067. doi: 10.1002/mds.28197.
    1. Haeussler M, Zweig AS, Tyner C, Speir ML, Rosenbloom KR, Raney BJ, et al. The UCSC Genome Browser database: 2019 update. Nucleic Acids Res. 2019;47(D1):D853–D858. doi: 10.1093/nar/gky1095.
    1. Madisen L, Zwingman TA, Sunkin SM, Oh SW, Zariwala HA, Gu H, et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat Neurosci. 2010;13(1):133–140. doi: 10.1038/nn.2467.
    1. Cohen SA, Michaud DP. Synthesis of a fluorescent derivatizing reagent, 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate, and its application for the analysis of hydrolysate amino acids via high-performance liquid chromatography. Anal Biochem. 1993;211(2):279–287. doi: 10.1006/abio.1993.1270.
    1. Neufeld-Cohen A, Tsoory MM, Evans AK, Getselter D, Gil S, Lowry CA, et al. A triple urocortin knockout mouse model reveals an essential role for urocortins in stress recovery. Proc Natl Acad Sci USA. 2010;107(44):19020–19025. doi: 10.1073/pnas.1013761107.

Source: PubMed

3
Iratkozz fel